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Abstract 

A theoretical approach is developed to large rapidity gap physics in deeply 

inelastic scattering. The formula for the survival probability of the large ra- 
pidity gap is obtained, which turns out to be quite different from Bjorken’s 

formula for hadron-ha&on collisions. 
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I. Introduction 

The main goal of this paper is to develop Bjorken’s ideas I11 on large rapidity gap 

physics for deeply inelastic processes at low zg. 

We have sufficiently good theoretical understanding of deepiy inelastic scattering 

at low 3~ (see ref. [2] and recent reviews (31). At least we can write the~new (GLR) 

nonlinear evolution equation for the deep inelastic structure function that takes into 

account the screening (shadowing) corrections. Nowthat we have a more solid theo- 
retical background in deeply inelastic scattering we can start to study the behaviour 

of more complicated processes such as processes with a large rapidity gap between 

produced particles. 

The result of this paper is a formula for the survival probability of the large 

rapidity gap in the deeply inelastic processes that is obtained within the theoretical 

accuracy. I hope that this formula could be very instructive for the case of hadron- 

hadron collision where we are able to get only intuitive if correct description of the 

survival probability. 

To understand the problems that we face discussing the large rapidity gap physics 

let me consider the production of a Higgs particle via WW fusion in pp collision 85 

was suggested by Bjorken I11 ( see Fig. 1). The cross section of this reaction can 

be described by simple factorized formula due to AGK cutting rules [‘I and / or the 

factorization theorem 151. 

fb- AY,YH~PH~) = dyzpg = 
t 

/&:r+~) d+:,,~) ~d2qud2q~t *hard (q:,q:,wS) (91 + qz -* q1qzH) , 

where 

y = Ins,; AY = YI - YZ , 0.2) 

while y, (ys) is rapidity of produced quark. In eq. (1.1) we use so called the transverse 

momentum factorization approach [sl. Furthermore oh& is the cross section for the 

hard subprocess: 

&(“1,910 + qahqzt) 4 il(21,PU) + Ql(Z,,Pli) + H (1.3) 



-2- FERMILAB-Pub-93/012-T 

which is marked in Fig. 1 by a dotted line, and function 4 is closely related to the 

deep inelastic structure function namely 

(2. ( + F(I, n’) ) = /” %(9”) 4(g’l, “)W (1.4) 

We do not need to know the exact formula for the hard cross section in eq. (l.l), 

for us it is only important that the rapidity gap between two produced quarks with 

transverse momenta pit =- pst is large enough. 

At first sight this mechanism of Higgs production has an excellent signature for 

the experimental detection. The event topology is very remarkable: two collimated 

ht 2 -pst) jets with rapidities yr and ys and no hadrons between them except the 

Higgs boson and the secondary particles from its decay. (see Fig. 2 where this event 

is drawn in a lego-plot). However, the diagram of Fig. 1 can not give the value of the 

cross section for the event with such a striking signature. Indeed each parton with 

E > zr can interact with a parton with z < 2s. (in lab frame, see Fig. 3) and such 

an interaction generally speaking produces a lot of partons (hadrons) with rapidities 

between ys and yr 

Thus to calculate the cross section of Higgs production with the rapidity gap we 

need to multiply the value calculated by eq. (1) by factor < Ss > which gives the 

survival probability of the rapidity gap. Bjorken suggested a formula [iI that allows 

one to calculate < Ss > . 

In the next section I am going to discuss this formula trying mainly to clear up 

its physical meaning and to point out some shortcoming of the Bjorken approach. 

In section 3 I’ll consider the survival probability of the large rapidity gaps in the 

deep inelastic scattering. The equation for < Ss > will be derived and a solution will 

be found that gives the possibility to discuss the large rapidity gap processes on a 

solid theoretical ground. 

Section 4 is devoted to concluding comments and suggestions for further theoret- 

ical work. 
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II. Bjorken’s formula 

To start with let me remind youof several general properties of hadron-hadron 

collisions originating from analiticity, crossing symmetry and unitarity on the ampli- 

tudes of elastic scattering. 

