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I. Introduction
The Big Bang model predicts the evolution of a homogeneous and isotropic universe.

The con�rmation of its predictions (e.g. the 3K Planck spectrum of the microwave back-
ground, the primordial abundances of 4He, 3He, D, and 7Li from Big Bang Nucleosyn-
thesis, and the number of light neutrino species) is stunning. One is led to question why
the universe can be described so well by a homogeneous and isotropic model.

In
ation can provide the answer to this question. It occurs when a scalar �eld � has
non-zero potential energy V (�) which dominates the energy density of the universe.1;2 The
key ingredients to all models are that the universe expands superluminally during in
ation
and that there is massive entropy generation afterward. If the universe increases at least
1027 times its original size, the 
atness and horizon problems are solved; the universe is
dynamically driven to homogeneity and isotropy. The most interesting class of models is
�rst-order in
ation. Here, the scalar �eld is trapped in the false vacuum state of a strongly
�rst-order potential. Bubbles of true vacuum are nucleated at di�erent spacetime points,
and the end of in
ation occurs when the universe is �lled with true-vacuum bubbles of
varying sizes. The original model, Guth's \old in
ation",1 does not work because it fails
to percolate (�ll) the universe with true-vacuum bubbles. More recent models of �rst-
order in
ation which modify the gravitational or particle sector (e.g. \extended in
ation"
3) are promising as early-universe in
ationary scenarios. Because the universe expands
as a power-law in time rather than exponentially, percolation is guaranteed to occur.

The end of in
ation occurs when true-vacuum bubbles of di�erent sizes �ll all of
space. A confusing mess of scalar �eld dynamics then occurs as the bubbles collide.4

Because all the energy is contained in the bubble walls, reheat occurs when the �-�eld
gradient energy is converted into locally thermal radiation. After reheat, the standard
homogeneous and isotropic Big Bang model describes the evolution of that part of the
universe that had contained horizon-sized bubbles, since these would have been ther-
malized during reheat. The very large superhorizon-sized bubbles (which were nucleated
early on during in
ation), however, have traditionally been a problem.5 After the �-�eld
in the bubble wall decays to relativistic particles, a nearly empty void is formed. Since
these voids are much larger than the Hubble radius outside the void, it has been thought
that the inside of the largest superhorizon-sized voids would remain empty until after
recombination, thus producing unobserved temperature 
uctuations of order unity in
the microwave background.6;7;8 The longevity of these voids follows from assuming that
a superhorizon-sized void expands conformally with spacetime.6;8 The earliest time at
which thermalization could occur would then be when the Hubble radius outside the
void is of order the size of the void, since this is the expected 1st-crossing time (i.e. the
time for photons originally in the void wall to reach the origin). If the void has comoving
size r0, this occurs in time �t = t� ti ' H�1

out(ti)(c
�1Rwall(ti)=H

�1
out(ti))

2, where the initial
void radius is Rwall(ti) � r0a(ti), cH

�1
out(ti) is the Hubble radius outside the void, a(t) is

the cosmic scale factor and ti is the cosmic time after reheating. Other authors suggest
that the void would �ll in with radiation, but this is estimated to occur on similar time
scales.9 Because of this \big bubble problem", �rst-order in
ation models are �ne-tuned
in order to keep the production of large bubbles at a minimum. 6;8;9

Motivated by the �rst-order (e.g. extended) in
ation \big-bubble problem", we
present numerical studies of the evolution of a superhorizon-sized general relativistic void
embedded in a Friedmann-Robertson-Walker universe. Although pressureless and thin-
shell superhorizon-sized voids have been studied in the past,10;11 this is the �rst study of
general relativistic voids with pressure and of arbitrary size and void wall structure. We
emphasize that our results are not dependent on any particular in
ation model. These
new simulations show that opposite sides of a superhorizon-sized relativistic void interact
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in a very short cosmic time, thereby suggesting that these voids can also thermalize and
homogenize on short time scales.

In Section II, we discuss the general relativistic spherically symmetric metric in La-
grangian gauge and synchronous coordinates, and present the equations to be solved
numerically. In Section III, the initial conditions, boundary conditions and numerical
techniques used are described. In addition, remarks about the deceleration of a void wall
are made. In Section IV, we derive the surprising result that the 1st-crossing time of
a superhorizon-sized general relativistic void can be vanishingly short. Section V con-
tains numerical solutions for pressureless dust and comparisons to exact Tolman-Bondi
solutions. A test of the code for the relativistic Friedmann-Robertson-Walker solution is
presented in Section VI. The numerical evolution of nonrelativistic, special relativistic,
and general relativistic voids with pressure is examined in Section VII. Here it is found
that a relativistic superhorizon-sized void collapses in the form of a strong shock moving
at the speed of light. Thus, the collapse time is approximately the 1st-crossing time.
Finally, Section VIII contains a discussion of the results.

II. Spherically Symmetric General Relativistic Fluids
A. The (Lagrangian) Metric

The most general spherically symmetric metric is12

ds2 = c2l(t; r)dt2 + a(t; r)drdt+ h(t; r)dr2 + k(t; r)d
2; (2.1)

where d
2 = d�2 + sin2 �d 2 and c is the speed of light. To this metric we can apply
general transformations of the type t = f1(t0; r0) and r = f2(t0; r0) without altering the
spherical symmetry. If we perform the necessary transformations to eliminate the drdt
term, then Eq. (2:1) can be written as

ds2 = �c2�2(t; r)dt2 + �2(t; r)dr2 +R2(t; r)d
2; (2.2)

where we have dropped the primes, and where we require our coordinates to be comoving
with the 
uid. At time t, the metric function R(t; r) is the Eulerian distance that a 
uid
shell labeled by r is located from the center of coordinates. More precisely, 2�R(t; r) is
the spacelike circumference of a sphere centered on the origin which contains all particles
with comoving coordinate r. We have thus chosen the Lagrangian gauge with synchronous
coordinates (Gaussian normal coordinates). Transformations of the form et = f(t) ander = g(r) can still be made. This metric was �rst used to study the general relativistic
collapse of stars to black holes or neutron stars during supernovae.13;14

