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ABSTRACT 

To examine how peculiar velocitiescan affect the 2-, 3-, and 4-point correlation functions, 
we evaluate volume-average correlations for configurations that emphasize and minimize 

distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS 
redshift catalogs. We present the results as the correlation length ru and power index y 
of the 2-point correlation, 12 = (ro/r)Y, and as the hierarchical amplitudes of the 3- and 

4-point functions, S3 = c3;l(.,” and S4 = <44/c;. 

We find a characteristic distortion for &: the slope 7 is flatter and the correlation length 
is larger in redshift space than in real space; that is, redshift distortions “move” correlations 
from small to large scales. At the largest scales (up to 12h-1 Mpc), extra power in the 
redshift distribution is compatible with f14/‘jb z 1; we find 6.53 f 6.15, 1.10 f 0.16 and 
0.84 f 0.45 for the CfA, SSRS and IRAS catalogs. 

Higher order correlations (3 and (4 suffer similar redshift distortions, but in such a 
way that, within the accuracy of our analysis, the normalized amplitudes S3 and S4 are 
insensitive to this effect. The hierarchical amplitudes S3 and S4 are constant as a function 
of scale between 1-12 h-’ Mpc and have similar values in all samples and catalogues, 5’3 z 2 
and S4 % 6, despite the fact that & (3, and (4 differ from one sample to another by large 
factors (up to a factor of 4 in &, 8 for &, and 12 for (4). 

The agreement between the independent estimations of S’3 and 5’4 is remarkable given 
the different criteria in the selection of galaxies and also the difference in the resulting range 
of densities, luminosities and locations between samples. 
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1 Introduction 

Measurements of the galaxy 2-, 3-, and 4-point correlation functions, &, 6, and (4, indicate 

that a hierarchical clustering structure, with & = SJ F.-i, holds both in angular catalogs 

(Groth & Peebles 1977; Fry & Peebles 1978; Szapudi, Boschan, & Szalay 1992; Meiksin, 

Szapudi, & Szalay 1992) and in redshift catalogs (Bouchet, Davis, & Strauss 1993; Gaztaiiaga 

1992), and both for IRAS and optically selected galaxies. The values obtained for the 

hierarchical amplitudes SJ do not completely agree between different analyses (see Table 8 

below), and the question arises whether this is caused by redshift distortions or by differences 

in the techniques and selections employed, or arises from intrinsic differences in the samples. 

Previous analyses of galaxy correlation functions have focused either on the projected 

distribution inferred from angular data or on the redshift distribution, but there are very 

few cases where both angular and redshift correlations have been estimated for the same 

sample (one notable exception for the 2-point correlation function is Davis & Peebles 1983). 

Deriving statistical properties from angular data requires many galaxies to compensate for 

the decrease in the projected amplitude, and introduces uncertainties from the selection 

function. With the addition of redshift information, the selection function is better known, 

but the total number of galaxies in redshift samples is usually orders of magnitude smaller 

because of the larger observational time required to take a single redshift. As a result, it is 

difficult to perform both analyses for a single catalog. In particular, for the 3- and 4-point 

correlation functions we do not know of any previous reference where both redshift and 

angular analyses are considered over identical data. 

Statistics of galaxy clustering inferred from redshift data are likely to be distorted radially 

by peculiar velocities. One known effect is the “fingers of God”: the large velocities in a 

tightly bound cluster disperse the apparent positions of galaxies along the line of sight, such 

that in the extreme, clusters appear as narrow needles pointed back at the observer. Since 

typical peculiar velocities are a few hundred kilometers per second, one might hope that by 

avoiding clusters or by looking on larger scales this effect could be rendered unimportant. 

However, fluctuations are also smaller on large scales and there are coherent streaming effects. 

Kaiser (1987) showed in perturbation theory that on large scales velocity distortions are of 

the same order as density fluctuations and distort large scale perturbation amplitudes by a 

factor [l +f(0) COS’~], where 0 is the angle between the perturbation wave vector and the line 

of sight and f(D) x f14/‘. Averaged over a spherical volume, fluctuations in redshift space 

are thus enhanced by a factor [l + f(0)/3]. Th us, we expect possible redshift distortions on 

all scales. 

The effect on higher order moments is less clear.. %Jaively, the Kaiser analysis would seem 
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to indicate that the J-point hierarchical redshift amplitudes Sj should be smaller than the 

real amplitudes SJ, by a factor S~/SJ N [l + f(n)/3]leJ, and therefore be sensitive to R. 

However, extending the analysis to second order perturbation theory, required to compute 

the 3-point function consistently, Bouchet et al. (1992) claim that the net effect of redshift 

distortions on Ss is small. Numerically, Lahav et al. (1993) find in simulations on smaller 

scales that Ss is quite distorted in redshift space, while Coles et al. (1993) do not. Further 

complicating the theoretical expectations is the possibility of biasing, i.e. whether or not 

galaxies faithfully trace the matter distribution. For large scales, Fry and Gaztaiiaga (1993) 

have shown that a local biasing preserves the hierarchical structure to all orders but cab 

change the values of the SJ. Kaiser’s effect, arising from the peculiar velocity modulation of 

the distribution, applies equally to the galaxy number distribution, even when galaxies-are 

not unbiased tracers of the mass, and in general all these effects are mixed at each order. 