1.) S-channel unitarity looks simple in the impact parameter representation in which 

the elastic amplitudes a(s, b,) are related to the amplitude in s, t representation f(s, t) 

in the following way 

a(~,bt) = & /dzg, .dbt,qt) fcslt = vg;) ; (2.1) 

f(s, t = -4:) = ; / d’bt e-i(btsqt) a(s, b,) 

2.) S-channel unitarity gives the relation between a(s, b,) and Gi,(s,b,), where 

Gi,,(s, b,) is the contribution of all inelastic interactions to the imaginary part of 

the elastic amplitude. Thus, unitarity says 

2ima(J,bt) = / a(J,bt) 1’ + Gin(s,bt) . (2.2) 

3.) All observables can be rewritten through ~(8, b,), f(~, b,) and Gin($,br) in the 

following form. 

ut,,t = 2n d-‘bt Ima(s, b,); 
I 

ui, = 77 
/ 

d% Ga(s,b,); 

ueI = x d2bt 1 a(a,bt) Ia; 
/ 

ut.t = UC1 + %I ; 

dtOt = 4~sf(s, t = 0) (optical theorem) . 

(2.3) 

4,) At high energy assuming that a(a,bt) is mostly imaginary we can introduce 

function g(d, b,) as 

a(s,bt) = i(l- s(+bt)) (2.4) 

In eq. (2.4) g(a, bt) is real and has a very simple physical meaning, namely gZ(a, bt) is 
the probability that the hadron does not interact inelastically. Indeed, directly from 
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unitarity constraint of eq.(2.2) we can see that 

Gin(a,bt) = 1 - g’(s,bt) (2.5) 

so G;,(sbr) is the probability of an inelastic interaction while gs is just the probability 

that the hadron penetrates through the target without inelastic interaction. 

5.) In the eikonal model 
gz(s, b,) = ,-“(*,*I) (2.6) 

and Bjorken in his calculation used 

fi(a,b,) = Y ,-&I (2.7) 

It is easy to check that eq(2.6) gives usual formula for the eikonal description of the 

rescattering processes in hadron-hadron interaction ( for a couple of recent papers 

see ref.l’l), 

We have prepared all ingredients to get Bjorken’s formula for < Ss > but we need 

to rewrite the formula of eq. (1.1) for our inclusive cross section in bt representation. 

For this purpose let introduce the function q(b,, q’, z) such that 

d(z, q’) = / d’btg(bt, q’,“) (24 

We also can consider our hard Higgs production process to be located at very small 

value of bt Indeed, just from uncertainty principle bt w l/pit in our process, but for 

Higgs production pit u pat - Mw. So, the typical value of bt for our hard process 

turns to be very small. Finally 

fh, Y, AY) = (2.9) 

=I *(=I, q:,, b:) d2qwnw~(b: - by, Ay) ‘T’(zg,ql’,, br - b:‘) d’qz,d’b; d’b; = 

= 
I g(+~, drr b:) @at g(mqa, (bt - b:)‘) d*qmard(O, Ay) d’b: 

Using eq. (2.9), we can write down the expression for < Ss >, that is equal to 

< sa >= / s’(d,bl)f(btrY,AY)dlbt 

I Pa, Y, AY) da4 
(2.10) 
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Using eikonal approximation for gs(s, bf) (see eqs. (2.6) and (2.7) ) and assuming 

that 

f(b,,Y,Ay)) = &e-s , (2.11) 

the formula of eq. (2.10) can be reduced to Bjorken formula (see ref. [I]). It should 

be stressed that Ri in eq. (2,lO) is responsible for t dependence of the deep inelastic 

structure functions ( 4 ) in eq. (1.1) and it does not depend on energy in the Leading 

Log Approximation ( LLA ) of perturbative QCD. 

The simplest way to understand the physical meaning of eq. (2.5) ( or eq. (2.6)) 

is to consider the hadron-hadron i,nteraction in the parton model in lab frame where 

one ofthe colliding hadrons is at rest. (Bee Fig. 4.). 

