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Abstract
We measure the Drell-Yan differential cross section d%o/dM dy||y|<1 over the mass
range 11 < M < 150 GeV/c? using dielectron and dimuon data from pp collisions at a
center-of-mass energy of /5 =1.8 TeV. Qur results show the 1/M?> dependence that is
expected from the naive Drell-Yan model. In comparison to the predictions of recent
QCD calculations, we find our data favor those parton distribution functions with the

largest quark contributions in the z interval 0.006 to 0.03.

PACS numbers: 13,85.0k, 12.15.Ji, 13.40.-f, and 12.38.0k.

The Drell-Yan process, q¢ — (v,2°) — Iti~, is a probe of the parton distribution
functions of the proton [1]. We present measurements of the differential cross section for
electron and muon pair production, d?s/dM dyl\yi<1, where y is the rapidity of the lepton
pair [2], in Pp collisions at a center-of-mass energy of /s =1.8 TeV.

The data were collected with the Collider Detector at the Fermilab Tevatron (CDF) dur-
ing the 1988-89 run. The sample used consists of dielectron and dimuon events of integrated
luminosity, £, of 4.13 pb™' and 2.77 pb™’, respectively. The CDF is a large solenoidal mag-
netic spectrometer surrounded by calorimeters and muon detectors. The detector is described
in detail in Reference 3. The fine-grain calorimeter segmentation and high-resolution central
tracking allowed for excellent electron and muon identification as described in References 4
and 5, respectively.

The range of dilepton invariant masses measured in this experiment allows access to the
small z region of the parton distribution functions down to = = 0.006 [6] 7], where z is
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defined as the fraction of proton momentum carried by the parton. This work complements
our previous measurement of the Z° cross section [4] [5] and our searches for new vector
bosons and compositeness (8] in the dielectron and dimuon decay channels.

The online trigger required all dilepton events to have at least one hit in each of the
forward and Backwa.rd scintillator arrays [9]. Dielectron events were selected by additionally
requiring a trigger of two clusters of electromagnetic energy in the central calorimeter [10].
Each of the triggering clusters was required to have transverse electromagnetic energy [11]
(Er) > 5 GeV, a track associated with the cluster with transverse momentum (pr) >
4.8 GeV/c, and a ratio of hadronic to electromagnetic Er < 0.125. The efficiency of this
trigger, for a single electron, was determined as a function of E1 by studying events collected
with an independent trigger. After reconstructing the events, we required two clusters of
electromagnetic Er > 5 GeV in the central detector (5| < 1) [12]. To maintain high
detection efficiency, one electron candidate was required to satisfy a set of tight cuts and the
other to pass a set of looser cuts. The tight cuts were identical to those of Reference 13 with
the exception of the cut value on the ratio of the calorimeter energy to track momentum,
E/P, which was set to 1.5 instead of 2.0. The loose cuts differed from the tight ones in that
the requirements were removed on energy sharing between adjacent towers and on lateral
shower profile. The efficiency of these requirements, €;4, was constant at 0.79 + 0.03 for a
wide range of electron Ert, as determined from Z° and J/1 events. After these cuts 1111
dielectron events remained in the mass range 11 < M,, < 150 GeV/c

Dimuon events were selected online with a trigger that required two tracks in the central
tracking chamber with pt > 3 GeV/c and matching tracks in the central muon chambers

(]n| < 0.6) located outside the steel of the central hadron calorimeters [14]. The efficiency of



this trigger, for a single muon, was determined as a function of pr by studying muons from
events collected with an independent trigger and from cosmic ray events, After reconstruction
we required one muon to have pr > 5 GeV/c, and the other muon to have pr > 3 GeV/ec.
Both muon tracks had to match a track segment in the central muon chambers to within
10 cm in the 7 — ¢ plane [15]. Each muon was also required to deposit less than 2.0 GeV
of energy in the electromagnetic calorimeter tower and less than 6.0 GeV of energy in the
hadronic calorimeter tower which it traversed. The efficiency of these requirements, €,4, was
determined from Z° and J/¢ events to be 0.84 + 0.05. To reject cosmic ray background
events the opening angle between the two muons was required to be less than 175° and the
impact parameters of both tracks with respect to the beam axis to be less than 0.15 cm. We
were left with 832 dimuon events in the mass range 11 < M,,, < 150 GeV/c?.

