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Abstract 

The survival probability of large rapidity gaps in pp collisions is calculated 
for several different eikonal models of the Gaussian form. Results obtained 
for models based on partonic interactions are quite similar. The Regge-pole 
model predicts a higher value of < [Sl’ > . 
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1 Introduction 

It has recently been suggested [l, 21 that the observation of a large rapidity gap in the 
11 - c++ lego plot, constructed for exceedingly high energy p-p interactions, may serve as a 
signature for W-W fusion associated with the production of a Higgs boson. The practical 
utilization of this idea as a useful trigger for rare electroweak processes depends on ones 
ability to reliably assess the survival probability < lSla > . This is defined [2] as the 
fraction of events for which spectator events do not fill the rapidity gap of interest. 

The survival probability is easily defined in the eikonal model in impact parameter 
space. We use amplitudes normalised so that 

do 
;it = ~lf(%W 

atot = 47rlmf( 8,O) 

a(.~, b) = $1 dqe-‘q.bf(+ t) 

From which we derive the b-space formulae [3] : 

(2) 

(3) 

ctot = 2 
I 

dblma(s, b) (4) 

C~.I = 
I 

dbla(s,b)j’ (5) 

s-channel unitarity implies that la(8,b)l 5 1, and when written in a diagonalized form we 
have 

2lma(s,b) = la(s,b)l’+ G;,(s,b) 

from which we obtain for the inelastic cross section 
(6) 

.T;,, = 
I 

dbG;,(s, b) 

s-channel unitarity is most easily enforced in the eikonal approach where, assuming that 
a(s,b) is purely imaginary, we can write 

a(+ b) = i(1 - e-“(*.*)) (8) 

where the eikonal n(s, b) is a real function. 

Our assumption that a(s,b) is purely imaginary is not compatible with analyticity and 
crossing symmetry. These are, easily restored upon substituting S” + PC’?. From 
Eqn. (7) we can express G;,,(B, b) as a function of n(.s, b) 

G;,,(+ t,) = 1 - ,-a”(-b) (9) 



Note that P(s,b) = e-2”(01b) is the probability that no inelastic interaction takes place at 
impact parameter b. 

We follow Bjorken [2] and define < /SI’ > as the normalized multiplication of two 
quantities. The first is a convolution over the parton densities of the two interacting pro- 
jectiles presenting the cross section for the hard parton-parton collision under discussion. 
The second P(s,b) is the probabilty that no other interaction takes place in the rapidity 
interval of interest. In the eikonal formalism we have: 

< ,slz >= S ads> bP-‘(s, b)d2b 
S WT(S, b)d2b 

where a~(s, b) denotes the amplitude associated with hard collisions that can be expressed 
through the eikonal Q~(s, b) using Eqn. (8). S ome preliminary calculations of < lSla > 
have been presented in Ref. [2]. Following this pioneering effort there were also a number 
of attempts made to estimate < ISI’ > using Monte Carlo techniques [4,5]. It is important 
to note that these assessments of the survival probability are model dependent. A number 
of models are available [6 - 111 which provide a good reproduction of the data in the ISR 
- Tevatron range. As we shall show these models differ in their estimates of na(a, b) and 
P(s,b) in the high energy limit of LHC and SSC. It is therefore pertinent to carefully check 
the dependence of < ISI’ > on the phenomenological input required in Eqn. (10). This is 
the main aim of this note, where we have attempted a systematic study of < ISI’ > and 
it’s sensitivity to the input parameters. 

