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ABSTRACT

We investigate the issue of initial conditions for natural inflation. Unlike many inflationary models, the
pseudo-Nambu-Goldstone boson nature of the inflaton field provides a natural measure for the phase space
of initial cond.itions We study the effects of the inflaton kinetic term numerically and show that it shifis
the range of amtm.l field values which lead to successful inflation without altering the size of that range. The
fraction of phase space in the successful range is determined by the spontancous symmetry breaking scale, f,
and is 0.7, 0.2, and 3 x 10~3 for f = 3Mp;, Mp;, and Mp; /2 respectively. Natural inflation becomes similar
to chaotic inflation for valucs of f 2 Mp; and for f < Mp,, it is more akin to new inflation. The roles of

spatial curvature and spatial gradlents are briefly discussed.
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The inflationary scenariofl] remains the most elegant solution to the horizon, ﬂatness,‘and monopole
problems. During inflation, the Universe is dominated by vacuum energy density, p >~ ppy. =~ const., and
the cosmic scale factor grows quasi-exponentially with time, R(t) x ¢, where H§ = R/R ~ [BxGppa./3]/?
is the Hubble parameter. If R(t) increases by more than 60 e-foldings during inflation, a small causally
connected region grows sufficiently to explain the homogeneity, isotropy, and flatness of the Universe and to
dilute any overdensity of magnetic monopoles and other relics. Inflation also provides a predictive scenario for
the origin of density perturbations: quantum fluctuations during inflation get stretched beyond the Hubble

radius, causally generating density fluctuations on the very large scales required for galaxy formation.[2]

Inflation makes two testable predictions: that flp,r= "—5}’—,’-’-’- = 1 (more precisely, that our observable

universe is spatially flat) and that the spectrum of large-scale density fluctuations is approximately scale-
invariant, P(k) o k. Two notable recent observations consistent with these predictions are the results
of the IRAS survey(3] indicating 01°%/b ~ 1.28+0-78 (where b is the biasing of galaxies relative to mass,
b 2 lis expected) which points in the direction of & flat Universe, and the angular correlation function of
the microwave background anisotropy as measured by COBE[4] which agrees well with the scale-invariant
spectrum of density fluctuations (P(k) « k™, n =~ 1 + 0.5).

The simultaneous requirements of sufficient inflation and cosmic microwave background radiation (CM-
BR) anisotropy limits constrain the self-coupling of the inflaton field to be extremely weak.[5] Natural
inflation[6], in which the inflaton is a pseudo-Nambu-Goldstone boson with a potential of the form V{¢) =
A*(1 + cos(@/f)), was proposed as a model in which the inflaton can have a small coupling which is natural
from the particle physics standpoint. In this model, the requisite weak self-coupling arises in a theory with
spontancous symmetry breaking at a scale f and explicit symmetry breaking at a lower energy scale A: the
scalar self-coupling A ~ (A/f)*. Successful inflation occurs for f ~ Mp; and A ~ Mgyr, mass scales that
arise in particle physics models with a gauge group that becomes strongly interacting at the GUT scale.[8,7)

An added bonus of natural inflation is the possible departure from scale-invariance of the power spectrum
for density perturbations. Adams et al.[7) studied the implications of power-law spectra inspired by natural
inflation, P(k) ox k®,n = 1 —(M},/8xf?), in the cold dark matter scenario of galaxy formation together with
recent data from microwave background anisotropies and large-scale structure observations. In particular
they showed that natural inflation can help account for much of the excess power at large scales while fitting
the recent COBE data if f > 0.4Mp,.

In Adams et al., as in most treatments of inflation, the evolution of the inflaton was started from a
spatially homogeneous initial state with gzero kinetic energy, ¢(z,t) = ¢(t),¢'5(t.-) = 0. In this repotrt, we
address the problem of initial conditions for natural inflation. We consider in detail the effects of a non-gero
initial scalar field time derivative, ¢, and discuss the effects of non-sero scalar field gradients (V) and spatial
curvature {k = +1).