It is very important in numerical general relativity to carefully choose the appropri-
ate gauge and coordinates to best match the physical problem to be studied, We have
thus speci�cally chosen the Lagrangian gauge and synchronous coordinates to evolve a
general relativistic void embedded in an expanding Friedmann-Robertson-Walker (FRW)
universe. In the Lagrangian gauge, we gain maximal coverage of the 
uid in a numerical
scheme. This is important since the void is embedded in an expanding universe, so that
we would continuously lose mass shells in a Eulerian scheme. In addition, the �nal re-
sults are much more easily relatable to our own approximately FRW homogeneous and
isotropic universe. We note that asynchronous coordinates could instead be used with
the Lagrangian gauge. However, here time and space are mixed up so that the region
outside a void is no longer spatially homogeneous|the necessary initial conditions are
not obvious and would need to be determined using comoving synchronous coordinates
to initially set up and evolve the void. Asynchronous slicing of space-time (e.g. polar
slicing15) is usually used numerically to study the collapse of a star to a black hole in
a 
at non-expanding universe. These coordinates are necessary to study the physically
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interesting mass zones outside the apparent horizon after a mass shell has crossed this
horizon. (In synchronous coordinates, once a mass shell crosses the apparent horizon,
numerical integration stops so that the evolution of the mass shells outside this horizon
cannot be studied). Since we are evolving an underdense region here and do not expect
apparent horizons to form, we do not need to resort to these coordinates.

Because we wish to embed a void in a FRW universe, we now relate the metric
functions from Eqn(2.2) to those from the familiar FRW metric:

ds2 = �c2dt2 + a(t)2
 

dr2

1� kr2=c2
+ r2d
2

!
; (2.3)

where a(t) is the cosmic scale factor, and k is �1, 0 or 1 for negative, zero and positive
spatial curvature, respectively. The solutions describe a universe which is homogeneous
and isotropic on each time slice.2 For the FRWmetric then, � = 1, � = a(t)=

p
1 � kc�2r2

and the Eulerian distance is R(t) = ra(t).
In this paper, the particles are assumed to be everywhere in local thermal equilibrium,

so that we can describe them as a 
uid. The stress-energy tensor for a viscous 
uid with
energy density � and pressure p (measured in the frame of the 
uid) is b

T �� = �u�u� + pP �� � 2���� � 3��P �� (2.4)

where u� is the 
uid 4�velocity, P �� = u�u� + g�� is the projection operator, ��� =
1=2 (r�u

�P ��+r�u
�P ��)�1=3 �P �� is the shear viscosity tensor, � = r�u

� is the 
uid
expansion coeÆcient, and � and � are arbitrary functions of r and t. If � = � = 0, the 
uid
is non-viscous. For Eqn(2:2) with comoving 
uid 4-velocity u� = (���1; 0; 0; 0), �rr = �

and ��� = � 
 = �1=2 �, where � � 2=3 ( _�=� � U=R), and � = _�=� + 2U=R. (For

the FRW metric, � = 0 and � = 3_a=a). The stress tensor is diagonal, with components
Tt
t = ��, Trr = (p���)�2��, and T�

� = T 
 = (p���)+��. We will employ a scalar

arti�cial viscosity, Q, so that � = 0 and �� = �Q, where Q will be signi�cantly non-zero
only in areas of steep \velocity" gradients, as in a shock. This is essential for stabilizing
numerical shocks, as is well known.16 This viscosity will dissipate enough energy on small
scales so that the numerical solution approaches the exact solution in the limit that the
grid spacing approaches zero.

B. Fluids composed of massless particles
If a 
uid consists of (e�ectively)massless, locally thermalized particles, we can relate p

to � through the equation of state p = p(�). For photons (or particles with mass � having
local temperatures T � �), p = �=3. 2;17 Setting R�

� � g�
�R = 8�GNT�

�, where R�
�

is the Ricci tensor and GN is Newton's constant, and using the conservation equations
r�T

�� = 0, �ve independent equations are found: G0
0 = T0

0; G1
1 = T1

1; G0
1 =

T0
1; T 0�

;� = 0; and T 1�
;� = 0. We de�ne

� � R0=�; (2.5)

M 0 � 4�c�2�R2R0 (2.6)

and U � ��1(@R=@t), where the prime denotes di�erentiation with respect to r. The
general relativistic equations can be written

_R = �U (2.7)

bWe set c = 1 for the rest of this subsection
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; _U = ��
 
GNM

R2
+
4�GN(p +Q)R

c2

!
� c2�2�(p+Q)0

(�+ p+Q)R0
(2.8)

_M = �4�(p+Q)R2�U=c2 (2.9)

_� = ��(�+ p +Q)
(R2U)0

R2R0
(2.10)

�0 = �� (p+Q)0

�+ p +Q
(2.11)

�2 � 1 + (U=c)2 � 2GNM=(Rc2); (2.12)

where the dot denotes di�erentiation with respect to t, and where we have included an
alternate de�nition for �. There is also the auxiliary equation: _� = ��U 0=R.

The quantity U � _R=� describes a particle's \velocity" as measured in the frame of
the 
uid, since for dr = d� = d = 0, the in�nitesimal proper time that each observer
measures is d� =

p�ds2 = c�dt. For GN = 0, if a particle has velocity v, then

� = 1=
q
1 � (v=c)2 and U = �v (see Eqn (C.9)); � and U represent the two non-trivial

components of the 4-velocity of the 
uid. If �� 1, then U=c ' � and the 
uid is moving
at relativistic velocities relative to a stationary observer.

We can rewrite Eqn (2.6) in terms of the proper volume element d3V = 4�R2�dr =
4�R2R0dr=�. The \mass-energy" function M then becomes

M(t; r) = c�2
Z
d3V ��: (2.13)

For GN = 0, because the volume along the radial direction is Lorentz-contracted by the

factor 1=
q
1� (v=c)2 = � and � is the energy density measured in the frame of the


uid, �� is just the energy density of a 
uid parcel as measured by a stationary observer.
Therefore, M(r; t) is just the total \mass-energy" contained within comoving coordinate
r at time t.