To separate redshift distortions of observed correlations from other sources of difference, 

we believe that it is important to perform a dual analysis to the same data samples. Thus; in 

this paper we present an analysis in which identical techniques of estimation are applied over 

the same data samples to compute volume average correlations inredshift space for volumes 

that are expected to exhibit redshift distortions, and for configurations that are expected 

to minimal distortions. In § 2 we discuss measuring correlations from moments of counts in 

cells, including an analytic extension of the count-in-cell tails for finite volume samples. In 

5 3, we relate volume average parameters to intrinsic parameters for spherical and conical 

cells for power-law underlying correlations. Spherical cells are expected to experience redshift 

distortions, which should be minimal in conical cells. 3 4 presents details of the samples we 

use and the data analysis. 5 5 contains a summary of results and a final discussion. 

2 Estimation of volume-average correlations 

We center our analysis on the the volume-average correlation functions, 

~JW) = $/,d3 rl . d3rJ <J(rl,. . . , rJ). 

We use volume-limited samples so that no selection function appears. We assume that every 

~region in redshift space is equally weighted and faithfully traced by the galaxies in each 

sample. 

We use the count-in-cell probabilities P,(V) to compute moments and obtain the ~J(V). 

The correlation functions (J(V) can be found from the count-in-cell probabilities P,,(V), 

the probability to find n galaxies in a randomly selected cell of volume V, from moments 

((A~I)~). Including discreteness contributions (cf. Peebles 1980; Fry 1985), the first few 
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moments’ are related to the &V) as 

(n) = IV 
((An)‘) = IV*<,+& 
@W3 ) = f13f3 + 3N2c2 + iV 

((AnI ) -3 ((An)*) * = R”& + 6N3i3 + 7&j*c2 + N (2) 

2.1 Count-in-cell probabilities 

We estimate P,(V) in the following way: given the radius of a test-sphere, we choose ran- 

domly a center inside the survey sample, count the number of galaxies found inside the 

cell, and accumulate the number of cells N, with n = 0, 1, 2, 3.. galaxies. We repeat 

this procedure NT times, to be chosen so that the sampling spheres will overlap with each 

other. Counts-in-cell probabilities are then estimated by P. = N,/Nr. The precision of 

this estimation is limited by the number of independent cells; from the Poisson distribution, 

we expect AP,,/P,, 2 (P,N=)- ‘I* for P, < 1. We have to choose NT in order to estimate 

counts in cells with the right accuracy. A better choice is Nr = &-3’2v,/V (Gaztaiiaga & 

Yokoyama 1993), but because Fz is not known a priori we must iterate the process to obtain 

NT, using as a first approximation the value of (2 estimated from-pair-counts. The results do 

not differ much between these two prescriptions, and therefore we have chosen the one that 

is more simple, i.e. Nr = 2V+/V. Error bars for the P, are estimated from.90% confidence 

in different realizations of the positions of the independent cells, which agree well with the 

binomial estimate of errors above. 

2.2 Estimation of moments 

Once we have the P,(V), we next calculate moments of different orders to estimate the 

correlation functions from equation (2). This brings us to the finite sample problem. The 

number of independent cells NT used to estimate P,(V) is necessarily finite, because the 

size of the sample is finite. This limits the smallest value of P, that can be estimated, 

Pmi.(Vc) N ~/NT. There will also be a maximum cell count, nmax. The probabilities P, for 

counts n > nmax and with P, < &in can not be estimated, and thus the moments, nominally 

given by 

(nm) = gn”P,, (3) 
“Al 

can only be summed up to n = n,,,=. An estimate of when this is an important effect is 
-- 

whether n,,, is small relative to, N, = N&z, the number of galaxies in a “typical” cluster. 
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If %lax < NC; then the moments will be systematically underestim.ated, by an increasing 

amount for higher moments. When only a few rich clusters such as Virgo or Coma are 

present in a catalog (such as the CfA) there may also be a “bump” in the tail of P,. This 

“bump” may introduce a large artificial enhancement of the correlation functions. A further 

related problem is interaction with the boundary: when cell locations are restricted to avoid 

intersection with the boundaries, the size of the survey area covered gets smaller as the size 

of the cell is increased. This can introduce additional bias, as the center area of the sample 

is more weighted than the boundary, and, moreover, reduces even further the number of 

independent cells, so that Pmi” is larger and n,, is smaller, which again eventually results 

in underestimated moments. When the sample is large enough that finite sample size is not 

a problem, the E’, appear to fall exponentially with n. This suggests a method to correct 

for the limitations of finite volume. 

Modeling the tail, that is, extrapolating the P. to n > nmax, can help to compensate 

for the underestimation, or, at the least, can be used to study systematic errors in the 

moments. Both observations and various scale-invariant models suggest that the probability 

tails are exponential, behaving as P,, K eTniN=, where N, = N&;. Thus, when R,, > N,, 

the contribution to C n"P,, from nmu to co is small when compared with the whole sum in 

equation (3), as claimed above. Modeling also reduces the effects on the correlations that 

appears when rich clusters such-as Coma are present. By fitting an exponential to the tail, 

the effect of a “bump” in the P, is diluted. 

