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Abstract

The increasingly relevant problem of natural resource use and waste production, disposal, and reuse is
examined from several viewpoints: economic, technical, and thermodynamic. Alternative economies are
studied, with emphasis on recycling of waste to close the natural resource cycle. The physical nature of
human economies and constraints on recycling and energy efficiency are stated in terms of entropy and
complexity.

What is a cynic? A man who knows the price of everything, and the value of nothing.
Oscar Wilde [1]

Our planet is finite in size and, except for a few energy and matter flows, its biosphere forms a closed
system. The envelope that makes life possible extends a small distance below the surface of the Earth and
less than a hundred miles into the atmosphere. While almost closed, the biosphere is not static, but is
constantly changing, moving flows of energy, air, water, soil, and life around in a shifting, never-repeating
pattern. The combination of general physical laws and the specific properties of the Earth places important
constraints on the activities of life, some embodied in the metabolism and forms of living creatures, others
imprinted into their genes by selective effects. All life needs sources of energy for sustenance and imposes
a burden of waste on its environment. Since this waste is usually harmful to the creatures emitting it, the
environment must, if these creatures are to continue living, break the waste down into less toxic forms and
possibly reuse it.

The growing dominance of humankind over the planet, both by technological power and by numbers,
imposes certain costs on the biosphere, sometimes a result of conscious attempts at controlling Nature, but
more frequently by unwitting influence. Moreover, the burden of carrying the activities of human sustenance,
unlike that of other animals, cannot be understood by considering the physical and biological activities of
each person in isolation. Because of their unique position at the top of the food chain, their tool-making
abilities, and the co-operative character of human activities (the division of labor or specialization), the
physical and biological aspects must be considered together in the context of the peculiarities of economic
life [2]. The economic aspects take on an independent importance because of the modification of individual
or family subsistence by tool-making, surplus production, and trading {3]. This point of view is necessary
for comprehending the ecological significance of all economies more elaborate than the simplest subsistence
or household economies, up to and including the most sophisticated systems of technology and trade. On
the other hand, the formulation of economic theory has generally taken place, apart from a few outstanding
exceptions [4], with scant attention paid to how physical and biological laws make their appearance in the
course of humanity’s reshaping of its environment {5]. This article explores human economics as a special
branch of ecology, with particular regard to the production, disposal, and possible reuse of waste.
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Natural Resources and Rents

To begin investigating the problem that the waste produced by our economic system poses, we consider,
in simplified diagrammatic form, the streams of economic activity that make up a conventional economy
(Figure 1) [6]. We ignore complications such as hoarding, credit and debt, and unemployment of resources,
as they do not change the essentials. One set of streams is made up by various flows of matter and energy
in the form of goods and services, a collection usually called the real economy. The inputs of the real
economy are natural resources, labor, and capital (tools) [7]. The outputs are consumption goods, capital
goods, and waste. Two of the output streams are tied back to the input streams to form & closed system, the
consumption goods used by labor to sustain and reproduce life and the capital goods added to the previously
existing stock of capital. The third output stream is waste, discharged into the environment, but not tied
back to the input stream of natural resources, which are taken from the environment. Since a functioning
economy is never exactly in an equilibrium of steady flows, but always expanding or contracting, diagrams
such as Figure 1 are only instantaneous snapshots.

Counter to the flow of matter and energy, in an exchange system, is the money or information economy
of income streams. The income flow corresponding to a particular item is the product of the physical flow
of an item and its price: prices are information [8]. To the inputs are paid three types of income: wages
to labor, profit to capital, and rents to the owners of natural resources [3]. The term “rent” should not be
confused with its common usage; in technical economic usage, “rent” refers to the monopoly incomes received
by the owners of scarce and non-substitutable natural resources — such as land, in the common meaning.
Two of these incomes go to pay for two of the outputs, wages to pay for consumption goods (consumption
spending), profits to pay for capital goods (investment spending). The rent incomes are simply gratis and
pay for nothing. In fact, rents are extracted from the flow of wages and profits as a tax and necessarily
diminish the level of consumption and investment, as first pointed out by David Ricardo [9,10].