R(a,bt) describes the probability of interaction of one wee parton coming from one 

“ ladder” ( Fig. 4 ) with the target. Thus eq. (2.6) gives the probability that the 

incoming hadron does not interact with the target via the exchange of one “ladder” ( 

or in other words via the exchange of one Pomeron). Now it is clear that eq.(2.5) and 

(2.6) cannot be justified since we have no arguments why more complicated diagrams 

(see Fig. 5 for example) do not contribute to the expression for g*(s, b,). However a 

hadron-hadron collision is not a good laboratory to study true structure of the parton 

cascade and the generalization of formulas (2.5) and (2.6). Unfortunately we have no 

theory to describe hadron-hadron interaction with guaranteed theoretical accuracy 

and we u8e a model approaches to discuss so caIled “soft” hadron physics. That is the 

reason why I prefer to switch to the deeply inelastic process for a generalization of 

Bjorken’s formula (see eqs. (2.5) (2.6)(2.10) and (2.11); here we can use QCD as the 

theory of the parton cascade and we can arrive at a definite conclusion with respect 

to the survival probability of the large rapidity gap. 

III. The survival probability in deep inelastic scattering 

1.) The structure of the parton cascade in QCD. 

In deeply inelastic scattering the structure of the parton cascade is described by 

function b(y = lnl/zn,qz) (see eq. (1.2)) that gives the number of partons with 
y = In l/+n and r = In q’/A*, in the area of the order of l/qa in the transverse phase. 

In other words 4 is just the number of partons with fixed y and T that can interact 
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with the virtual probe. 

The evolution equation for 4 in the region of small zg looks as follows WI: 

WY,d = Nca. 

fJY 7r J 
jqq’ qll) #(y qo) 84 

9 ( t x .{I - a$y:) } (3.1) 

where & = $-R’ ( see ref. [*I for details). and K(q’, q”) is the kernel of the BFLK 

- equation LoI: 

K(qZ, d’M(Y,PZ) = 
4(Y,P) #4Y, qZ) 

(P - P’X - (4 - MqF + (Q - Q’X). 
(3.2) 

The GLR equation (3.1) sums up so called “fan” diagrams (see Fig. 6). and takes 

into account the recombination of gluon an well an their emission. (see refsN1 for 

details). 

For our purposes, to get the survival probability of the large rapidity gap we have 

to rewrite GLR equation (3.1) in the bt - representation a8 has been discussed above. 

It was shown in refs.12J] that in the leading log & approximation of perturbative QCD 

the kernel of the evolution equation and the splitting functions that describe the triple 

ladder vextex 7 ( see Fig. 6) do not depend on the momentum transferred along the 

ladders, or in other words can be considered as 6 - function in b,-representation. It 

means that function ‘J!(bt, ZB, q2) could be rewritten as 

Wt,w,q’) = 4(w,q*)F(bt) 

with the normalization constraint 

(3.3) 

(3.4) 

In the LLA we can even claim that 

/ 
d’bt ei(Qt-bt) F(b,) = G(Q:) (3.5) 

where G(Q:) is the electromagnetic form factor of a hadron and Q1 is the momentum 

transferred along the single “ladder”. 
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2.) The evolution equation in bt 

Now we are easily able to obtain the evolution equation in b, which sums the 

“fan” diagrams if we look at Fig. 7. Fig. 7 shows the main properties of the “fan” 

diagrams with respect to dependence on bt in the LLA of perturbative QCD. Taking 

into account the factorization of function 4 in bt and (y,r) we can easily write down 

the equation: 

@Wt;y,q2) = a.N, 
aY a J K(n”,q’) . ‘Wt,yt q*) 

(1 - ~W+‘(bt,v> q’)) (34 

where Qs = 3 and function M(b,) is normalized in such a way that 

I d%F’(bt)M(bt) = & , (3.7) 

where R’ is the same radius as in eq. (1.1) ( see also ref. [B]). It is more convenient to 

rewrite eq. (3.6) introducing a slightly different function 

Wt;y,q’) = $(W’(b:;w?) (34 

so that for $ the equation has the form: 

a@(bt;y, n’) dJ, 
= - 

aY 7r I 
K(q1,q’a)S(br;y,q’)~(1-~.(bt;Yrq3)) (3.9) 