We fit the tail of the observed counts-in-cells to an exponential function, ( N, ) = p, = 

CeCaR, using a Poisson likelihood function, 

13 = C logJ+y,N.e-‘*] , 
n 

(4) 

where N,, are the observed counts (the number of cells with n galaxies) and p,, = Ce-““. 

The values of C and a are found by maximization of the likelihood L. As a test we can verify 

that the observed counts in the tail follow a Poisson distribution around the exponential, In 

practice we construct a routine to find the value nr where the “tail” begins, i.e. the value 

of i where the counts begin to fit an exponential (ideally, &’ < nr < n,,,J,. fit pn = Ceea” 

for nr < n < nmu, and extrapolate h,, - p, for n > n,,. We then must renormalize the 

distribution of counts so that Cr p”‘,. = 1. For small cell volume, the resulting correction 

to the moments is very small, as nmax is already quite large, while for large cells, both the 

contribution from and the uncertainties in this modeling could be very large. To estimate 

the systematic errors introduced in the moments by modeling the exponential tail, we report 

in the results the dkference between the “raw” mqments (without modeling of the tails) and 
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the modeled moments, 

A(n”‘)= ~nm~“-*~n”‘P,. 
“33 n=O 

This provides a natural way to measure when the finite volume effects are large. 

(5) 

3 Volume average correlations 

3.1 Redshift vs. real space correlations 

The choice of volume shape can emphasize or minimize the effects of peculiar velocities. As 

one choice, we compute moments over spheres of radius R in redshift space. As remarked 

above, the contribution of peculiar velocities to the apparent redshift distance are expected 

to distort the resulting statistics. We refer to the results from spherical volumes as “redshift” 

results. To extract information about correlations from a redshift catalog that is not distorted 

by the peculiar velocity modulation of the distribution, we simply change the shape of the 

volume, to cells with the shape of conic sectors of a sphere between radii d < r < D, of 

opening angle 8 around a radial axis (in our analysis, d is a fixed to 2500 kms-’ and D is the 

depth of the sample; see Table 1). The estimated counts-in-cells for these volumes are not 

distorted.except perhaps at the inner and outer radial boundaries of the cell, where peculiar 

velocities can move a few galaxies in or out of the cell, a small effect for deep samples. 

Because results from these conic volumes are not distorted by peculiar velocities, we refer. 

to them in brief as “real space” results. As will become apparent below, the conic cell 

analysis is similar to considering just the projected, magnitude-limited angular distribution, 

with integrals similar to those in the standard angular analysis. However, since redshift 

information is used to determine the distance and absolute magnitudes of the galaxies in our 

samples, the resulting analog of the Limber equation (see Peebles 1980) for these volume- 

limited samples does not involve an integral over the luminosity function, thus removing a 

source of uncertainty. 

3.2 Power-law correlations 

In extracting the underlying correlation functions from the volume-averaged results, we 

assume a power-law two-point correlation function, <s(r) = (rs/r)l, and a hierarchical three- 

point function, as suggested by our data (see Figs. la-c). The power law model &2(r) = 

(rs/r)’ is not a good approximation for all possible ranges of scales (see i;e.~, Grath & 

Peebles 1977; Maddox et al. 1990) but, given the resolution in our analysis, it is quite a good 

one for the range of scales we have been able to inspect; i.e. R N 1’20 h-r Mpc. 
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The volume-average two-point correlation is 

<2(V) = & /, d3rld3r2G(In - ~1). 
For [s(r) = (r-s/r)7 and spherical cells of radius R, we have 

,fl = S(7)(rolW 

‘(‘) = (1 - y/3)( 1 T-:,4)(1 - y/6)’ 

(6) 

so that t.(R) is also a power law, with, in the absence of peculiar velocity distortions, the 

same slope as [s(c) and with amplitude different by a factor S(7) of order unity. For 7 = 2, 

S(y) = 9/4; for 7 = 1.5, S z 1.5. 

For a volume shaped as conic sector of an sphere of opening angle ~9 around a radial axis 

between radii d < r < D we find for power-law &2(r) in the limit 6’ < 1, 

g = C(y)@-7 

C(y) = $2 (S)’ 

H7 = J dx 
-1 (1 + x2)Y/X = 

r(1/2) F(Y/~ - l/2) 

r(7/2) 

r, = 1 - (d/D)3(L+1)-b. 1 

3(k + 1) - k7 J o zdzF’(z) 

F(r) = ~1xdx~*~d~(r2+x*-2zxcos~)(‘-r)‘* 

so that .$ is also a power law but with a different slope and (possibly greatly) reduced 

amplitude, g(6’) N t(D) @l--7. In each case, from the fitted slope and amplitude of observed 

& and from the expressions above, one canestimate the values of rs and 7 for the intrinsic 

two-point correlation function. 

For higher order correlations we assume hierarchical properties, <J = S&-l, again in 

agreement with our data (see Figs. 2-3) and previous analyses. For the 3-point correlation 

function we use the local hierarchical expression 

G(f-I, r27r3) = Q3 [52(r12)t22(n3) + G(mK22(r23) + G(T13Mr23)l 

to compute the volume average 

(9) 

G(V) = $ L d%d3r2d3r3b(fl, p2, p3). (10) 

We are interested in the hierarchical amplitudes, i.e. we want to estimate: S3 = &(V)/[4’*(V). 