The scarcity of land and of the food produced on it led to the first crisis of the infant industrial system
in England in the early nineteenth century, a crisis that played a prominent role in the works of Ricardo
and his fellow economist, Thomas Malthus [8,10,11,12]. As the industrial system and the population of
workers expanded, it ran into the fixed amount of land in England and the relatively fixed level of food
production possible on that land. The rent on scarce land threatened to destroy the profits on capital and
halt investment; rising food prices apparently condemned the workers to a chronically low level of subsistence.
The inability of England to feed itself beyond a certain limit formed the centerpiece of a powerful argument
for free trade in agriculture; what food England could not produce, it would import and pay for with
manufactured goods. Eventually, the arguments of Ricardo and others won out, and England adopted free
trade in food in 1846. Other factors also prevailed to prevent a fatal crisis. Population growth in England
was slowed by delayed marriages, urbanization, and, later, by the introduction of artificial birth control
methods. Improved agricultural methods made much higher levels of production possible on a given amount
of land. A larger population had the advantage of greater diversity, specialization, and productivity, given
enough freedom to make economic improvements. A final factor of great importance in preventing a crisis
of resource exhaustion has been the substitution of more common inputs for scarcer ones [13]. Few famines,
at least in recorded history, seem to be due to overpopulation, but rather are caused by warfare, panic
hoarding, and criminal or misguided governments. However, it is misleading to concentrate only on food
production, as overpopulation in localized ecosystems is responsible for other environmental problems, such
as deforestation, soil erosion, and drastic changes in rain cycles.

Later in the nineteenth century, the American amateur economist and crusader Henty George rediscov-
ered the importance of rents on land and launched an attack on them as the source of society’s economic ills
in his once-famous work, Progress and Poverty [10,14]. Although George exaggerated the evil of rents, he
performed a public service by raising the issue of unearned rent incomes and by emphasizing the difference
between unearned monopoly rents on fixed land and profit on competitive capital, which the common use
of the term “profit” confuses. His cure for the unearned incomes derived from monopoly control of fixed
natural resources was to introduce a single tax that would absorb all rents.

Although the monopoly rent incomes received by natural resource owners seem like an unjust burden
on the rest of society, rents cannot be condemned out of hand as serving no function. In particular, in
an ecologically conscious age, we should recognize rents and private ownership of resources as brakes on
the overexploitation of Nature. If people have to pay for resources, they will use less of them. This is
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all the more true if the resource owners impose extra charges, reservation prices, to cover not only the
current cost of resource extraction but also to prevent future depletion [6]. The charging of interest on credit
(future discounting) has the same effect. Many of the most prominent examples of the overuse of resources
today — overlogging in the Pacific Northwest, overgrazing on the Great Plains, wasteful water usage in
California, suburban overdevelopment, overuse of chemicals in agriculture, urban overconsumption of food
and discouragement of agriculture in the Third World, destruction of the topical rainforests, environmental
devastation in the Communist countries — are supported by public subsidies designed to keep raw materials
cheap to their users [15]. The result is the tragedy of the commonas: if everyone is supposed to take care
of something, no one takes care of it [16]. Furthermore, by shielding the users of a particular resource
from the full cost of their exploitation, these subsidies not only encourage present overuse of resources, but
also discourage the search for cheaper (less scarce) substitutes and thereby exacerbate future shortages.
Although environmentalists are not usually thought of as friends of private property, private ownership
of a resource provides a powerful motive to bar others from its overuse and is usually the best way to
protect wilderness areas [17]. Private property allows, while limiting, the individual exploitation of Nature
by separating ownership from political power. Of course, private ownership is not a panacea; some owners
are as shortsighted as anyone and can strip their property for quick benefit. Nonetheless, if societies are
interested in protecting the environment, they could do worse than refrain from these subsidies. Such
discriminatory intervention subsidizes select groups of raw materials users at the expense of everyone else and
of the environment. Natural resource use is always subject to diminishing returns and thus has no economic
justification for subsidy, unlike knowledge- or technology-based sectors of an economy that sometimes exhibit
increasing returns to scale spread out over time [18]. Unfortunately, these subsidies are usually of great benefit
to select, politically powerful groups whose influence over governments is difficult to remove. The subsidies
result from the the conversion of the profit motive, the basis of any functioning economic system, into the
power motive characteristic of politics [19].