In the following we assume that both na(s, b) 
well approximated by Gaussians 

and a(s, b) in u~(s, b) and P(s, b) are 

%(a, b) = v&+-6 (11) 

2fl(s, b) = 2v(s)& (12) 

This input assumption has been verified by the analysis of Ref.[lO, 111, where it has been 
shown that eikonal models of this form provide an excellent reproduction of the cross 
section data and particle distributions in the energy range 5 5 J;; 5 1800 GeV. The 
main advantage of assuming the input in a Gaussian form is that the integration in Eqns. 
(4) and (10) can be carried out analytically, whence the total cross section 

- (-l)“-%(8)” 
atot = 2 db(1 - e-“(‘@) = 2rR’(3) c 

I l&=1 
,,, 

= 2irR’(~)[Znv(s) + C -E+/(s))] (13) 
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J%(Z) denotes the integral exponential function K(z) = JT-“, $dt , and C is the Euler 
constant ( C = 0.5773 ). For v(a) >> 1 we have 

otot + 2nRZ(s)[lnv(s) + C] (14) 

The inelastic cross section is given by 

g;,, = 2 
I 

db(1 - e--l”(‘.*)) = ?rR2(a)[ln(2v(s)) + C - Ei(-2v(s))] 

and therefore ccl = atot - rjin = 

= ~R’(s)[ln( +) ) + c + Ei(-2v(s)) - 2Ei(-v(s))] 

Again for v(s) >> 1 we have 

(15) 

(1’5) 

0.1 + rR’(s)[ln(+) ) + c + e-a+) - 2&‘)] 

One can extract the values for R*(s) and ~(8) using the expressions for vtot and ccl 
given in Eqns. (13) and (15). As expected at the Tevatron energy where the cross 
sections are known, the spread in values of R’(a) and ~(8) for the different models is 
rather small. It is only when the model parameters are extrapolated to higher energies 
does the difference become significant, and allows one to test the theory on which the 
parametrization is based. We shall estimate the importantance of this dependence when 
making predictions for LHC and SSC energies. 

The integration of Eqn. (10) yields: 

< ISI2 >= a&)“r(a,2v) 

where a = $ 
H 

and ~(a, z) denotes the incomplete gamma function 

(17) 

~(a, z) = J,’ za-le-‘dz 

For v(s) > 1 Eqn. (17) simplifies to [2] : 

(1% 

< lS12 > = - aa) + = 
4sP 

-,-44 
4s) (19) 

A general numerical mapping of < ISI” > as a function of a and v is shown in Figs. 1 
and 2. 
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A realistic asssessment of the survival probability is subject to a considerable ambi- 
guity, due mainly to the following reasons: 
1) There is no clear definition of the hard component of the b-space scattering amplitude 
or eikonal. Moreover, it is not clear whether the growth of dtot with s is due to the soft 
or to the hard sector. Bjorken [2] h as 
energy cross section where ct.,* (pp) x 

suggested that one can estimate R& from the low 
40 mb. Hence RA:, is energy independent and a > 

1. Implicit in this estimate is the assumption that Q tot growth is associated with the soft 
sector. This point of view is not common to all models. In particular, models based on 
parton interactions [6, lo] associate the growth of crIol with the hard or semi-hard sector. 
Hence R& is energy dependent and a x 1. Bjorken [2] based his numerical estimates on 
the minijet model [6]. Indeed in this type of model R& approaches a constant in the 
high energy limit. Here, the growth in (r iOt is due to gluon-gluon interactions which are 
semi-hard. Having no better insight to this problem, we follow the recipe suggested by 
Bjorken, and fix R$ from the low energy data at ,/Z = 10 GeV. 
2) The input information required in Eqn. (17), i.e. a and 2v is obtained from fits to the 
rising pp and pp cross sections. This rise is a consequence of both a process of blackening, 
i.e. a rise of ~(8) , and expansion, i.e. an increase of R” . However, these two processes 
compensate each other as is readily seen in Eqn. (14). The dependence of < lSla > on 
these parameters is completely different as is evident from Eqn. (19). As we have noted, 
there are a number of phenomenological models which reproduce the available data well 
in the 10 5 4 < 1800 GeV energy range. These models differ in their estimates of a 
and 2u, and we wish to examine the stability of < ISI’ > with respect to variations of the 
input parameters a and 2v , as deduced from the phenomological models. 
3) We would like to emphasis that all our estimates of < lS/’ > are based on the eikonal 
approach, i.e. on the assumption that the representation for the scattering amplitude 
given in Eqn. (a), is a valid approximation at high energies. This form allows us to 
formulate the expression for the survival probability in a simple and transparent manner. 