Two sources dominate the background to the Drell-Yan signal: misidentification back-
ground and heavy quark decays. Misidentification background consists of events with either
an electron from a photon conversion, a lepton from the decay in flight of a hadron, or
a misidentified hadron. The heavy quark decay background consists of pairs, mostly bb,
for which both quarks decay semileptonically. Both of these backgrounds originate predomi-
nantly from QCD jet events and tend to have non-isolated lepton candidates since the leptons
are typically surrounded by other particles from the jet. Leptons from the Drell-Yan process
have opposite charge, and are expected to be isolated. We defined an isolation variable,
I = maz(],,I;), where the I; are the sums of the transverse momenta of the tracks within
cones in 7-¢ space [12]. The cones had a radius of 0.5 and were centered on each of the
two lepton tracks. In order to be included in the sum, a track must have had a transverse

momentum above 0.4 GeV/c and must not have been the lepton itself. Figures la and 1b



show the distribution of this isolation variable for opposite- and same-charged electron and
muon pairs, respectively.

Misidentification backgrounds are expected to be represented in equal amounts in events
with same-charged leptons and in events with opposite-charged leptons. Indeed, we found
that the isolation distributions for events failing the lepton identification cuts are charge
symmetric. Therefore, we corrected for this background by subtracting the same-charge
mass spectrum from the opposite-charged mass spectrum. This procedure also subtracted
same-charged heavy flavor events. After subtraction, there remained the Drell-Yan signal
plus the excess of the opposite-charged over same-charged heavy flavor backgrounds. To
suppress the heavy flavor background we required I to be less than 1.0 GeV/c. After this
cut, there were 171 ete™, 13 e*e?, 81 utp~, and 13 p*u* events.

We estimate the background from heavy flavor events using the mass spectrum and isola-
tion distributions observed in ex pairs [16] which have no direct Drell-Yan contribution [17].
This background was estimated to be 19 + 12 events in the dielectron sample and 8 + 6 in
the dimuon sample (see Figure 2).

The efficiency of the isolation cut, €4, was 0.72 + 0.03 and 0.69 + 0.06 in the eTe”
and p*p~ samples, respectively, independent of pair mass. This efficiency was measured
by imposing the isolation cut on the leptons from Z° decays as well as from randomly
selected directions in the isolated, opposite-charged pair events with invariant mass between
20 GeV/c? and 50 GeV/c?. The two methods were consistent.

Other backgrounds are small. From a study of the distributions of dimuon opening angle
and track impact parameters, we estimated that 1.7 + 0.3 cosmic-ray events survived the

dimuon cuts. Using a Monte Carlo calculation, we estimated 0.8 & 0.5 dimuon events and 1.5



1 0.1 dielectron events from the leptonic decays of 7 pairs produced through the Drell- Yan
process. The total number of signal and background events in each mass bin for the electron
and muon samples is given in Table 1.

The acceptance due to geometric and kinematic cuts was calculated using the ISAJET
Monte Carlo [18] with the MRSB parton distribution functions [19] for |y| < 1.0. Table
1 lists the combined geometric and kinematic acceptance ,A, including a requirement that
the event vertex position be within 60 cm (2¢) of the nominal interaction point along the
beam axis. The main difference between the dielectron and dimuon acceptance is due to the
electron detector 7 coverage of -1.0 to +1.0 while the muon detector 5 coverage is only -0.6 to
+0.6. Table 1 also contains the dielectron and dimuon trigger efficiencies, €irig, as a function
of dilepton pair invariant mass. These trigger efficiencies were measured for electrons and
muons passing their respective geometric and kinematic cuts.

To calculate the differential cross section we used the formula

dlo _ Noc— N,c — Ny
de‘y lvl<1 - AMAyAEt,.,'gE,'dE,',oE

(1)

where N, is the number of isolated opposite-charged events, N,. is the number of isolated
same-charged events, Ny, is the number of background events in the charge-subtracted dis-
tribution, AM is the width of the mass bin, and Ay is the rapidity range of the parent
boson. The cross sections are presented in Table 2 and are shown as a function of dilepton
invariant mass in Figure 3. The points are plotted at the mass centroid of the bins. The
cross section calculated at the Z° mass agrees well with previous CDF measurements [5].
We obtained the total systematic uncertainty of the cross section by adding, in quadra-

ture, the errors from the following sources. There was an uncertainty of 5% in the acceptance,



A, due to varying the choice of parton distribution functions. The systematic error in the
measurement of integrated luminosity was 7% [4]. For dielectrons (dimuons), systematic
errors of 4(8)% and 4(6)% were due to the uncertainties in €, and €y, respectively. While
relatively small at high mass, uncertainties due to trigger efficiency and background subtrac-
tion become dominant at low mass (see Table 1).