In a conventional economy, no money exchange is associated with the other end of the resources flow,
the production of waste. The waste flow is discharged into the environment with no cost or payment. In
short, the price of waste is zero.

The Pay-for-Trash-Removal Economy

The conventional economy is not the only possible one: waste in many cases is not dumped for free into
the environment. Instead, the waste producers pay someone else to remove their trash and to dispose of it
in some fashion (in a landfill, for example) that often involves an additional charge. This type of economy
is diagrammed in Figure 2. Money payments accompany the waste outward to pay for its disposal.

But the trash-removal economy is odd, since the waste producers pay twice for their use of natural
resources, once for the inputs and once aggain for waste removal. So there are now two rents extracted from
the economy, both rents being subtracted from the flow of wages and profits. Such a system will eventually
press up against a new Ricardian barrier, because the producers of waste, unlike producers of consumption
and capital goods, pay the consumers of waste for its removal, rather than the other way around. Waste has
a negative price in this type of economy.

Of course, from a more limited point of view, this arrangement makes sense to the parties involved.
The waste removers receive a rent income, while the waste producers have their trash removed. But as the
level of waste production rises with economic growth, and the free space for waste disposal declines, the
rent charges for waste removal must necessarily rise and put a larger and larger burden on the rest of the
economy, wages and profits. If the natural resource inputs also become scarce, then the economy is caught
in an even worse squeeze, with rent being extracted from both ends. The desire of select producers for cheap
input resources and enlarged export markets has already inspired one form of imperialism at various periods
in economic history (3,20]; the frequent absence of a price system for waste is now prompting a new “garbage
imperialism”, the search for cheap places to dump trash [15].

Unfortunately, the pay-for-trash-removal transaction has become the paradigm for many other kinds of
pollution control. For example, the control of air pollution is accomplished typically by direct regulation of
pollution sources with limits on emission. The cost for the “trash removal” is necessarily borne by wages
and profits, either directly or indirectly, in a clumsy way. A simpler solutior, where the polluted resource is
privately owned, is for its owner to bear the cost, or its polluter to recompense the owner. For a polluted
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commons, such as the air or water, that cannot be privatized, the legal right to pollute it can be, such as in
a market for pollution shares, where polluters can trade rights to emission with an overall fixed number of
pollution shares. But all of these schemes share the same feature: paying for trash removal.

There is a broad justification for the pay-for-removal approach found in the economics literature on
pollution which rests on the proposition that by paying for trash removal, a society is “buying” a clean
environment [6,21]. People are behaving “as if” there is a market for “cleanness”, with so much clean
environment available at different costs and varying levels of social preference for cleanness at different
prices. The difficulty with this justification is that the pollution of the environment is a product of human
activity in the first place; the environment is not & manufactured commodity, and Nature is not subject to
any but superficial and temporary human control, nor does it exist only for our use, nor can it in general be
priced by us (except for those parts that we do use and trade with one another), because we did not make
it. Furthermore, waste disposal is not subject to substitution the way inputs are, except for the possibility
of finding less wasteful production techniques that do not reduce useful output.