For a spherical volume, the hierarchical relation 49) with [s(r) = (rs/r)’ implies: 

S3” = 3il(r)Q3 
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17(Y) = 
(6 - 7)2 46 - 487 + 177’ - 2y3 

3(2 - 7)2 2(7 - 27x9 - 27) 
(11) 

22’JiF(2 - 7)r(5 - 7) _ 227&r(5 - 7) 
256 l-(9/2 - 7) 256r(11/2-7) I 

(Gaztaiiaga & Yokoyama 1993). For 0 5 7 5 2, Ss and 3Qs differ by less than 3%, so that 

in practice one can use as a good approximation St N 3Qs. In our analysis, averages over 

spherical volumes and thus S$ are obtained in redshift space. 

For the conic cell shape we have, in the limit of small 0, 

.$j = NN-2 Q I,N-2:N-, 
N IN-L 

I 
(12) 

where IN is defined in equation (8) above. Thus, by measuring SF and 7 for conic cells one 

can use the above relations to estimate the corresponding Qs or S: in real space. 

4 Data analysis results 

4.1 Catalogues 

We use three different catalogs of galaxies: 

l i) the North Zwicky Center for Astrophysics catalog (Huchra et al. 1983, hereafter 

CfA), with ms < 14.5, 6 > 0, and b’r 2 40”, which has a solid angle of 1.83sr. 

l ii) the Southern Sky Redshift Survey (Da Costa et al. 1991, hereafter SSRS) of 

diameter-selected galaxies with logd(0) 2 0.1 from the ES0 catalog with 6 < -17.5”, 

b” < -30”; the solid angle is 1.75sr. 

. iii) the full-sky coverage redshift survey of galaxies from the IRAS(lnfmred Astronom- 

ical Satellite) database (Strauss et al. 1992, hereafter IRAS) with limiting flux density 

of 1.936 Jy at 60 pm and galactic latitude lb1 > 5”; the solid angle is 11.0 sr. 

We select four different volume-limited subsamples from each catalog, as shown in Tables 

1-3, where slim is the maximum redshift, N,,, is the total number of galaxies, VT is the 

volume of each sample, and MB, dli,, and z’fss are the limiting absolute magnitude, “face- 

on” diameter, and flux, respectively. Lengths in the tables quoted as “Mpc” use H,, = 100. To 

produce fair volume-limited samples we have not included the fainter or smaller galaxies, so 

that the space in each sample is homogeneously filled. For example, each CfA sample includes 

galaxies brighter than MB = me - 25;- 5log(z~i,/H,,), where .nta = 14.5 is the limiting 

apparent magnitude. In addition, galaxies in the CfAN50 sample are restricted to be fainter 
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than .Zf,s = -20.3, so that ,this sample is independent of CfAN90. In the SSRS catalogue, 

each sample includes galaxies with physical diameter greater than dli, = zru,&‘,,,/Hs,where 

6’,., = 1’.26 is the “face-on” diameter cut-off. In the IRAS catalogue, each sample includes 

galaxies with absolute flux z2fse greater than the limiting flux z;,,, 1.936 Jy. 

Heliocentric redshifts are corrected only for our motion with respect to the rest frame 

of the Cosmic Microwave Background; u = 365 kms-’ toward (a, 6) = (11.2 h, -7”) (Smoot 

et al. 1991). Galaxies with redshifts smaller than 2500 kms-’ are excluded, since at these 

scales typical peculiar velocity flows (of several hundreds of km/s) can compete with the 

general recession velocity. 

4.2 Count-in-cell volumes 

For each sample, we want to estimate the count-in-cell probabilities P, as a function of the 

cell volume. The total number of degrees of freedom is limited by the density ii of the sample 

and its total volume VT, so that the size of the cell is bounded bellow by r-r and above by 

VT. The number of different cell sizes and their intervals should not be set arbitrarily, as the 

resulting moments or correlations at each point would not be independent. For samples of 

small density, a good criterion for statistically independent sizes is Vi = i/ii, for i = 1,2, . ., 

as then each new volume includes on average one more galaxy. Notice how different this 

is from using equal spacing in thk radius of spherical cells for all samples; this not only 

introduces a different weighting but also imposes an arbitrary number of degrees of freedom, 

regardless of the size or density of the sample. In our analysis we use equal volume spacing 

in units of VI = l/ii. We use half this unit to study the fluctuations or when we have only 

few points. The largest cell to be used is limited by the boundaries of the sample. Using 

different boundary conditions, Gaztaiiaga (1992) and Gaztaiiaga & Yokoyama (1993) have 

f6und that a good phenomenological bound is V < VT/~~, so that the diameter of the cell 

is at most one third of the typical-size of the sample. This is just one upper limit; we also 

discard the larger cells of our analysis when the estimated uncertainties, from equation (5) 

are too large. The resulting range of scales displayed in Tables 4-6 is different for each 

sample. The larger samples can accommodate larger cells, but also have smaller densities 

and thus do not have information on the smaller scales. 