To better understand these equations, we relate them to the FRW equations. Recall

the FRW results following Eqn (2.3): � = 1, R = ra and � = a=
q
1 � kr2=c2. From

Eqn(2.7), the \velocity" is U = _R = r _a. Since R0 = a(t), � =
q
1� kr2=c2 from

Eqn(2.5). For a spatially 
at (k = 0) FRW model then, � = 1 even though the 
uid at
R is moving away from the origin with velocity U . Thus in general relativity, � in not
the relativistic gamma-factor of the 
uid with respect to the origin. Using the fact that
M = 4�c�2�R3=3, we see that Eqn (2.12) is just Friedmann's equation, H2 = (_a=a)2 =
8�GNc

�2�=3 � kc2=a2, with H � ��1 _a=a = U=R.

In a spatially 
at FRW universe then, U = c�1R
q
8�GN�=3 =

q
2GNM=R. If we

set U � UGRAV + UPEC, where UGRAV � 2GNM=R is the gravitational velocity and
UPEC is the peculiar velocity, � can be expressed in terms of these velocities: �2 =
1 + (UPEC=c)2 + 2UPECUGRAV=c2.

For a non-viscous 
uid with p = (
 � 1)�, Eqn(2.11) (the conservation of momen-
tum equation, T �1;� = 0) can be integrated exactly to give �(t; r2) = �(t; r1)[�(t; r1)=

�(t; r2)](
�1)=
. We are interested in evolving a void embedded in a FRW homogeneous
and isotropic universe, so that p0 = �0 = 0 outside the void. We de�ne �out and �out
to be the spatially constant values of � and � outside the void. (In what follows, the
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subscripts \in" and \out" represent the spatially constant values inside and outside the
evolving void region, respectively). Taking 
 = 4=3, we �nd

� = �out

 
�out
�

!1=4
: (2.14)

The fact that this equation can be solved exactly is important for calculating the 1st-
crossing time for general relativistic voids, as will be discussed in Section IV.

To gain some physical insight into �, we calculate the potential energy of a 
uid
distribution. A comoving observer has dr = d� = d = 0, so that the proper acceleration
measured by this observer is ar = ��1 _U . Since the force is radial, we can write ar =�@�=@R, where � is the potential. Using Eqn(2.8) and integrating, we can write the
potential as the following sum: �(t; R) = �GRAV(t; R) + �FLUID(t; R), where

�GRAV = 4�GN

Z R

0

h
M=R2 + c�2pR

i
dR (2.15)

�FLUID =
Z R

0
c2�2dp = (�+ p) (2.16)

for Q = 0. For a void with p = �=3, we obtain the usual gravitational potential
�GRAV ' 4�GN�inR

2=3 = GNM=R inside the void, and �GRAV ' 4�GN�outR
2=3 '

GNM=R outside. If in addition we choose �(ti; R) = 1 initially, then �FLUID(ti) =
ln[ �(ti; R)=�in(ti) ]1=4 = � ln[ �(ti; R)=�in(ti) ]. (Note that the contribution to the 
uid
potential is zero inside, but (potentially much) greater than zero outside the void. Thus
it can substantially increase the already large potential outside the void). Therefore, �
is proportional to the exponential of the 
uid potential, �FLUID.

C. Fluids composed of massive particles
Suppose instead we consider a 
uid which consists of particles of mass � and with

arbitrary temperature T . Then, the total energy density of the 
uid is the mass energy
density plus the internal energy density. Denoting the (proper) mass density (� times
the number density) by n(t; r) and the internal energy per unit mass by �(t; r),

� = c2n(1 + �=c2): (2.17)

Here we have traded one unknown for two because in general the pressure depends not
only on � but also on n. For a 
uid composed of relativistic (nonrelativistic) particles,
�=c2 > 1 (�=c2 < 1). If the 
uid obeys the perfect gas law, then its pressure is

p = (
 � 1)n�: (2.18)

For a highly relativistic species with 
 = 4=3, the energy density is three times the
pressure: � = n� = p=(
 � 1) = 3p, whereas for a highly nonrelativistic 
uid, the energy
density is much larger than the pressure: � ' nc2 = p=[(
 � 1)�=c2] � p. We assume
that the total number of particles per comoving volume is constant: r�(nu�) = 0. 19

Using Eqn(2.5), this can be integrated to give

f(r) = 4�nR2R0=� (2.19)

� r2 (2.20)

where f(r) is an arbitrary function depending only on the coordinate r. Specifying f(r)
completely �xes the arbitrariness of the metric functions under transformations in r (as
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discussed after Eqn (2.2)). This particular de�nition for f is necessary in order to write
the di�erence schemes in a geometrical way that allows shocks and explosions to be
numerically stable at the origin.16

We can now rewrite the full set of general relativistic equations ((2.7)-(2.12)) as13;14

_R = �U (2.21)

_U = ��
 
GNM

R2
+
4�GN (p+Q)R

c2

!
� 4���R2(p +Q)0

wr2
(2.22)

_M = �4�(p+Q)R2�U=c2 (2.23)

_n = �n�(R
2U)0

R2R0
(2.24)

_� = �4��(p +Q)(R2U)0

� r2
(2.25)

�0 = ��(p +Q)0

nwc2
; (2.26)

where � is given by Eqn(2.12) and w � 1 + (� + p=n)=c2 is the relativistic enthalpy.
Equations (2.21)-(2.26) (along with the de�nitions for � and w given in the previous
sentence) are the set used in the numerical code.c

When the kinetic energy of each particle is much less than its mass energy �=c2 � 1
(or T=�� 1), we obtain the nonrelativistic Lagrangian 
uid equations.21 (They can also
be obtained by setting c2 !1 in Eqns (2.21)-(2.26)). For future reference, in this limit
�! 1, �! 1, and w! 1 so that U = _R is the 
uid velocity,M(t; r) = r3=3 is the total
mass within r and n = r2=(R2R0) is the mass density.