The Recycling Economy

The way out of this conundrum is to make the natural resources cycle closed like the two other economic
cycles (Figure 3). A partial solution is to use the rent income from natural resources, which pays for nothing
now, to pay for the trash removal. Since there would be no direct physical flow from outputs (trash) to
inputs (natural resources), there would be no market to guide the necessary counterflow of money, and the
payment for trash removal would have to be implemented by a tax on natural resource income. Such a tax
would be an updated ecological version of Henry George’s universal land tax, instead levied on the resources
that contribute to the production of waste.

The full solution, however, is to start the physical flow of trash output back to natural resource input
— that is, to recycle. There would then be a market for trash, and the counterflow of money to pay for
it, derived from natural resource rents, would be automatic. Waste output would be treated like the other
outputs, consumption and capital goods, in that the consumers of waste (the recyclers) would pay the
producers of waste for the trash. The availability of recycled materials for input would subtract from the
income of virgin natural resource owners, and the natural resource rents would in effect pay for the recyeling,
establishing full closure (both physical and monetary) of the resource cycle.

The economics of waste can be restated in Marshall’s graphical formulation (22], with supply and demand
curves for waste, as in Figure 4. The supply curve is the marginal cost of each additional unit of waste as a
function of waste flow (the partial derivative of the cost function with respect to waste flow). Typically, the
marginal cost for waste production is negative, at least to start with; that is, the producers of waste find their
costs decreasing as they produce more waste associated with the making of their useful outputs. Eventually,
with high enough waste output, the production process becomes increasingly inefficient, the cost function
starts to rise as a function of waste flow, and the marginal cost of waste becomes positive. We assume,
as is always the case with natural resource costs, that the waste supply curve is subject to diminishing
returns and therefore always rises with quantity. In the absence of a market for waste (zero utility of waste),
the producers generate waste up to the point where the marginal cost of waste is zero. This fact explains
why, even when unregulated, producers in a market system do not produce an infinite amount of waste.
Such behavior serves as an illuminating counterexample to the usual pattern in command economies, which,
lacking a price system, generally have no sensible way to account for costs. Natural resource exploitation
consequently is often subsidized to extreme levels, and the result is an almost infinite production of waste
and pollution, as reported in great detail by a number of visitors to Eastern Europe and the former Soviet
Union {23,24].

The demand curve for waste is the marginal utility to the consumers of waste; that is, the partial
derivative of the consumers’ utility (reflected by what they are willing pay for the waste) with respect to
waste flow. As shown in Figure 4, the marginal utility might be positive for small waste flows — in that case,
consumers can find some use for the waste — but the curve usually becomes negative for large enough waste
flows; that is, the curve is really a marginal disutility for waste. Or, if the waste has no use at all, the demand
curve is aiways negative (not shown; in that case, the points E and F coincide). Figure 4 shows the typical
result in this situation. The market equilibrium for waste — point of maximum benefit (utility less cost) to
society — occurs at negalive marginal cost and utility, so that waste has a negative price. Thus, Figure 4
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displays in graphical form our earlier example of the pay-for-trash-removal economy. Such a result might
be embodied in real markets, as it is with trash collection services and landfills, or implemented by direct
regulation, as when the government makes known through legislation or administrative ruling the putative
social disutility of waste. The question of which approach to use reduces to the question of creating, wherever
possible, markets for the waste.

Careful examination of the market equilibrium reveals the mutually beneficial nature of the transaction
to both producers and consumers of waste, even with negative prices. Referring to Figure 4, the area FDCB
is what producers pay consumers to take the waste. On the other hand, the producers save the area FDCA
in costs by producing the waste; it is clear that this cost saved is greater than or equal to what the producers
pay for waste removal. Similarly for the consumers of waste, the income they receive for removing the waste
is greater than or equal to their total disutility for the waste, the area EDC, and they may also receive
positive utility from the waste, the area EFG.