4.3 Correlation functions 

We estimate the correlation functions using the moments of counts-in-cells as explained in 

section 3 2. Figures la-c show the volume average two-point correlation function, (2, as 

a function of the size of the cell. Open. squares correspond to spherical (“redshift”) cells 

8 



and triangles correspond to conic (“real space”) cells. The scale of the cell, given in Mpc 

with H,, = 100, corresponds to the radius R of the redshift-space sphere or the radius of 

the base of the conical sector, BD with D the depth of the sample. The error of each point 

is the maximum between the systematic error (5) from correcting the count distribution 

tail for finite volume and the statistical error from the P, propagated to the moments. 

The dashed line in each figure is the best fit to a power law, weighted by the errors. The 

agreement with a power law model justifies our assumption of the relations in section 5 3. 

The slopes for the conic cells (triangles) and spherical shells (squares) follow what we expect 

from the projection, cg N fl’-‘D-’ and <. N R-‘. In Tables 4-6 we display the values of 

the fit in terms of the slope y and correlation length re of the intrinsic correlation function 

t2(r) = (re/r)y using equation (7) and equation (8). No~te that the range of scales where the 

fit is done is different for each sample, as explained above. We quote both the statistic and 

the systematic error (the last in parenthesis). The errors in the fitted parameters, re and y, 

reflect both the goodness of the fit and the statistic (or systematic) error in the estimated 

correlations; both contributions are usually of comparable magnitude. 

Figures 2a-c show (s(R) (triangles) and id(R) ( q s uares) for spherical (redshift) cells, 

plotted against c*(R) for all samples. In Figures 3u-c we present a similar plot for conical 

(real space) cells. Again, the error Blotted at each point is the maximum between the 

systematic error (eq. [5]) and the statistical error from the P, propagated to the-moments. 

The dashed line is the best fit to <s = Ss$ and & = S.,c weighted by the errors.. The 

agreement of these power law models is evidence in favor of the hierarchical model and, 

again, justifies our assumptions in section 5 3. 

Tables 4-6 shows the parameters S’s and S., of the fit. The values of Ss for conical 

cells have been scaled to the corresponding value-of a spherical cell using equation (11) and 

equation (12), so that real space and redshift space amplitudes can be directly compared. 

The correction to convert SF into Sf is smaller than 15% so that we have not propagated 

the uncertainties from y in this conversion. Because this correction turns out to be small 

and there are large uncertainties in & we have not tried to calculate the exact coFection in 

the case of the 4-point function, but have just scaled the correction found for Ss. using the 

dimensional argument S’~/S~ N [S~/S~]‘. We quote both the statistic and the systematic 

error (the last in parenthesis). The errors in the fitted parameters Ss and S., reflect both the 

goodness of the fit and the statistic (systematic) error in the estimated correlations; both 

contributions are usually of comparable magnitude. Samples IFUS and IRAS80 have a 

very noisy signal for spherical cells and results are not quoted. 

The average values reported in, Tables 4-6 are the mean values for all samples within a 

catalog, weighted by l/o* (using the maximum betweenthe statistic and systematic errors). 
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The first error in the average is the weighted dispersion about the mean, scaled to a l-o 

interval after accounting for the difference between the Gaussian and Student-t distribution. 

For most averages, with four degrees of freedom, the dispersion is increased by the factor 

1.14163. In parentheses we also quote the expected error, l/C(l/of). These two are the 

same when (reduced) x2 = 1. 

4.4 Redshift distortions 

In the linear regime Kaiser (1987) has derived the expected ratio of two-point function in 

redshift space, c?(s), to that in real space, [s(r): 

622(s) 2 W’ 1 fW 
-=l+~b+;~’ 
<22(r) 

where b is the bias factor between matter fluctuations and galaxy fluctuations, 6, = b6,. 

Lilje & Efstathiou (1989) have shown that these redshift distortions are expected even on 

mildly non-linear scales where {s(r) N 1. Non-linear effects and the “fingers of God” for 

smaller scales tend to suppress the redshift correlations, so that &(s)/&(r) becomes smaller 

than 1 for small separations (Davis & Peebles 1983). Therefore, even if we have not reached 

thekales where the linear theory should apply (whatever this scale is), we should be able to 

place a’ lower bound on f14/‘/b from the maximum redshift distortion we are able to detect. 

As will become apparent, we can not use our data to make-an accurate determination 

of this effect, but we can estimate the order of magnitude. At some point the power laws 

we have observed for the real and redshift two-point correlations will break to reproduce 

Kaiser’s results, a constant ratio of <s(s) to G(r). Th e ratio we see on larger scales is not 

constant, but rising with scale, except in one case. Even though in our analysis this ration 

h&spot reached a constant value, presumably because of poor sensitivity at-large scales-we 

can use the extra power observed in the redshift correlation to place a lower bound on the 

factor R4/‘/b, and, if Q = 1, an upper bound on b. Using the values of re, so and y shown 

in Tables 4-6, we estimate the ratio &(s)/&(r) at rn and at the scale r,, corresponding 

to the largest spherical (redshift) cell in each sample. Table 7 shows r,,, the value of the 

intrinsic twopoint (real-space) correlation, the correlation strength at that scale, &(r,,), 

and the resulting values of R4/‘/b resulting from equation (13). As argued above, the ratio 

&(s)/&(r) increases towards larger scales, and thus the final column represents our strongest 

lower bound on R4/‘/b. Errors in @/‘/b are propagated from the errors in re, se1 and y 