In the following we elaborate on these points by discussing a few input models: Our 
results are summarized in Table I, where we list the values for v, RL, R’, ctt.* and < ISI’ > 
for energy values of the Tevatron, LHC and SSC. 

1.1 Minijet-parton model 

In this model [S] the eikonal for the partonic i-j collision is given by 

ft(sy b)(s, b) = Wij(b)crD(s) (20) 

where ,,?.cD N Q’-l . 
‘I For I+‘, , the Chou-Yang formulation is assumed [12] 

Wij(b) = &(Pijb)3K,(pijb) 
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Eqn. (21) is reasonably well approximated by a Gaussian. To realize this we have fitted 
Eqn. (21) numerically, utilizing the parameters for //,ij given in Ref. [6] . To estimate 
the hard component, we follow the method suggested by Bjorken [2] and fix R& from the 
model predictions at fi = 10 GeV, where atot % 40 mb. This is a natural choice as in 
this model, we have relatively small changes of R’(s) with energy. Not suprisingly, our 
estimates of < ISI’ > are compatible with those of Refs. [2, 31. 

1.2 Regge-pole model 

An impressive reproduction of the experimental total cross section data is obtained [7] 
by utilizing a simple Regge-pole model. For our high energy analysis we are interested in 
the super-critical Pomeron where the amplitude is given by: 

f(s,t) = iCeR:tan(L)-‘ein[O.5~~(~)] (22) 

with (x(t) = 1 + e + a’t . Donnachie and Landshoff fit [7] the data with values of the 
parameters C = 21.7 mb and c = 0.0808. In addition we utilize a global fit [8] to B, the 
nuclear slope, and obtain Rz =5.2 GeVe2 and cz’ = 0.2 GeV-’ . The b-mace transform 
of Eqn. (20) is 

a(s,b) = iC 
8’ 

-f%Tp[- 
2 I P I2 

$+$I. [R:+a(o) + z) - ;a%oa(;a(o) + z)] 

where 

R; = Rjj + a’lna 

I p I& R: + f$ 

m’b= 
‘=8lpl~ 

(23) 

(24) 

As both E and a’ << 1, Eqn. (21) is well approximated by a Gaussian ( see Eqn. (11) ) 
with 

V(8) = 
CR= 1# 

2/P12 

R’(s) = $$$ (25) 

The model in the form suggested by Donnachie and Landshoff [7] is not appropriate for 
fitting data at high energies, as for very high energy it violates unitarity (a(~, b = 0) > 1) 
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above fi z 5 TeV. For our evaluation we use a very similar eikonalized version suggested 
by Cudell and Margolis [9], with C = 24 mb, E = 0.093 and a’ = 0.25 GeV-‘. For the 
hard sector our choice is less straightforward than before, as R’(s) N In s, and there is no 
obvious way of defining the hard component. In Table I we present R& as the threshold 
of Eqn. (25). Note that the results obtained from the Regge-pole model are in marked 
contrast to the other models investigated in this note. The difference will be elaborated 
apon later. 

1.3 Lipatov-like Pomeron 

A simple parametrization for the Lipatov-like Pomeron [13], has been suggested in Ref. 
[lo]. The eikonal is given by 

fl(s,b) = 6. ,-&I 

where the following two parametriaations of R’(s) provide good fits to the data: 

R;, = ad + ~&m)~* (27) 

R;, = a, + aEd& + ash (28) 

ai are fitted parameters. In this model a regular Pomeron with trajectory a(0) = 1, 
is appended to the Lipatov-like Pomeron. Again the choice of what to take for R$ is 
ambigous, as R’(s) is energy dependent and it’s low energy limit is exceedingly small. We 
adopt an arbitrary definition as suggested in Ref. [2] and use R$ to be the value at fi 
= 10 GeV, where ctot N 40 mb. 