This form of the evolution equation looks much more transparent because it is clear 

that 1 is the unitarity limit for a. Namely, $ haa the simple physical interpretation 

of a probability, that could be smaller or equal to 1. The differential form of eq. (3.9) 

also has a very simple physical meaning and reflects the fact that each parton can 

interact with the other emitting it’s own parton branch as it is shown on Fig. 6. 
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It means that s-channel unitarity constraint of eq. (2.2) could be rewritten in 

terms of g in the following way. 

2@(bt;y*$) = l~(bt;y,q2)12 + Gin(btiy,q*) * (3.10) 

If we introduce the probability (gf,,(bt,y,qZ) that the parton with fixed y and qz 

does not interact with the target as 

Gin(bt;Yt$) = 1 - gTn(bt;Yj$) 

we can see from eq.(3.11) that 

(3.11) 

1 
gin = { 1 - G(bt; y,d) }’ . (3.12) 

9.) The equation for the ~~urviual of large rapidity gap. 

Due to simple structure of the parton cascade that is reduced to the “fan ” dia- 

grams of Fig. 6 we can easily find the probability for the large rapidity gap in deeply 

inelastic scattering. For this purpose we need an equation such that it takes into 

account the fact that the parton with y > yi do not interact inelastically with the 

parton with y < ys (see fig.8). Using eq. (3.12) we can write the following equation 

for the function ( see eq. (2.10)) 

< sa > 
I d%f(bt, u, Ay) = F(b,; y, Ay, 4’) : 

F(bt; Y; Ay, $1 = (3.13) 

a,N, y 
= Wt;y~,Av,q’) + - / ~ yl 

dv’dPK(q, q’)Wr; Y’, AY, q” . d,,(q’, Y’) 

Substituting eq. (3.12) in eq. (3.13) we get finally 

&NC 
F(bt; r, Ay, 8) = F(bt, n, Ay, 9”) + 7 / W /’ dy’K(n’, 4’) 

“1 

F(bt, y’, Ay, d-%1 - W:, y’t q2)la 

where the nonintegral term is equal to 

F(bt,Y,Ay,n”) = f(b:;y1,&tq’) ~s.?,(b:,yd 

= f(b:,yl,Ay,q’)il - W:,d12 

(3.14) 

(3.15) 
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and it plays a role of the initial condition for the differential equation 

dF(bt,y,Ayiq’) aJ’c 
4 

= - K(q2,q’a)F(bt,y,Ay,q’*~{ 1 - Q(bt,y,q’))’ (3.16) 
x J 

4 ). The solution. 

Eq. (3.16) can be solved using semi-classical approach (see refs.l’.tO)) in which we 

are trying to find a solution in the form 

F(bt,y,Ay,qZ) = f(bf) . ewyvk’ (3.17) 

where wh,wi(kh,b:) < w(mk). Whithin the semi-classical approximation we can use 

the property of the kernel K(q’, q”), namely 

/ K(q’, q”)(q’Tk = 4k)(q’)-k (3.18) 

wherea = 2S’(l) - g(k) - Y(l- k) and P(k) = v( (r(k) is the Euler gamma 

function) substituting eq. (3.17) and taking into account eq. (3.18) we reduce eq. (3.16) 

to the form 
dF(bt,y,&,q’) a.Ne 

Fdy 
= y~(k)(l - @(by, $)I’ 

while the evolution equation in the semiclassical approach looks like 

d$ a.N, 
G = -$k){ 1 - % y, q’)l 

Comparing eqsJ3.19) and (3.20) we see that 

1 dF d@ d9 -- 
F dy =a-&. 