The arti�cial viscosity used here is given by Equation (C.21), and is generalized from
the expression used by previous workers:22;14

Q = k2n(1 + �=(�c2))(U 0)2dr2= � for U0 < 0
Q = 0 otherwise: (2.27)

Consider the behavior of n and p in the limit that the entropy, S(t; r), within r is
conserved. Using the thermodynamic relation TdS = d(�=n) + pd(1=n), we �nd _� =
p _n=n2. Then, the pressure and internal energy for a shell labeled by r are related to their
initial values by p / n
 and � / p(
�1)=
. In the ultrarelativistic limit with 
 = 4=3,
n / �3=4 and � / �1=4. In addition, if the 
uid is a ploytrope (i.e. isentropic), S0 = 0.
Using TdS = d(�=n) + pd(1=n) again, we �nd the familiar result20

�(t; r1)

�(t; r2)
=

 
n(t; r1)

n(t; r2)

!
�1
=

 
p(t; r1)

p(t; r2)

!(
�1)=

: (2.28)

For ultrarelativistic 
uids, � = n� and therefore � / �(
�1)=
 and n / �1=
. If 
 = 4=3,
� / �1=4 and n / �3=4. This is the property of a relativistic 
uid, since then � / T 4 and
n / T 3.

cFor technical diÆculties in the general relativistic case, we determine M via the _M equation rather
than the M 0 equation. In addition, we determine n via the _n equation rather than through the analytical
solution n = �r2=(R2R0), because too much intrinsic viscosity is introduced for special relativistic voids
otherwise.
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D. Fluid Deceleration in the Void Wall
In this section we show that if the outward peculiar velocity of the wall of a general

relativistic void is very large, then the deceleration of this wall can be enormous. This
\damping force" is responsible for slowing down and collapsing a superhorizon-sized
void. Without this 
uid force, the void would expand (not collapse) from gravitational
forces(see V).

In section II-B, we saw that for special relativistic 
uids (GN = 0), U is the net
outward momentum per particle mass �. Similarly, if in the general relativistic case
U2 � U2

GRAV = 2GNM=R, the gravitational attraction inward is negligible and the
dynamics will be dominated by special relativistic e�ects; U can be loosely interpreted
as the peculiar momentum per particle per mass. If � � 1 and U > 0 in the wall of
a void, the wall moves outward with momentum much greater than the gravitational
attraction inward. We now investigate what happens to this wall. From Eqn (2.22), the
\conservation of momentum" equation is

nw��1 _U = �nw
 
GNM

R2
+
4�GN (p+Q)R

c2

!
� �2

(p +Q)0

R0
: (2.29)

The functions �, �, n, p, Q, M , w and R0 are always positive. If U > 0, then at the
inner edge of the void wall where (p + Q)0 > 0, _U will be negative|the 
uid there is
decelerated. This deceleration is due to both gravitational and 
uid forces. We examine
the 
uid force contribution only. Using Eqns (2.12), (2.6) and (2.22) we �nd that

_� = ��U�(p +Q)0

nwc2R0
: (2.30)

Again, if (p + Q)0 > 0 and U > 0, _� will be negative and the 
uid particles there lose
their energy per particle mass.

Suppose the wall has a very large outward momentumso that U=c�
q
2GNM=(Rc2) >

1. Then � ' U=c. Setting p = �=3 and Q = 0 as for a relativistic, non-viscous 
uid,

_� = ��2 ��
0

4�R0
' ��2 �

1=4
out �

0

4 �5=4 R0
; (2.31)

where we have used the solution for � from Eqn (2.14). We consider the deceleration of

uid shells at the inner edge of a steep void wall. We can write �0=R0 ' ��wall=�Rwall,
where ��wall is the di�erence in the energy density over the width of the wall, and �Rwall
is the thickness of the wall. Then, since ��wall ' �max, where �max is the maximum wall
energy density, we can approximate _� by

_� ' ��2

4

 
�out�

4
max

�5

!1=4
�Rwall

�1: (2.32)

Initially, except for the �rst factor of �2, all factors on the right hand side of the previous
equation are independent of �. Thus, _� / ��2, which can be a very large damping
factor! The second factor is proportional to �out�4max=�

5 � (�out=�)5, so for the mass
shells on the innermost part of the wall (i.e. those shells with the smallest values of
�=�out) this factor can be enormous. The third factor is �Rwall

�1, so the thinner the
wall, the faster it will slow down. If the second and third factors change slowly enough
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with time, then the slow-down time for the wall is roughly independent of its initial value
of �0, since �

R 1
�0
d�=�2 ' 1 >� (�out=�)5�Rwall

�1�t=4 for �0 � 1. This could be an
extremely important result, and would imply that the initial peculiar wall velocity could
never be large enough to cause a void to expand for an arbitrarily long time. However,
because the second and third factors in Eqn (2.32) will change with time and depend on
�, this is only a crude guess.

As a concluding remark, we note that the wall of a void formed during �rst-order
in
ation has an enormous outward peculiar velocity. This enormous velocity has been
thought to cause a void to expand \inde�nitely". However, with such a large deceleration
of the void wall, it will slow down in a �nite (and possibly small) amount of time. A
future paper will explore this numerically.34

III. Initial Conditions, Boundary Conditions, and Numerical Techniques
A. Initial Conditions

The grid used in this code is initially equally spaced: �R(ti) � R(ti)j+1 � R(ti)j =
constant, where the subscript j denotes the spatial grid point number and ranges from
j 2 [0; jB], where jB is its value at the outer boundary. (Note from Eqns (2.19) and
(2.20) that in general, �r 6= constant then). The 0th and 1st-grid points are located at
R0 = ��R(ti)=2 and R1 = �R(ti)=2 respectively. Thus, Rj(ti) = R1(ti)+(j�1)�R(ti).