1.4 Dual parton model 

This is a multi-component model [ll] describing soft and semihard multiparticle produc- 
tion. The eikonal is given by 

n(s, b) = ns(a,b) + fk(.qb) - fh(~,b) - fM+b) (29) 
where the last two terms correspond to the triple Pomeron and loop contributions. As 
aTp(s,b) and R.r,(s,b) are reasonably small , this is effectively a two component model 
whose parameters are: 

Rs(s, b) = g . ,-+ 
s 
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where 

R; = B + a'lns 

with C = 40.8 mb, E = 0.076 and a’ = 0.24 GeVwz. 

(31) 

RH(a,b)=~.e 
3 

-zig 
II 

where R& = B. In this type of model R& is defined as the low energy threshold limit of 
R:(s) given by Eqns. (30) and (31). The a~ is calculated in lowest order QCD and is 
dependent on the value taken for the p;“’ cutoff. Numerical values for OH at different 
energies are given in [ll]. 

2 Conclusions 

Our results are summarized in Table I. The results obtained for the various partonic 
models [6], [IO], [ll] for < [Sl’ > in the LHC-SSC energy range are remarkably stable. 
We note that the models of [lo] and [ll], even though very different in their construction, 
yield rather similar input parameters, as summarized in Table I. Ref. [6] differs from 
the above, in that it has the highest values for Y. These are compensated for by having 
the corresponding lowest values for a, producing final results which are similar to those 
obtained in Refs. [lo] and [ll]. 

The survival probability obtained from the Regge-pole model [8-lo] are considerably 
higher. On examining the input parameters used in our calculation, we find that the 
difference can be traced to the fact that the Y values associated with the Regge-pole 
model are the smallest. Hence, in order to be compatible with the data the model requires 
relatively large values of R2, and Ra which give rise to high < IS/’ > . 

We conclude with a more general comment. Clearly the questionable aspect of a 
calculation such as presented here, is the fact that the definition of the hard component 
is not unique. We have followed Bjorken’s suggestion (21, and have fixed R& from the low 
energy data. It is likely that our estimates for RL are on the conservative side, so that in 
reality one could expect even higher values for the survival probability than are given in 
Table I. 
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Table I Parameters and predictions of different models 

2.50 
3.90 
4.75 
1.11 
1.48 
1.68 
1.60 
2.69 
3.44 
1.44 
2.24 
2.77 
1.83 
2.23 
2.43 
zrc.zzz 

- 

- 

- 
R:, 

GeV-: 
14.41 
14.41 
14.41 
25.41 
25.41 
25.41 
15.78 
15.78 
15.78 
16.19 
16.19 
16.19 
10.56 
10.56 
10.56 

- 

2 , 

I - 

- 
R” 

GeV-a 
19.74 
22.60 
23.20 
35.80 
40.16 
41.99 
25.39 
28.02 
29.37 
28.64 
32.66 
34.23 
28.47 
32.67 
34.43 
- - 

= 
atc.t 
mb - 
72 
107 
121 
76 

102 
117 - 
75 
113 
134 - 
76 

115 
137 
75 
109 
124 
= - 

< p1= > 
% 

13.2 
5.5 
3.8 

32.6 
22.1 
18.1 
19.7 
8.2 
4.9 

20.6 
9.2 
5.8 
9.6 
5.3 
4.0 

- 



Figure captions 

Figure 1: Contours of percentage of the survival probability < /Sj’ > as a function of 
sandy. 

Figure 2: Graph of log ( % survival probability ) versus a for selected values of Y . 
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SURVIVAL PROBABILITY 
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