The long-term difficulties with waste production discussed earlier can be restated in this graphical
language. As ecological niches for waste run out and a society’s tolerance for rising cumulative waste
declines, its utility for waste becomes increasingly negative. That is, the demand for waste moves down and
to the left in the figure. This change forces producers to produce less waste, which can have one of two
impacts, or a combination of both: Either the producers produce less waste by also producing less useful
output, reducing the society’s standard of living and capital accumulation; or the producers continue to
produce the same useful output as before with less waste by adopting less wasteful techniques.

The recycling economy is illustrated in Figure 4 by the alternative demand curve for waste, which is
always positive, or at least positive for the waste flows relevant to this discussion. That is, in a recycling
economy, the waste is useful and its marginal utility positive. In this case, the price of waste is positive. As
explained earlier, the income flow to pay for this transaction is ultimately extracted from the rent incomes
of virgin natural resource owners. Curiously, the amount of “waste” produced in the recycling economy is
higher than it is in the pay-for-trash-removal economy, as Figure 4 shows, simply because the “waste” is
more useful and so there is 2 demand for it. The waste transaction in this case is also mutually beneficial to
both parties; the graphical proof follows the same steps as in the case of negative prices above.

Limits to Recycling

The recycling economy already exists in embryonic form [15]. Some recycling takes place of metals, pa-
per, glass and oil. Certain automobile manufacturers are planning the reusable car, to end the abandonment
of autos in junkyards. Junkyards already pay for old cars and cannibalize them for spare parts. But the full
impact of natural resource scarcity and limits to waste removal has not yet been felt in advanced economies.
The logical ideal for the development of a “green” (ecologically correct) economy is: as much recycling as
possible and zero production of non-recyclable wastes. The “green” economy must move as close as possible
to zero waste production without reducing useful output and to the complete recycling of what waste is
produced. The key to recycling is obviously finding ways to make waste useful.

The immediate limits to recycling are institutional. Almost all producers have set up their production
processes so as to use virgin natural resources only. They are not organized to recycle internally their own
waste or recycle other producers’ waste. The ideal of complete recycling would be implemented, either by
each production facility forming a closed system or by many facilities forming a symbiotic “food chain” of
producers and recyclers of waste. Internal recycling of waste already exists for some extraordinarily valuable
inputs, such as catalysts in chemical reactions that can be used an indefinite number of times. An example of
external recycling by a consumer-producer loop is the venerable milk bottle [25]. A large potential recycling
loop exists with aluminum cans, since the trucks that deliver the filled cans usually drive back to the producer
without any used cans. Recycling “food chains” are less common. Cogencration of heat by burning trash is
a primitive example, although the burning itself pollutes. The change necessary to implement such schemes
mostly involves a change of mentality, a more accurate recognition of the efficiencies to be gained by internal
recycling and recycling chains. For the latter, markets would have to be created to trade the waste.

The technological limits to recycling form a more basic obstacle. The limits have two interrelated
components: design of original products to facilitate their later recycling, and development of efficient
recycling techniques [15]. The “green” design of original products requires the foresight and incentive to
anticipate recyclers’ needs and limitations and to incorporate these into the product from the start. The
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establishment of stable and mutually beneficial relationships between producers and recyciers (or better,
producers becoming their own recyclers) would make this process much easier. Some soft drink companies
already buy back their own aluminum cans after use by consumers to be recycled for iterated use. A well-
known example of a recycling bettleneck created by poor design is the glossy finish used on some types of
newsprint that prevents their reprocessing. Efficient recycling techniques have already been developed for
aluminum, steel, glass, and some types of paper and plastic. Many more materials could be recycled.