(again, the maximum between the statistic and systematic errors). The average values in 

Table 7 are the mean values for all samples within a catalog, weighted by the errors. The 

negative values of R4/‘/b for CfAN65 do not affect the average value much, but do increase 

the estimated dispersion by a factor of 2. 
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5 Discussion 

In this work, we have computed volume-averaged correlation functions &, & and f4 for 

conical and spherical configurations that allow us to observe the effects of peculiar velocity 

distortions. We have considered volume-limited samples so that no assumption has to be 

made about a luminosity function. We make use all the degrees of freedom in each sample 

and weight them properly. To account for boundary and finite size effects we have introduced 

a modeling of the tail of the distribution of fluctuations which helps to improve the signal 

and estimate the uncertainties. We report the difference between results obtained with 

and without this modeling of the tail as a systematic error, which we have taken as the 

minimum uncertainty in our results, a consercative approach that leaves our conclusions 

safely unaffected by our assumptions. To simplify comparisons of the analyses of different 

samples we have reduced the observed correlation functions, f.(R), <a(R), and t4(R) in 

Figures 1-3, to a few parameters shown in Tables 4-6. 

Our analysis reproduces the already known trend (Davis et al. 1988) that the amplitude 

so of the two-point redshift correlation function of optical galaxies grows with the depth of 

the survey, at least up tog redshift of 8000 kms-‘. This trend is confirmed here for both the 

Southern and Northern galactic hemispheres for optical selected galaxies, i.e. in both the 

SSRS and CfA catalogs; within our poor resolution, ii is not observed in the IRAS samples. 

As a new result, we find that this scaling with depth seems to occur also in real space, which 

indicates that it can not just be a consequence of redshift distortions. We also find that for 

depths larger than 8000 kms-’ the trend is broken: the observed correlation length decreases 

in the 9000 kms-’ samples. This indicates that the effect may be accidental or caused by 

sampling an “unfair” local volume, but does not imply a simple “fractal” or inhomogeneous 

behavior. 

For the average values and even for separate subsamples within each catalog, the intrinsic 

2-point correlation length Q of the CfA and SSRS are very similar. The relative amplitude 

of the IR4S and CfA two-point correlations is in very good agreement with other analyses 

(Strauss et al. 1992; Saunders, Rowan-Robinson, & Lawrence 1992) although the techniques 

and samples used are quite different. There is a sign&cant difference between the average 

slope y of & - r- ‘7 in real space between the SSRS and the CfA or IR,AS catalogues. The 

slope in the SSRS, y = 1.62 f 0.04, is lower than t-he “standard” value of y = 1.8, but 

the errors are quite large. SSRS diameter magnitudes are more subject to plate-to-plate 

correction which might introduce some large scale power. There is also a very large void in 

this catalog (larger than any in the CfAl). 

In general, there is a characteristic redshift distoktion on &(T): the slope y is flatter and 
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the correlationlength is larger in redshift space than in real space, that is, redshift distortions 

“move” correlations from small to large scales. In particular, for the average values, going 

from real to redshift space reduces the slope of Is by 30% (SSRS), 20% (IRAS) and 13% 

(CfA). At the largest scales the extra power in the redshift distribution is compatible with 

a R4/‘/b N 1, as seen in Table 7. As expected, the average values of R4/‘/b for each catalog 

are correlated with the amount of reduction in the redshift slope. Our results for R4/‘/b in 

the CfA are much larger than those deduced by Lilje & Efstathiou (1989) from Figure 3 of 

Davis & Peebles (1983), perhaps because they only use scales up to 7 h-’ Mpc, whereas ours 

reach to 12 h-‘Mpc. 

The higher order correlations is and i4 are redshift distorted also, but in such a way 

that the hierarchical amplitudes Ss and S4 are insensitive to these distortions, within the 

resolution of our analysis. This is in agreement with the numerical studies of Coles et al. 

(1993). It follows that redshift distortions are probably not responsible for the discrepancies 

in the values of Ss and S4 found in some of the previous analyses, summarized in Table 8. 

Moreover, the hierarchical amplitudes Ss and S4 are constant as a function of scale between 

l-20 h-i Mpc (which includes the transition between linear and non-linear scales), and they 

have a similar value in all samples, even for different catalogues, despite that &, & and f4 

differ from onesample to another by large factors (up to factors of 4 in 52, or 8 for <s, or 12 

for .$a). This is remarkable given the different criteria in the selection of galaxies and also 

the difference in the resulting range of densities, luminosities and locations between samples. 
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TABLE 1 

CfA Samples 

Sample am (km/s) MB N gal VT (Mpc3) 

CfAN50 . . . . 5000 j-20.3, -19.01 206 6.7 x lo4 

CfAN65 . . 6500 < -19.5 208 1.6 x lo5 

CfAN80 . . . . 8000 < -20 207 3.0 x 105 

CfAN90 . 9000 < -20.3 146 4.4 x 105 

TABLE 2 

SSRS Samples 

Sample Zlirn (km/s) 4m (b) N gal v, (Mpc3) 