One of the alleged virtues of inflation is its inscnsitivity to special initial conditions (after all, this is
precisely what inflation is meant to provide for the Universe), but it is often difficult to avoid imposing
special initial conditions for the inflaton field when implementing a specific model of inflation. It would be
preferable that inflation be a genetic phenomenon. A modcllwith & very “small” initial condition space for
the onset of successful inflation is less attractive than one with a “large” initial condition spa.;:e. Of course;

we need 8 measure on the phase space of initial conditions before we can compare different regions of phase
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space. We will see that, unlike some other models of inflation, there is a well-defined measure for the éxo
phase space in natural inflation.

For definitencss and simplicity, we consider a complex scalar field, $, with a global U(1) symmetry
to describe the natural inflation scenario. The symmetry is spontaneously broken at a temperature T ~ f
through the vacuum expectation value of the field, (#) = fef¥//. At temperatures below the scale £, the only
relevant degree of ﬁ:e‘edom is the massless field ¢, the angular Nambu-Goldstone mode around the bottom
of the ¢ potential. When the temperature subsequently reaches T ~ A, instanton or other effects explicitly
break the angular symmetry, giving rise to the potential V{¢) = A*(1 + cos(s/ £)). If ¢ is sero at this time
t1 = t{T ~ A), inflation occurs in those regions of the Universe with values of ¢; = #(t1) that are sufficiently
displaced from the minimum of the potential, ¢; < ¢7**7, where[T]

M}!i ]--lfze (“ ISM;I)'

sin(@Per/2f) ~ [1+ T 4rf?

(1)
(assuming 0 < ¢,/f < x). That is, if ¢; < ¢T*7, then the scale factor expands by at least 50 e-folds before
¢ reaches the end of its slow-rolling phase and the Universe exits from inflation.

To stady the effect of an initial ¢ on inflation, we numerically solve the homogeneous Einstein equations
minimally coupled to the scalar field:

8x ¢
B =[5 2
Lz tY@) - (2)
and the equation of motion:
¢+ 3H$+ V/(¢) =0. (3)

-where a dot denotes a derivative with respect to time, a prime denotes the derivative with respect to ¢,
and k = -1, 0, 1 for open, flat, or closed universes. We define I = § and rewrite eq. (3) as two first order
differential equations: é=1,and Il = ~3HII — V'(¢), which we solve by using fourth order Runge-Kutta
with a variable step—uue
Thete are many requirements for successful inflation{8]. The only one that depends on the initial field
configuration is that the number of e-folds of growth in the scale factor during inflation, N,, must be greater
than about 60. We use the numerically integrated trajectories to calculate N,:
g
FAR-CE / 74 )

where ¢; is the value of the field at the end of inflation (which is reached when R = 0}).

In figure 1, we ihow the boundary between “succeasful” and “unsuccessful” imitial conditions (i.e.,
N, = 60) in the phase-space of initial conditions for f =3Mp;, Mp and Mp;/2. The results for f = Mp;
are also shown in figure 2 over a much larger range of II. Due to the symmetry of the potential, we only
need to plot one quadrant of the phase-space plane. As f drops sngmﬁcantly below Mp:, the size of the

phasc-space region leading to inflation becomes exponentially small and, qs f increases beyond Mp,, the size
continues to increase.



To interpret these results, we must define a measure on the phase space. With no clearly defined
measure, the sise of any region of phase space depends on, for example, whether we use logarithmic or
linear axes. For inflationary periods starting at the Planck epoch, e.g., Linde has used uncertainty principle
arguments to try to get a rough estimate of the measure.[9] Since in a typical “universe creation time”, the
energy density can only be defined to within O{M§,), every field configuration with a given density up to
M}, is given equal weight. For models in which inflation starts substantially later than the Planck time,
it is usually even less clear what the measure should be. The evolution of the “Planck-time measure” to a
later time is highly non-trivial and is sensitive to physics at energies well above the scale of inflation.

Even though natural inflation starts well after the Planck époch (t; ~ Mp/A? >> tp;), it is easy to
see what the measure for natural inflation should be. Due to the angular symmetry that exists until the
onset of inflation each value of ¢; should be given equal weight. {The idea is that ¢ is laid down randomly
for example by the Kibble mechanism on scales larger than the Hubble radius at some time ¢ < ¢;.) At first
it might not be clear how to weight different values of I, but we find that the measure in the II direction
is irrelevant since for each value of II, the range of successful ¢ values has the same size. Thus, using the
appropriate measure we see that the fraction of phase space that leads to sufficient inflation is 0.7, 0.2 and
3 x 10-? for f = 3Mpi, My and M, /2 respectively.[10]

Goldwirth and Piran(l1] found that for both chaotic and new inflation, the effect of the kinetic term is
to shift the range of #, that leads to sufficient inflation by an amount

Mp; I,

Ag = 1 1), foro?>2v 5
o= Ayt frli> | (5e)
- _ I, .