(3.19) 

(3.20) 

(3.21) 

From eq. (3.21) we can easily reconstruct the solution of eq. (3.14) with the initial 

conditions (3.15). The answer is 

F(b:,y,&,q’) = F(b:,yl,&,q*). - ‘(y, bt) ,-%t.b,)+*(u,,b,) . 
‘%,bt) 

(3.22) 

From eq. (3.22) we can get the formula for < Ss z dividing eq. (3.22) by the expression 

for the inclusive production of Higgs boson which is shown in Fig. 9. 
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Finally 

1 

< sa ’ = cbLLA(Y - Yl,?) . 

I 
&,, . ~(6,) f(y,*d ,-~(v.b,.~‘)+t(Y~,bc,~‘) , 

@(Yrrbt,?) 
(3.23) 

where 

T(b,) = / d’b:F(bt - b:)F(b;) . 

F(b,) was introduced in eq. (3.3). From the dipole formula for electromagnetic form 

factor of the proton we obtain that 

TV4 = ~msb:Ks(mbt) . 

if 

G(t) = i1 +l$]’ . 

&LA is the solution of the linear evolution equation,namely eq.(3.9) ( jt = @‘(be)) 

without the nonlinear term. This contribution appears in eq. (3.23) since in the 

expression for the inclusive cross section all shadowing corrections between partons 

with y > yt and with I( < yl cancel due to AGK - cutting rules. 

5.) bt - dependence of $. 

To complete the discussion of the rapidity gap in the deep inelastic scattering 

we need to know the bt - dependence of the structure function %. Eq(3.9) contains 

no explicit dependence on b,. It means that the whole dependence on bt originates 

from the initial condition or, better said, from the matching procedure with the 

solution of the linear evolution equation. The solution of such a kind of nonlinear 

equation a.s eq.(3.9) has been discussed in ref.l”l and the method developed there can 

be easily generalized for eq. (3.9). However we prefer to use here the semi-classical 

approach,developed for this equation in refs. lzJO] to illustrate all properties of the 

solution and the matching procedure in an explicit way. 

To simplify the algebra we also prefer to solve the equation in Double Log Ap- 

proximation ( DLA) in which the kernel a(k) has a very simple form 
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(see ref.[“] for details). Using the general approach of ref.[ll] we can rewrite eq.(3.9) 

in the form: 
dlG(bt, t) = dWt,t) 

dtl dt 
- $1 - sr] , (3.24) 

introducing new variable 

t = 4Nca, 
,-(Y - Yo) -(r - TO), 

where y = ln( l/zg) and r = ln(qs/A’). We al so neglected the dependence of a, on T 
for simplicity. 

For the solution of eq. (3.24) in the semi-classical approach we make the ansats: 

Q = ,“W) . (3.26) 

Assuming that n(b,, t) is a smooth function of t ( $$ < ($)’ ) we can calculate 

If53 
dtl 

= [$laen 

and obtain a simple equation for Cl: 

& - $! + j = ie”. 

This equation can easily be solved: 

’ = [l + Cibt)e-*j’ ’ 

(3.27) 

(3.28) 

The matching procedure goes as follows: 

1. At t + 0 rfr should be equal to 

@‘(bt,q’,a) = zM(bt)J’(bt) . hA(w, q’) , 

where +~LLA is the solution of the linear GLAP evolution equation f’s]. 

2.At t = 0 ELLA = 1. So one can find C(b,) from eq(3.19). 

(3.29) 

C(4) = 2[M(b,)F(bJ]-4 - 1 . (3.30) 
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Unfortunately we do not know anything about M(b,) except eq.(3.8). However we 

can consider two limiting cases: 

1. Rs in eq. (3.8) is the radius of a hadron. It means that gluons are uniformly 

distributed in the whole hadron disc. It seems natural to assume that M(b,) is 

Ccmst(bt). Thus 

C(h) = (3.31) 

For the nucleon F(bt) is given by 

F(h) = $hl(mbt) , 

from the dipole formula for the electromagnetic form factor of the proton. At 

large bt F(b,) + ezp(-mbt) so C(b,) a ezp[(m&)/2]. 