The initial conditions for the functions at ti are determined as follows. The viscosity
is set to zero: Q(ti; R) = 0. The energy density �(ti; R) (or the \mass-energy" M(ti; R)),
the \velocity" U(ti; R) (or �(ti; R)) and the speci�c internal energy, �(ti; R), are chosen
as functions of the radius R(ti). (If M is speci�ed initially instead of �, we determine
� via Eqn. (2.6)). For the cases run in this paper however, we will initially specify the

uid to be a polytrope (constant entropy on the initial time slice (II-C)) and �=c2 � 1
or �=c2 � 1. Using the relations found at the end of Section II-C, �(ti; R) is determined
once the internal energy �(ti; RB) is speci�ed at the outer boundary (RB � R(ti)jB ):

�(ti; R) = �(ti; RB) [ �(ti; R)=�(ti; RB) ]
(
�1)=
 for �=c2 � 1

�(ti; R) = �(ti; RB) [ �(ti; R)=�(ti; RB) ]
(
�1) for �=c2 � 1 (3.1)

We then determine n and p by n(ti; R) = �(ti; R)=(1 + �(ti; R)) and p(ti; R) = (
 �
1)n(ti; R)�(ti; R) respectively. Next, we �nd r (and M if it is not initially speci�ed) by
integrating outward from r = 0 using the 4th-order Runge-Kutta method:

r =

 
3
Z R(ti;r)

0
4�nR2dR=�

!1=3
 
and M(ti; R) =

Z R

0
n(1 + �=c2)R2dR

!
; (3.2)

where we have omitted the (ti; R)'s for clarity. Finally, � is found by integrating
Eqn (2.26) inwards from the outer boundary (again using the 4th-order Runge-Kutta
method) once �(ti; RB) is speci�ed.

We are interested in evolving a non-expanding, empty void embedded in a FRW
universe. We will therefore initially set the energy density outside the void (�out �
�(ti; RB)) to be constant and equal to the spatially 
at FRW value. Then, H2

out(ti) �
H2(ti; RB) = (�=ti)2 = 8�GNc

�2�out(ti)=3, where aout(t) = a(ti)(t=ti)� is the cosmic scale
factor and cH�1

out is the Hubble radius outside the void. (Note that for the k = 0 FRW
universe, r = (4�n(ti))1=3R(ti; r), or a(ti) = (4�n(ti))�1=3). For p = �=3 and p = 0,
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� = 1=2 and � = 2=3 respectively. We can quantify the initial size of a void by measuring
its radius relative to the horizon size outside the void initially: c�1Rwall(ti)=H

�1
out(ti) =

c�1�Rwall(ti)=ti, where Rwall(ti) is the void \radius". Following past convention2, we
loosely equate the Hubble radius with the horizon in the phrase \superhorizon-sized".
(Horizon in this context is not to be confused with the particle horizon.) A void is de�ned
to be superhorizon-sized if c�1Rwall(ti)=H

�1
out(ti) > 1 and subhorizon-sized if c�1Rwall(ti)=

H�1
out(ti) < 1. In addition, �out(ti) = 1 (see II-B) (or U =

q
2GNM=R ) and �out(ti) � 1

(see II-A).
In this paper, we consider voids which are initially either compensated or uncompen-

sated in energy density and which have the following distributions. The \mass-energy"
function for compensated voids is de�ned to be

M(ti; R) = :5�out(ti) [(1 + tanhx) + �(1 � tanh x)]R3(ti)=3; (3.3)

where x � (R(ti)�Rwall(ti))=�Rwall(ti), �Rwall(ti) is the wall thickness and � is a spec-
i�ed constant less than or equal to 1. Because M reaches its spatially 
at FRW value
outside the void, the energy density missing from the void has been put in the wall. For
uncompensated voids, the energy density is instead initially speci�ed. It is

�(ti; R) = :5�out(ti)[(1 + tanh x) + �(1� tanh x)]: (3.4)

Here, the energy density missing from the void has not been put into the wall. Therefore,
the region outside a compensated void will always be a spatially 
at (k = 0) FRW
universe, whereas the region outside an uncompensated void is a negative spatially curved
(k < 0) FRW universe.

The inside of the void is chosen to be homogeneous initially. Since we want it to be
nonexpanding in the limit that it is empty (�! 0), we choose the inside of the void to be a
spatially 
at (k = 0) FRW \mini" universe. We reason as follows. Friedmann's equation
inside the void is H2

in ' 8�GNc
�2�in=3 � kc�2r2=R2 (see II-B), where the subscript `in'

denotes quantities inside the void, R = rain and Hin � Uin=R = ��1in _ain=ain. In the limit
that � ! 0, the inside of the void is non-expanding ( _ain = 0) only if k = 0. Since we
cannot numerically choose �in = 0 (because �in =1 from Eqn(2.14)), we would like the
inside of the void to not expand on time scales that the outside region expands in. This
is satis�ed if �in=�out � 1 because the Hubble time inside the void is much larger than

that outside the void| H�1
in =H

�1
out =

q
�out=�in. (As a check, Eqns. (2.22) and (2.25)

show that as U ! 0, � ! 0 and p ! 0, then _U ! 0 and _� ! 0). Because the void is
approximately homogeneous, the \mass-energy" inside the void isM(ti; R) ' c�2�inR

3=3.

Finally, we set �in(ti) = 1 inside the void since � =
q
1 � kr2=c2. The \velocity is then

U =
q
2GNM=R ' c�1R

q
8�GN�=3.

We will only consider two types of initial velocity pro�les in this paper. The �rst is

U = UGRAV =
q
2GNM=R (or �(ti; R) = 1). This speci�es that the outward \velocity"

of each particle is just large enough to compensate for the inward gravitational attraction
(i.e. the peculiar velocity, UPEC, is zero). The second is

U(ti; R) = c�1R
q
8�GN�=3: (3.5)

For R� Rwall(ti)��Rwall(ti) and R� Rwall(ti) +�Rwall(ti), � ' 1. In the wall region,
however, � > 1. This corresponds to an initial net outward \peculiar momentum" of the
particles in the wall.
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B. Boundary Conditions
We set the outer boundary conditions for all times to be those for a homogeneous


uid. This speci�cation works well in practice as long as the action is taking place
away from this boundary. Thus we set n0 = �0 = p0 = 0 and Q = 0 at j = jB, where
jB is the grid point number for the outermost comoving coordinate. In addition, we
set �jB (t) � 1, its FRW value (see Eqn (2.3). Note that specifying �jB (t) completely
eliminates the arbitrariness of the time coordinate, as discussed after Eqn (2.2). The
present de�nition sets t to be the FRW cosmic time outside the void. Thus if an initially
inhomogeneous 
uid becomes homogeneous, then from Eqn(2.26), �(t; r) = 1 everywhere,
and t = constant hypersurfaces correspond to t = constant FRW homogeneous and
isotropic hypersurfaces.