Our combined results are shown in Figure 4 and are consistent with the 1/M? dependence
that is expected from the naive Drell-Yan model. Also shown are the predictions of next-
to-leading order QCD calculations {20] using several recent parton distribution functions [6].
We find better agreement with those parton distribution functions having the largest quark
content in the z interval, 0.006 < z < 0.03, covered by our data.
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Table 1: Mass dependent values used to calculate d’¢/dMdy||,<: using Equation 1. N,. is
the number of isolated opposite-charged events, Ny is the number of isolated same-charged
events, Nyg is the number of background events in the charge-subtracted distribution, A is

the geometric and kinematic acceptance, and €, is the trigger efficiency.

Mass bin (GeV/c?) | Noo | N, Nig A €trig
Electrons
11-15 36 | 11 57+ 54 0.18 £ 0.01 | 0.47 338
15-20 31 | 2 9.5 £ 7.3 0.23 +£0.01 | 0.77 1%
20-30 23 | 0 4.6 + 3.6 0.25 £ 0.01 | 0.90 *5%
30-40 9 |0 1.0 & 0.6 0.25 +£ 0.01 |0.92 + 0.05
40-50 3 | 0| 021£001 | 0244001 |093+0.04
50-60 2 | 0 | 0144001 | 0.23+0.01 |093+0.04
60-70 2 | 0 |0.635 % 0.001 | 0.25 = 0.01 | 0.93 + 0.04
70-110 64 | 0 |0.011 + 0.001 | 0.24 +0.01 | 0.93 + 0.04
110-150 110 0 0.25 £ 0.01 | 0.93 + 0.04
Muons
11-15 35 | 12 | 3.9+£39 |0.078 +0.006 | 0.78 + 0.06
15-20 18 | 1 2.6 +2.3 | 0.080 + 0.006 | 0.81 + 0.06
20-30 9 |0 2.3 £ 1.7 | 0.080 + 0.006 | 0.82 + 0.07
30-40 310 0.7 £ 0.4 | 0.080 + 0.006 | 0.82 = 0.07
40-50 1|0 0.1 £ 0.1 |0.080 + 0.006 | 0.82 = 0.07
50-60 0|0 0.1 £0.1 | 0.080 + 0.006 | 0.82 = 0.07
60-70 0] 0 0.1 +£0.1 |0.080 + 0.006 | 0.82 = 0.07
70-110 15| 0 0.1 £0.1 | 0.080 + 0.006 | 0.82 + 0.07
110-150 0| o0 0 0.080 + 0.006 | 0.82 + 0.07




Table 2: d*c/dMdy| <, for the dielectron, dimuon, and combined samples. The first uncer-
tainty is statistical and the second is systematic for the dielectron and dimuon samples while

the combined sample has the total statistical and systematic uncertainty.

Mass bin | Mass centroid Dielectron Dimuon Combined [21]
(GeV/c?) | (GeV/c?) (pb/(GeV/c?) (pb/GeV/c?) (pb/GeV/c?)
11-15 12.7 12.4 4 4.5 33 24.4 + 8.8 + 6.4 16.4 £+ 6.3
15-20 17.1 4.6 + 1.4 133 13.8 £ 4.2+ 3.2 6.3 + 2.3
20-30 23.8 1.8 + 0.45 1340 324144 1.0 2.0 + 0.6
30-40 34.2 0.74 £ 0.29 £ 0.09 | 1.1 +£0.82 £ 0.23 | 0.78 + 0.28
40-50 44.3 0.27 4+ 0.17 £ 0.03 | 0.43 £ 0.40 £ 0.09 | 0.29 + 0.16
50-60 54.5 0.18 & 0.14 + 0.02 — 0.16 £ 0.11
60-70 64.8 0.19 £ 0.14 + 0.02 - 0.16 & 0.11
70-110 90.7 1.52 £0.19 + 0.17 | 1.77 £ 0.46 + 0.30 | 1.56 + 0.23
110-150 122.8 0.02 & 0.02 £ 0.003 — 0.02 + 0.016
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Figure 1: The distribution of the isolation variable I for opposite-charged (solid line) and

same-charged (dashed line) electron pairs(la) and muon pairs(1b).

Figure 2: Subtracted isolation distributions, AI, which result from subtracting the I-
distribution for same-charged events from that of opposite-charged events. The data (Drell-
Yan signal plus background) are shown as circles for both dielectrons (2a) and dimuons
(2b). Also shown, as diamonds, are the estimated contribution from heavy flavor back-

ground events as measured from ey events.

Figure 3: The Drell-Yan differential cross section d*c/dMdy as measured in the dielectron

and dimuon samples plotted as a function of dilepton invariant mass.

Figure 4: The combined dielectron and dimuon Drell-Yan differential cross section M3
d*c/dMdy as a function of dilepton invariant mass, with predictions using Martin-Roberts-

Stirling and Morfin-Tung parton distribution functions [6].
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