Even after institutional and technical obstacles are overcome, however, there is an ultimate physical
limit to recycling, the limit posed by the second law of thermodynamics, which requires the total entropy
of the universe never to decrease [26]. Entropy admits of precise definition, either in statistical, microscopic
form or thermodynamic, macroscopic form, but in either case, is a measure of disorder. A process of maximal
thermodynamic efficiency is adiabatic or reversible, with no net entropy production. A less-than-ideal process
is irreversible and involves a net increase in disorder, which typically appears as waste heat unusable for work;
the increment of entropy is the increment of waste heat divided by the absolute temperature (in degrees
Kelvin) at which is produced. However, although total entropy never decreases, it can be moved around in
space and time so as to create regions and periods of greater order, but only by creating at least an equal
amount of disorder in other places and times. Useful goods and activities are fashioned from raw materials
into a more organized form, requiring the expulsion of entropy in time and/or space that reappears as waste
heat and junk. To make the growth of organization [27] more precise, we distinguish two kinds of entropy,
the mazimal entropy or disorder a given macroscopic object or process could have, depending only on its size
or duration, parts, and energy; and the actual entropy or disorder the object or process actually possesses.
The former is fixed for a given system, while the second law requires the latter never to decrease. The
generalized complezity or thermodynamic depth is the former less the latter [28]. Highly regular systems or
those in thermal equilibrium have low or zero complexity: the former, because both the maximal and actual
disorder are small; the latter, because both are large but equal. Highly complex systems have large maximal
but small actual entropies (much possible, but little actual, disorder). The negative of actual entropy is
often called negentropy and is equivalent to information [29]. Thus, for a fixed maximal entropy, complexity
and information are equivalent.

Care must be taken in applying the second law to the biosphere; because it is not a closed system, its
entropy can decrease. Biological, and in particular, economic, activity acts as a limited Maxwell demon in
decreasing local entropy as the Universe’s entropy rises [30]. Physical processes inject or remove entropy in
four ways: (1) sunlight received; (2) heat released from the Earth’s interior; (3) radiation re-emitted into
space; and (4) material and heat subducted into the Earth’s crust on the ocean floors [31]. These four, like all
manifestations of spontaneous self-organization through feedback, are consequences of the universal struggle
of gravity and entropy. The second and fourth are minor components of the Earth’s heat balance; with a
small but important corrections from the second, the first and third account for almost all of the Earth’s
heat budget [32]. There is one further avenue for entropy flow: life stores, rearranges and releases entropy.
Inasmuch as the complexity of life on Earth has increased over its three-and-a-half billion year history,
information stored in genes, metabolism, form, and, more recently, in culture, life has expelled entropy from
its domain, in addition to changing the chemistry of the atmosphere. This highlights the fact that, over long
periods, the biosphere is not at all in equilibrium, with occasional large departures from stasis occurring
against a background of steady, smaller changes [33,34]. For metabolism to occur, however, entropy also has
to be released, as with the consumption of food or the burning of hydrocarbon fuels. The instantaneous effect
on the Earth’s gross heat balance is small, a slight Gaian fever of global warming, although the consequences
over long times may be substantial.

In examining the entropy produced by humans, we can distinguish two broad classes of economic activity,
one involving the withdrawal, the other the release, of entropy. The latter class I call consumables or
fuels, such as food, hydrocarbons, etc., that are taken from a state of greater complexity and subject to
chemical reactions that release energy and entropy, bringing them closer to thermodynamic equilibrium.
Consumption, the goal of all economic activity, is the destruction of value and demand. The energy released
heats or performs work. The possibilities of recycling for this class are quite limited, so that reduction of the
associated pollution requires greater efficiencies of production and use to minimize entropy production. The
former class I call durables. These include packaging — containers, newspapers, clothing, housing, etc. —
as well as all manner of activities and machines that extend human powers, both for consumption purposes
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— cars, newspapers, etc. — and capital purposes — tools. Capital investment constitutes a special kind
of durable, the economic analogue of catalysis, goods that produce other goods or services yet themselves
not consumed. The creation of durables, like the evolution of life on the planet, requires a large increase
in complexity to create the prototypes, which can then be copied (mass production or reproduction) with
only small additional increments of complexity (due to the copying process itself, not to the copies [28]).
Production is the creation of value and demand. Because they degrade slowly, durables are recyclable,
although their use requires fuels. The major limitation is design, embodied in the original of the item and
reflected in its mass copies. Of course, some durables we already recycle; we use houses, clothing, and
cars over and over, rather than produce new ones for each use. The initial rarity of complex objects and
processes creates opportunities for profit and economic growth, which proceeds by the exploitation of new
and generally temporary relative scarcities. The scarcities usually disappear because competition and/or
mass production (if increasing returns appear [22]) turns the rare into the commonplace, eliminating the
relative advantage of scarcity and its above-normal profits. A new cycle of growth can then begin only
with the discovery of another rarity. Economic equilibrium is a thermodynamic non-equilibrium steady state
(steady flows of matter and energy), while economic growth departs further from thermodynamic equilibrium
into non-steady states of matter and energy flow [35].