It is possible to determine the outer boundary conditions for all t by solving the
equations with Q = p0 = 0. One is then left with two 1st�order ordinary di�erential
equations to solve. The boundary conditions determined this way, however, give larger
errors than the ones shown below, and therefore were not used. We instead integrate

_R = U
_U = �

�
GNM=R2 + 4�GNpR=c

2
�

_M = �4� pR2U=c2: (3.6)

using the MacCormack method. We then determine n, � and p from Eqns (2.28) and

Eqn (2.18) by setting njB = njB�1, �jB = �jB (ti) [ njB (t)=njB (ti) ]

�1 and pjB = (
 �

1)njB�jB .
Finally, re
ecting boundary conditions are used at the inner boundary: Rn

0 = �Rn
1 ,

Un
0 = �Un

1 , p
n
0 = pn1 , n

n
0 = nn1 , �

n
0 = �n1 and Qn

0 = Qn
1 , where the superscript n refers to

values on the nth time slice.
C. Numerical Integration

The _U; _�; _R, _n and _M equations are integrated using the 2-step MacCormack
predictor-corrector method.23 In Appendix B, we give the exact form for the di�erence
equations which allows inbound shocks to rebound o� the origin. To illustrate the Mac-
Cormack method, we show the predictor and corrector steps for _n as an example. We
continue to use the convention that nij is the value of n on the jth spatial grid point and

at the ith time step. Suppose we know all quantities on the ith time slice. We would like
to determine them on the (i+ 1)th time slice. First we predict the new quantities (with
forward di�erencing) using the functional values on the ith time slice:

np
i+1
j = nij ��t nij�

i
j

Ri
j+1

2
U i
j+1 �Ri

j
2
U i
j

Ri
j
2
(R i

j+1 �R i
j )

: (3.7)

After using similar methods to obtain Up
i+1
j , Rp

i+1
j ,Mp

i+1
j and �pi+1j (and setting ppi+1j =

(
 � 1)npi+1j �p
i+1
j ) for all j, we integrate the �0 equation inwards from j = jB using the

4th-order Runge-Kutta method with linear interpolations to determine �p
i+1
j for all j. We

integrate again, using the predicted values obtained above (with backward di�erencing),
and then average these with the previously predicted values:

ni+1j = :5

0@npi+1j + nij ��t np
i
j�p

i
j

Rp
i
j

2
Up

i
j �Rp

i
j�1

2
Up

i
j�1

Rp
i
j

2
(Rp

i
j �Rp

i
j�1)

1A : (3.8)
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We obtain the other values in a similar way, and then integrate again to �nd �i+1j .
As is well known,16 it is important to choose small enough time steps �t to satisfy

the Courant condition. This condition requires �t to be smaller than the time taken for
sound to cross from any one grid point to the next. The speed of sound for relativistic


uids is cS =
q
(@p=@�)S.13;14 Using the fact that TdS = d(�=n) + pd(1=n), we �nd

cS =

r

p

nw
: (3.9)

As c2 ! 1, w = 1 and we obtain the usual expression for the speed of sound in
nonrelativistic 
uids. Note that for �=c2 � 1, cs = c

p

 � 1 = :57c for perfect 
uids with


 = 4=3. The Courant condition requires the proper time per proper distance to be equal
to C=cS , where C is the Courant number and is approximately 1=3 to 1=2 for strong
shocks. Since the in�nitesimal proper time and proper distance are ��t and ��r =
�R=� respectively, the Courant condition becomes �tni = C (Rn

i+1 � Rn
i )=(�

n
i �

n
i (cS)

n
i ).

14 In addition, when GN 6= 0, regions of the universe expand and contract. We require
the time steps to be small enough for the functions n; �; and M to change suÆciently
slowly. We therefore set �tni = f (lni =

_lni ) to be the maximum time step allowed for
l = n; � and M , where f is a constant less than one.

After the nth corrector step, �tni is calculated for all i, and �t
n+1 is set to the smallest

value obtained:

(�t)n+1 = min

0@ �tmax; C
Rn
i+1 �Rn

i

�ni �
n
i (cS)

n
i

;

"
f
nni
_nni
; f

�ni
_�ni
; f

Mn
i

_Mn
i

#
if GN 6=0

1A ;(3.10)
where �tmax is a speci�ed upper bound, if desired.25

We apply a convergence test to the code for test problems where analytic solutions
are available. The relative error in q, where q denotes any quantity, is de�ned to be

ei = jqi � eq(ri)j=eq(ri); (3.11)

where eq(ri) is the exact solution and qi is the numerical solution. We obtain a global
measure of the error by de�ning

L1 =
1

N

NX
i=1

ei; (3.12)

where N is the total number of grid points. This error is proportional to the grid spacing
to some power: L1 / �Rs, where s is the convergence rate. If s ' 2, the code is
second-order, as desired. These tools have been used previously to test codes in other
applications.26

IV. 1st-Crossing Time for Relativistic Voids
In this section, we �rst review the standard lore for the evolution of superhorizon-

sized voids, and then calculate the 1st-crossing time (the cosmic time taken for a photon
initially at the inner edge of the void wall to reach the origin) in this picture. We
then calculate the actual 1st-crossing time. If at the 1st-crossing time the 
uid were
approximately homogeneous and isotropic, distortions from the original void would be
negligible and a (nearly) FRW universe would result everywhere.
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It has been suggested that superhorizon-sized voids formed from �rst-order in
a-
tion would conformally expand with spacetime during the radiation-dominated period.6;8

Thus, the size of a void at time t would be R = r0a(t), where r0 is the comoving coor-
dinate of the void and a(t) is the cosmic scale factor. There are several justi�cations to
support this belief. First, small density perturbations conformally expand with space-
time. Second, vacuum bubbles conformally expand during in
ation after an initial short
growing period. Third, the time taken for the void wall to slow down is expected to be
enormous because the initial outward momentum of the void wall is enormous. However,
this reasoning is not enough to conclude that a superhorizon-sized void conformally ex-
pands with spacetime. First, a void is not a small perturbation in spacetime. Thus linear
results can not be applied to the description of a void. Second, it is the negative pressure
that causes vacuum bubbles to expand; a similar con�guration having positive pressure
would instead acclerate inward.d Third, although part of the wall may still move out,
the deceleration of the inner void wall is extremely large (see II-D), so that the void can
still collapse (see VII).