From eq.(3.18) we see that @ is of C( 1) in this case only if 

mbt c it = +(y -yo) - ;(T -To). (3.32) 

Thus the eq. (3.18) gives us the typical picture of the black disc for a hadron when 

y + 00. It should be stressed that eq. (3.18) with C(b,) from eq. (3.21) leads to a 

distribution over bt which is quite different from the eikonai formula (see eqs. (2.10) 

and (2.11)). 

2. R’ in eq(3.7) is small( R - O.lFm). It means that we assume the picture of a 

hadron with two radii: radius of the hadron (Rh N 1Fm) and radius of the constituent 

quark (RQ w O.lFm). The gluons are confined in the disc with the smallest radius. 

In this case 
M(b,) = FP($-)F-z($) . (3.33) 

We do not know the exact form of FQ but assuming the same dipole formula as for 

proton form factor but with typical mass M larger that m ( m 0~ & > m o( k we 

C(b) = (3.34) 

and for large bt we have 

C(b,) M-nb( , ae 1 (3.35) 



-13- FERMILAB-Pub-93/012-T 

which gives us the same asymptotic behaviuor of the interaction radius as in the 

previous case. 

Looking at eq. (3.18) we can even conclude that our matching procedure can be 

reduced to the statement, that our solution is the solution for the function 4 (see eq. 

(3.1) ) which depends on new variable 

t(b,) = t - 41n( 

In particular, the correct solution of the problem is 

G= &+tW$) , 

(3.36) 

where =.a1 is described in ref.[ll]. 

Eq. (3.28) gives the full answer to the question what is the b, - dependence of the 

deep inelastic structure function assuming: 

1. the GLR evolution equation (eqs. (3.1 ) and (3.8) in the whole kinematic 

region of y and r. 

2. the S - function in b, for the kernel and vertices in the LLA of perturbative 

QCD. 

More detail analysis of possible improvements of the answer should include the 

random walk of the partons in bl. The first attempt was made in ref. 113) but much 

more work is needed to obtain deeper understanding of this problem. 

IV. Conclusions. 

The main result of the paper is formula (3.23) for the survival probability of the 

large rapidity gap in deeply inelastic scattering. Let me stress several points that 

could be instructive for further development of large rapidity gap physics in hadron 

- hadron collisions. 

1. Eq. (3.23) is quite different from the Bjorken formula obtained in the eikonal 

approximation. It is very important for the origin of this difference to be absolutely 

transparent,namely: the correct formula takes into account the absence of the inelastic 

interaction between partons with y > yt and y < ys, while Bjorken formula simplifies 
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the situation and replaces such a probability by the probability that a wee parton 

does not interact with the target inelastically. 

2.Eq. (3.23) was obtained assuming that the GLR evolution equation (eqs. (3.1) 

and (3.9) ) is valid in the whole kinematic region of deeply inelastic scattering. IN 

fact the GLR is only proven in the restricted kinematic region where 9 is still small 

( @ cx a, ). So we can trust the result only for sufficiently smalI values of $. 

3, Eq. (3.23) could be considered as the simplest case, since the real structure of 

the parton cascade looks much more complicated. 
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Figure Captions. 

Fig. 1: The process of Higgs boson production in hadron - hadron collisions. 

F;S. .t? Lego -plot for the structure of the inelastic event for Higgs boson 
production in hadron - hadron collisions. 

Fig. 9: The parton - parton interaction inside the parton cascade 

for Higgs boson production in hadron - hadron collisions. 

Fig. 4: The structure of the parton cascade related to the eikonal approximation. 

Fig. 5: The space - time picture of the parton cascade in hadron - hadron 

collisions in lab. frame. 

Fig. 6: The structure of the parton cascade in deeply inelastic scattering. 

Fig. 7: The equation for ‘Z’(bt,y,qs). 

Fig. 8: Graphical representation of the equation for the sum of “fan” diagrams 

for Higgs boson production in deep inelastic scattering. 

Fig. 9: The inclusive cross section for Higgs boson production 

in deeply inelastic scattering. 
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