The reduction of entropy production from fuel use is subject to stringent thermodynamic limits. The
burning of fuel to produce heat automatically produces entropy, although the heat can be trapped and
preserved for a time by insulation. The case of transforming heat into work is more subtle. As a simplified
example, consider the canonical two-temperature heat engine. The ideal efficiency n of such an engine
burning fuel at absolute temperature T}, and releasing heat into an environment at absolute temperature T,
where T} > T, is: :

n=1-T./Th, (1)

where 7 is the fraction of heat that can be converted to useful work. Note that when the two temperatures
are equal, no useful work can be extracted. The transformation of heat to work requires a temperature
difference. Furthermore, even in the ideal case, when the net entropy produced is zero, a gross entropy
increment is still added to the environment, taken from the fuel. For a relatively fixed environmental
temperature T, ~ 286 °K (13 °C or 56 °F), the ideal efficiency of heat engines can be increased only by
raising the burning temperature T},. Thus, coal is more efficient than wood, petroleum than coal, natural
gas than petroleum, and nuclear fusion than nuclear fission, under ideal conditions, each process burning
at a successively higher temperature. The greater ideal efficiency of successive fuels is also demonstrated
by a detailed study of their reactions; the thermodynamically more efficient burners burn further toward
completion of their respective reactions. The final products of hydrocarbon burning are carbon dioxide and
water; the final products of nuclear burnings are nuclei closer to the most stable nucleus, iron-56, than
the reactant nuclei, uranium and plutonium splitting to lighter nuclei, and deuterium and tritium fusing
to helium. The less efficient reactions not only do not move as far toward completion, they also produce
unburned intermediate products that are often harmful, such as nitrogen dioxide, carbon monoxide, and
unstable (radioactive) fission products. Nuclear fusion, burning at a higher temperature, produces none of
the unstable isotopes that fission produces. (Carbon dioxide itself still poses the hazard of a greenhouse
effect or asphyxiation, so it must be burned in a final step, to carbon and oxygen, by plants. Thus the
oxygen-burners depend on the COj-burners to recycle their waste by fixing carbon. Natural or artificial
photosynthesis could be implemented at the source of CO; emissions; new chain reactions could be found to
burn radioactive fission products into stable isotopes.)

Apart from burning technologies with higher ideal efficiencies, any given technology as implemented is
rarely close to its ideal efficiency, thus producing net entropy. The ideal functioning of a given technology
is reached when it proceeds adiabatically. The Nirvana of adiabaticity is achieved by smoothing in time —
burning as slowly as possible — and by isolating in space — perfect insulation between regions of differing
temperature.