SSRS50 . . . . . . 5000 18.3-33 222 6.7 x IO4 

SSRS65........ 6500 > 22 283 1.5 x 105 

SSRSBO . . . . 8000 > 29.3. 220 2.9 x 105 

ssRs90 . . . . . . . 9000 > 33 203 4.2 x lo5 

TABLE 3 

IRAS Samples 

Sample *lim (km/s) ~Zfso (JY MPC’) N gal v, WPC;~ 

IRAS45 ........ 4500 > 3920 319 3.3 x 105 

IRAS55 ........ 5500 > 5856 404 6.1 x lo5 

IRAS65 ........ 6500 > 8180 359 1.0 x 106 

IBM80 ........ 8000 > 12390 314 1.9 x 106 

14 



TABLE 4a 

CfA Results, Real Space 

Sample hi, (MPc) 7 PI (MPc) s3 .94 

CfAN50. l-6 1.88+0.03 (0.05) 3.68zk0.11 (0.21) 1.98f0.22 (0.70) 6.0 i 3.6 (4.1) 

CfAN65.... _ l-8 1.82f0.02 (0.04) 4.98~0.10 (0.17) 1.87jzO.13 (0.52) 5.6f4.8 (3.1) 

CfAN80. 2-10 1.76f0.05 (0.09) 7.09f0.53 (0.88) 1.91zk0.18 (0.50) 5.4f2.2 (1.3) 

CfAN90.. . 3-14 2.26 f 0.13 (0.12) 5.75 f 0.70 (0.64) 2.03 f 0.45 (0.43) 9.8 f 3.7 (3.9) 

Average . 1-14 1.86zkO.07 (0.03) 4.56zkO.50 (0.13) 1.95f0.04 (0.26) 6.3ztl.l (1.6) 

TABLE 4b 

CfA Results, Redshift Space 

I Sample R (MPc) -r so (MPc) s3 s4 I 
CfAN50. . 2-7 1.62 3~ 0.08 (0.10) 4.47 f 0.27 (0.33) 1.77 f 0.13 (0.33) 4.9 * 0.9 (1.7) 

CfAN65.. . 3-8 1.89f0.23 (0.36) 4.81f0.86 (1.33) 1.57f0.16 (0.53) 2.9 f 1.0 (2.7) 

CfAN80. . _ 4-13 1.56f0.06 (0.10) 8.13f0.64 (1.06) 2.34f0.14 (0.62) 7.8 f 1.0 (3.5) 

CfAN90.. . 8-16 1.82f0.22 (0.45) 6.83f1.61 (3.31) 2.57f0.29 (0.85) 10.2zt2.4 (6.1) 

Average.... ~2-16 1.61 f 0.05 (0.07) 4.81 f 0.67 (0.31) 1.88 f 0.31 (0.24) 5.1* 1.2 (1.3) 
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TABLE 5a 

SSFIS Results, Real Space 

Sample him (MPc) 7 70 (MPc) & s4 

ssRS50.... 1-6 1.64f0.02 (0.03) 3.60zk0.33 (0.45) 1.72f0.14 (0.30) 4.8f4.7 (1.6) 

SSRS65.... 1-8 1.57 zt 0.01 (0.03) 5.27 f 0.14 (0.47) 2.09 z!c 0.15 (0.82) 6.2 zk 4.6 (4.4) 

SSRSSO.... 2-7 1.64f0.09 (0.10) 5.69f0.57 (0.69) 1.77f0.18 (0.23) 5.0f3.6 (1.8) 

SSRSSO.... 2-12 1.71 f 0.04 (0.06) 4.80 f 0.24 (0.36) 1.78 zk 0.48 (0.93) 6.3 zk 2.3 (5.7) 

Average.... 1-12 1.62*0.03 (0.02) 4.7OzkO.46 (0.23) 1.77f0.05 (0.17) 5.4f0.4 (2.2) 

TABLE 5b 

SSRS Results, Redshift Space 

Sample R (MPc) 7 so (MPc) s3 s4 

ssRS50.... 2-6 1.32 f 0.08 (0.11) 4.79 f 0.35 (0.51) 1.65 f 0.10 (0.33) 4.0 i 0.5 (1.8) 

SSRS65.... 3-9 1.05 f 0.02 (0.05) 9.16 zk 0.32 (0.77) 1.97 f 0.06 (0.48) 5.5 zk 0.4 (2.2) 

SSBs80.... 4-10 1.30 f 0.11 (0.13) 9.15 f 1.41 (1.71) 1.97 f 0.11 (0.35) 5.6 k 0.8 (1.7) 

ssRs90.... 5-11 1.25 f 0.22 (0.25) 8.15 f 2.49 (2.85) 1.83 f 0.17 (0.37) 5.3 f 1.4 (2.2) 

Average.... 2-11 1.12 f0.08 (0.04) 6.33-k 1.36 (0.41) 1.83 f 0.09 (0.19) 5.1 f 0.5 (1.0) 
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TABLE 6a 

IRAS Results, Real Space 

Sample ozlim (MPc) 7 RI (MPc) s3 S4 

IRAS45.... 2-13 1.89 k 0.02 (0.04) 3.85 f 0.15 (0.27) 2.06 f 0.25 (0.38) 7.4 f 6.1 (2.9) 

IRAS55.. 2-17 1.75 zk 0.02 (0.03) 4.04 f0.10 (0.18) 2.44 If: 0.52 (0.48) 9.4 * 5.9 (4.0) 

IRAS65.. . 3-20 1.76f0.11 (0.15) 3.Wi0.44 (0.60) 2.33f1.35 (0.69) 11.7zk9.6 (9.2) 

IRASSO.... 4-16 1.87 ItO. (0.32) 4.OOf1.23 (1.14) 3.41f 2.11 (1.22) 24 3~ 34 (23)~ 

Average. . . . 2-20 1.80 f 0.04 (0.02) 3.97 f0.06 (0.14) 2.22 3~ 0.16 (0.30) 9.2 f 1.5 (3.9). 