If a superhorizon-sized void were to conformally expand in spacetime, then the earliest
time at which thermalization and homogenization can occur is when the horizon is of order
the size of the void, since this is the expected 1st-crossing time. If the void has comoving
size r0 and the outside Hubble radius (that outside the void) is cH

�1
out(ti), this occurs when

r0a(t) = H�1
out(t). For evolution during the radiation-dominated epoch, H�1

out(t) = 2t and
p = �=3 so that the time is of order �tc � t� ti ' H�1

out(ti)(c
�1Rwall(ti)=H

�1
out(ti))

2. If the
void is much larger than the Hubble radius outside the void (c�1Rwall(ti)= H

�1
out(ti)� 1),

then the 1st-crossing time is very large: �tc=H
�1
out(ti)� 1, independent of the \emptiness"

of the void. Other authors suggest that the void would �ll in with radiation.9 If spacetime
at the void wall continues to expand as a(t) when the 
uid di�uses into the void, the
comoving radius of the wall is roughly r ' r0 � c R tti dt=a(t) or

ra(ti) ' Rwall(ti)� c
Z t

ti
dt0
q
ti=t0 (4.1)

in a radiation-dominated universe. The 1st-crossing time (i.e. the earliest thermal-
ization time) then, is when r ' 0, or when �tc ' :5H�1

out(ti)(c
�1Rwall(ti)=H

�1
out(ti))

2,
which is roughly the same as the time for the horizon to \engulf" a conformally ex-
panding void.e Because R = ra(t), the radius of the void would be given by R '
(Rwall(ti)�cH�1

out(ti)
q
t=ti )

q
t=ti, which for nearly all of the time is R ' Rwall(ti)

q
t=ti; the

void conformally stretches with spacetime. At time t ' H�1
out(ti)(c

�1Rwall(ti)=H
�1
out(ti))

2,
the void radius decreases quite rapidly to zero. Thus, although the qualitative void evo-
lution is quite di�erent in these two pictures, the quantitative 1st-crossing times are not
because in both the void comoves with spacetime. The important point is that the ear-
liest possible thermalization time in both pictures (i.e. the 1st-crossing time) is thought
to be

�tc ' H�1
out(ti)(c

�1Rwall(ti)=H
�1
out(ti))

2: (4.2)

dIn the bubble wall, GN = 0, jpj0 > 0 and p < 0. 1 Using Eqn(2.22), we see that the acceleration is
positive, so that the bubble wall moves outward during in
ation. But for normal positive pressure with
p0 > 0, the acceleration is negative, so that the wall must accelerate inward.

eWe thank Michael Turner for this explanation.
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We will show in this section that the actual 1st-crossing time is remarkably shorter than
Eqn(4.2). In doing so we will show that Eqn(4.1) is fundamentally 
awed.

Consider two radially propagating photons A and B. Photon A starts at the inner
edge of the void wall and propagates inward, and photon B begins at the outer edge of
the void wall and moves outward. We would like to calculate the distance each travels in
time �t = t� ti, where ti is the initial time. Using Eqns (2.2) and (2.5), the in�nitesimal
coordinate distance traveled by a photon in time dt is dr = cdt��=R0. De�ne �in(t)
and �out(t) to be the energy densities inside and outside the evolving wall region of the
void. (Thus the subscripts \in" and \out" refer only to the undisturbed 
uid). Initially,
�0in(ti) = �0out(ti) = 0, and �(ti; R) = 1. We also consider non-viscous, relativistic 
uids,
so that p = �=3 and Q(t; r) = 0.

We will �rst calculate the distances photons A and B travel in special relativistic
voids (GN = 0). From Eqn. (2.22), the 
uid acceleration is zero inside and outside the
void: _Uin = _Uout = 0. Therefore, R(t; r) = R(ti; r) inside and outside the void, so that
the in�nitesimal distance traveled by photons A and B in time dt is dR = c��dt. From
Eqn. (2.10), we see that �out and �in are constant in time. Since �out = 1, we �nd that
�in(t; r) = �in(ti; r) = (�out(ti)=�in(ti))1=4 from Eqn. (2.14). In addition, since _� / p0

(Eqn. (2.30)), �in(t) = �out(t) = 1. Therefore in time �t � t � ti, photon B travels
outward the distance �RB(t) � RB(t)�Rwall(ti) given by

�RB = c�out�out�t = c�t; (4.3)

while photon A travels inward the distance �RA(t) � Rwall(ti)�RA(t) given by

�RA(t) = c�in�in�t = c [�out(ti)=�in(ti)]
1=4�t = c Tout(ti)=Tin(ti) �t > c�t: (4.4)

Thus the emptier the void, the farther photon A moves relative to photon B! (It is
important to note that this is a strictly relativistic e�ect; for nonrelativistic voids (II-C),
�(t; r) ' 1 inside and outside this void so that the distance traveled by photons A and
B are approximately the same: �RA ' c�t = �RB). De�ne �tc to be the 1st-crossing
time (the time taken for photon A to reach the origin). Then from Eqn. (4.4) with
�RA = Rwall(ti), the 1st-crossing time is

�tc = c�1Rwall(ti) [ �in(ti)=�out(ti) ]
1=4
: (4.5)

Since �out(ti) � �in(ti), �tc ranges from Rwall(ti)=c to zero. Therefore in the limit that
�in(ti)=�out(ti)! 0, a photon will reach the origin in zero cosmic time. However, calling a
region a \
uid" if it is empty (�in = 0) is incorrect. SuÆce it to say that the 1st-crossing
time can be arbitrarily small.