Final Thoughts

The concept of minimum entropy production {33] can be linked to the concept of a sustainable economy,
a human economy with a lifetime of indefinite length {36). The biosphere, through its leakages of entropy, is
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capable of eliminating entropy at no more than a certain, but unknown, rate. This putative limit is, speaking
broadly, the sustainable limit to the activity of life and is sometimes called the carrying cepacity [36] of the
biosphere. The biosphere can be burdened only to a certain limit before it undergoes rapid, radical, and
probably unpredictable changes [33,37]. Apart from pollution of commons and appropriation of wilderness
owned by no one, the chief source of environmental degradation today, as thronghout human history, is the
discriminatory use of political power to lift the burden of resource cost from resource users by subsidy and
political force and to place it on others, so that these users fail to register the cost of their activities and
consequently overexploit the resources at their disposal. Absent such subsidy or political force and with
politically guaranteed property rights of various types, ecological sustainability of the human economy is
automatic, as human economic activity (making the most with the least) is only a special example of a
principle universal to all organic evolution, that of minimal entropy production [33,35]: Nature is usually
economical, in the sense of parsimony. With accurate (market-clearing) prices for natural resources, prices
are linked directly to cost and thence to waste (entropy) production [38]. Such an economy does not
need to be made part of Nature, because it already is, as the humans who make it up have always been.
The great exception to this principle of “most with least” among humans is represented by war and war-
like collectivist economies, such as feudalism, socialism, communism, and the various types of fascism and
statism, whose participants, under the spell of the power principle or the desperation of war, register benefit
without registering cost. Perhaps the major philosophical difficulty preventing us from seeing the truth
about evolution and human economies are the still-common fallacies of social Darwinism and sociobiology:
in fact, culture is adaptively learned, not genetically programmed, and most evolution is peaceful competition
for ecological niches, analogous in every way to peaceful economic competition, contrary to the famous but
misleadis z and bloody predator-prey picture of “Nature red in tooth and claw” {2,39]. Indeed, human history
is merely organic evolution at work in culture and economy.

It may seem as if the development of modern surplus-trading economies itself has led humanity out of
an idyllic relation to Nature and that the solution to our growing ecological difficulties is a return to the
subsistence mode of existence that would require a far smaller and poorer population than at present [40].
However, with occasional exceptions, there has never been an innocent relation between humans and their
environment, at least since the invention of agriculture: often not knowing their own strength, they have
usually exploited it up to the limits of their available technology and the local carrying capacity [41]. Our
present situation is a result of the cumulative inertia of thousands of years of technological progress. The
difference today is that, unlike previous eras, the power of technology and human numbers has grown so
great that it, like nuclear weapons, threatens the entire global ecosystem for the first time in history. But the
same technology that damages the biosphere can also measure and heal that damage. Minimizing this harm
requires closing the natural resource cycle of modern economies and instituting policies to extend property
rights and eliminate subsidy that blocks resource cost from individual economic decisions — in short, the
application of standard mechanisms to an activity never fully rationalized before in economic terms, the
production, disposal, and reuse of waste.
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Figures

Figure 1. Conventional economy. Investment and consumption form circular flows from wages and
profits, respectively; natural resource inputs purchased with rents, waste output discharged at no monetized
cost or benefit. Solid lines: physical flows; dashed lines: money flows.

Figure 2. Pay-for-trash-removal economy. Same as Figure 1, but waste discharge now monetized at
negative price; producers of waste pay consumers of waste to remove it.

Figure 3. Recycling economy. Same as Figure 1, but waste is now purchased by consumers from
producers at positive price for recycling; cost is effectively paid by natural resource rents, and the resource-
waste cycle becomes closed.

Figure 4. Instantaneous supply-demand equilibrium for waste production. Supply curve is marginal
cost of waste, subject always to diminishing returns (rising marginal cost); demand curve is marginal utility
of waste, typically also subject to diminishing returns (falling marginal utility). Two scenarios: pay-for-
trash-removal economy, wherein marginal utility of waste is mostly or completely negative, and waste sells
at a negative price; recycling economy, wherein marginal utility of waste is mostly or completely positive,
and waste sells at a positive price. Marginal cost of waste is partially negative, reflecting falling total costs
for moderate amounts of pollution.
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