A¢-— Wuph for Hl < 2V, (Sb)

These results shonld also apply to natural inflation since the only assumption about the potential that went
‘into the approximations is that it be relatively flat. Indeed, equations 5 agree well with cur numerical
solutions. If the lines ¢3¢ (1) = ¢2¥7(l; = 0) + Ad were plotied on figure 1, they would be nearly
indistinguishable from the numerical boundaries. This boundary line is plotted in figuze 2 where it can be
scen that the deviation is slight and qualitatively insignificant. .

Goldwirth and Piran also show that the sise of the phase space leading to successful inflation is ‘large’
for cheotic inflation and ‘emall’ for new inflation. Their results are related to the dependence of cur resulls
on f. For f 2 Mp;, natural inflation is similar to chaotic inflation: duaring the final 60 e-foldings of inflation
the potential is well-appzoximated by V(¢) = m?@?/2, where ¢ = ¢ — xf and m? = AY/f3. For f < Mpy,
natural inflation is similar to new inflation: the inflation occurs nedr the maximum at ¢ = 0, where the
potential is similar to V(¢) = A(¢? — o) with ¢? = 62 and XA = 1/24(A/f)%. Thus the dependence of
our results on f can be understood in terms of our understanding of ‘chaotic’ and ‘new’ inflation, with the
advantage that the angular symmetry of the field constrains the parameter space and gives it a natural
measure.

With the inclusion of a spatial curvature term in the analysis, our conclusions cannot be as precise.
. We expect a typical value at the Planck time for the curvature term in the expression for H? to be of the
order of M},. Thus we can imagine:a universe at the Planck time that is a patching together of Friedmann-
Robertson-Walker spacetimes, each with some value of k/R? between —M}, and M},.{12]. Unless there is
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an inflationary stage between the Planck time and the onset of natural inflation, some of the closed regions
of the Universe will collapse before inflating. These regions of the Universe will appear as black holes from
the open space-times which will continue to expand. The curvature contribution to H? redshifis as R-? and
hence has a typical value of A? when the epoch of natural inflation is reached. Since vacuum encrgy does not
redshift, this will only slightly delay the onset of inflation [13]. The phase space results for an open universe
will not be significantly different from those for a flat universe.

Many authors have considered the influence of scalar field gradients on the onset of inflation [11,14].
Here we mention two aspects of the problem that are peculiar to natural inflation. The first is again the
angular symmetry of theory which keeps the dynamica insensitive to different values of ¢ (and as we've shown
IT) up to the the explicit symmetry breaking scale A. When the universe cools to temperatures 7' ~ A, the
energy density in gradients can be as high as pyr0q ~ f7H? on the scale of the Hubble radius. For f ~ Mg,
Pyrad ~ At ~ V(). Since p,, o4 redshifts while V(@) ~ conet, the main effect would be a slight delay of the
onset of inflation.

Finally, another interesting feature of natural inflation is the likelihood of an earlier inflationary period
when the complex scalar field & relaxed to its vaccum expectation value. This eatlier inflation does not leave
any observable traces if the following inflation in the ¢ direction occurs for more than 60 e-folds and thus
does not require a small self-coupling. The advantage it brings is that even if it only lasted for a few e-folds
it would help-the onset of natural inflation by smoothing out inhomogeneities. This earlier inflation and its
likelihood are discussed more thoroughly in Ref. 7. B
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Figure Captions

Figure 1: The three pairs of lines plotied are the numerically calculated boundaries, for three different values

of f, between regions of the initial condition phase space that lead to sufficient infiation and regions that lead

to insufficient inflation.

Figure 2: The boundaries for the case f — Mp are plotted over a much larger range of I, much Jarger than

we expect to occur at the onset of inflation. The solid line is from the numerical solution and the dotted
line is from equations 5a and 5b. Here we take In(M}, /A?) = 14.3.
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