TABLE 66 

IRAS Results, Redshift Space 

Sample R (MPc) 7 so (MPc) s3 s4 

IRAS45.... 3-9 1.36f0.23 (0.23) 5.37.f1.23 (1.20) 2.28f0.41 (0.25) 8.8 zk 3.4 (2.2) 

IRAS55.... 4-10 1.50f0.17 (0.15) 4.65f0.90 (0.79) 1.93h0.21 (0.33) 6.6f1.5 (2.8) 

Average.... 3-10 1.44~tO.09 (0.14) 4.90f0.45 (0.73) 2.07f0.23 (0.26) 7.5rt 1.4 (2.1) 
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TABLE 7 

Results for R4/7/b 

Sample R4f7/b (ro) Q417/b (~max) 

CfA50. . . . . . . 5.18 0.53 0.48 2~ 0.24 0.63 f 0.26 

CFA65 5.52 0.83 -0.10 f 0.79 -0.16 f 0.78 

CfA80. . . . . 9.75 0.57 0.33 f 0.44 0.43 f 0.47 

CfA90 . . . 11.3 0.22 0.48 f 1.45 0.98 f 1:61 

CfA Average - 0.41* 0.10 0.53 f 0.15 

SSRS50 , 4.73 0.64 0.58 3 0.35 0.73 * 0.41 

SSRS65 . , 7.44 0.58 0.92 f 0.23 1.24 f 0.31 

SSRSSO . . . . 7.91 0.58 0.99 f 0.52 1.19 l 0.57 

SSRSDO . . . . . . 8.79 0.36 1.07 f 0.82 1.59 f 0.90 

SSRS Average.. . - - 0.85 f a.10 1.10 f 0.16 

IRiS45 . . . . 7.04 0.32 0.71 f 0.56 1.27 f 0.64 

IRAS55 . . . . . . 7.60 0.33 0.32 f 0.46 0.57 f 0.50 

IRAS Average.. - - . 0.48 f 0.25 0.84 f 0.45 
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Table 8 

Estimates for Ss and S4 

Reference S4 or l6Q4 

Groth & Peebles 1977 ... 

Fry & Peebles 1978 ....... 

Szapudi et al. 1992 ...... 

Peebles 1980 ............ 

This paper .............. 

This paper .............. 

Meiksin et al. 1992 ...... 

This paper : ............. 

Gaztaiiaga l-992 ......... 

This paper .............. 

daztaiiaga 1992 ......... 

This paper .............. 

Bouchet et al. 1993 ...... 

Sample 

Lick-Zwicky 

Lick-Zwicky 

Lick 

CfA 

CfA 

SSRS 

IRAS 

IRAS 

CfA (redshift) 

CfA (redshift) 

SSRS (redshift) 

SSRS (redshift) 

IRAS (redshift) 

IRAS (redshift) 

S3 or 3Q3 

3.9 zk 0.6 - 

46f 8 

Thispaper.: . . . . . . . . . . . . 

4.3 f 0.2 

2.4 f 0.2 

2.0 f 0.3 

1.8 z’c 0.2 

2.2 rt 0.2 

2.2 f 0.3 

1.9 l 0.1 

1.9 f 0.2 

2.0 f 0.1 

1.8 f 0.2 

1.5 f 0.5 

2.1 f 0.3 

31f 5 

- 

6.3 z!z 1.6 

5.4 f 2.2 

10f 3 

9.2 * 3.9 

4.1 f 0.6 

5.1 f 1.3 

5.0 * 0.9 

5.2 f 1.3 

4.4 f 3.7 

7.5 f 2.1 
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6 Figure Captions 

Fig. l.-Average correlation function, (2 for each sample in the CfA (Q), SSRS (b) and IRAS 

(c) catalogue. Open squares correspond to & for spherical (redshift) cells as a function of 

the radius R of the cell. Filled triangles correspond to .$s for conical (real space) cells as a 

function of the radius Bz at the base of the cone. The dashed lines are the best power-law 

fit weighted by the errors. 

Fig. 2.-Values of & (triangles) and & (squares), as a function of (2 for spherical (redshift) 

cells. There is one graph for each sample in the CfA (a), SSRS (6) and IRAS (c) catalogue. 

The dashed lines are the hierarchical law: <J = S&-’ where 5’3 and S, are fitted with the 

data weighted by the errors. 

Fig. 3.-Values of <s (triangles) and & (squares), as a function of cs for conical (real space) 

cells. There is one graph for each sample in the CfA (a), SSRS (b), and IRAS (c) catalogue. 

The dashed lines are the hierarchical law: CJ = S&-’ where Ss and S, are fitted with the 

data weighted by the errors. 
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