We note that if Eulerian, synchronous coordinates were used with the metric ds2 =
�c2dT 2 + dR2 + R2d
2, the distance traveled by photon A or B in time �T would be
the same: �R = c�T . Thus the time �Tc for photon A to reach the origin is �Tc =
c�1Rwall(ti). (We can also see this using Lagrangian coordinates, since the in�nitesimal
proper time measured by a comoving observer inside the void is d� = �indt = cdT ,
and therefore the time as measured by this observer for photon A to reach the origin
is ��c = c�in�tc = Rwall(ti)). Thus, the quick 1st-crossing time is due to the choice
of comoving, synchronous coordinates, a choice we do not have for superhorizon-sized
general relativistic voids (GN 6= 0) embedded in a FRW universe.f

f If the spatially 
at FRW metric is transformed to the Eulerian gauge with synchronous coordinates,
a coordinate singularity at the Hubble radius (see Appendix A). Thus this gauge and coordinate choice
cannot be used to describe the evolution of superhorizon-sized general relativistic voids.
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We now calculate the distance traveled by photons A and B in the same cosmic time
for a general relativistic void. Again, the in�nitesimal coordinate distance a photon
travels in time dt is dr = c��dt=R0. Because the pressure outside the void redshifts due
to Hubble expansion, �in(t) decreases in time from Eqn(2.14) (since �out(t) = 1), and
�tc consequently increases. We �rst calculate the distance photon B travels. Outside

the void, �out(t) = 1, and R = ra(t) so that R0 = a(ti)
q
t=ti. 24 The comoving distance

photon B has traveled at time t is �r = cti=a(ti)(
q
t=ti� 1), so that the distance photon

B travels is �RB � RB �Rwall(ti) = (
q
t=ti � 1)[Rwall(ti) + 1=2 cH�1

out(ti)
q
t=ti].

We now calculate the location of photon A. Assume that the energy density inside
the void changes negligibly: �in(t) = constant. (We will address this approximation in a
moment). Then �in(t) = (�out(t)=�in(ti))1=4. Because the energy density outside the void

is redshifted as � / 1=t2(see VI),24 �in(t) ' �in(ti)
q
ti=t. In addition, since _� / p0 (from

Eqn. (2.30)), �in(t) = �out(t) = 1. Integrating, we �nd that the cosmic time taken for
photon A to travel the distance �RA � Rwall(ti)�RA is

�t � t� ti = c�1�RA

 
�in(ti)

�out(ti)

!1=4 241 + c�1�RA

2H�1
out(ti)

 
�in(ti)

�out(ti)

!1=435 ; (4.6)

and the location of photon A as a function of time is

RA = Rwall(ti)� c�in(ti)
Z t

ti
dt0
q
ti=t0 (4.7)

= Rwall(ti)� c�in(ti)H
�1
out(ti)

�q
t=ti � 1

�
: (4.8)

As in the special relativistic case, �RA(t) > �RB(t), so that photon A travels farther
than photon B in the same amount of cosmic time. The 1st-crossing time relative to the
initial outside Hubble time is then (�RA = Rwall(ti))

�tc
H�1
out(ti)

=
c�1Rwall(ti)

H�1
out(ti)

 
�in(ti)

�out(ti)

!1=4 241 + c�1Rwall(ti)

2H�1
out(ti)

 
�in(ti)

�out(ti)

!1=435 : (4.9)

In addition, if the more stringent condition c�1Rwall(ti)=H
�1
out(ti) < �in(ti) holds, then

�tc
H�1
out(ti)

<� 1 when
c�1Rwall(ti)

H�1
out(ti)

<

 
�out(ti)

�in(ti)

!1=4
(4.10)

|the minimum thermalization time (i.e. the 1st-crossing time) is less than the initial
Hubble time outside the void! (Note that the general and special relativistic results
(Eqns(4.9) and (4.5)) are equal in this case, since the energy density outside the void is
constant during this time).

Before discussing further implications, we �nd the condition for which Eqn(4.6) is sat-
is�ed; it was derived under the assumption that �in(t) ' �in(ti). Using Eqn(2.10), inside
the void j _�=�j = 4(R2 _R)0=(3R2R0) = 4 _R=R (since R = ra(t)) so that if �in ' constant,
then R ' constant (in time) inside the void. Because U2 = ( _R=�)2 = 2GNM=R '
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c�2(8�GN�in=3)R2 inside the void, the fractional change in the radius R over time scale
�t is roughly

f � �R

R
=

_R�t

R
=

vuut �in(t)

�out(t)
Hout(t)�in(t)�t ' ��1in (ti)

s
ti
t

�t

H�1
out(ti)

; (4.11)

where we have used the fact that H�1
out(ti) = 2ti,

q
�in(t)=�out(t)Hout(t) ' ��2in (ti)Hout(ti)

and �in(ti) = (�out(ti)=�in(ti))1=4. We require f < 1. Writing t = �t + ti, Eqn(4.11)

becomes �t = f2�2
in(ti)H

�1
out(ti)[1 +

q
1 + 1=(f�in(ti))2]. Since �in(ti) > 1, we have

f�in(ti) >� 1. The condition for which the density inside of the void remains approxi-
mately constant during time�t then, is �t=H�1

out(ti) � 2f2�2
in(ti) ' �2

in(ti). We now com-
bine this with Eqn(4.6) to �nd the maximumallowed void size �RA=H

�1
out(ti) given �in(ti).

We �nd c�1�RA=H
�1
out(ti) � :5�in(ti)[�1 +

q
1 + 4(f�in(ti))2] ' f�2

in(ti). Eqn (4.6) is

then valid when c�1�RA=H
�1
out(ti) � f�2

in(ti), and Eqn. (4.9) is valid when

c�1Rwall(ti) = H
�1
out(ti) <�

q
�out(ti) = �in(ti): (4.12)

Note that Eqn(4.10) is automatically satis�ed.
The quick 1st-crossing time might seem completely counterintuitive. How can a pho-

ton travel a distance much larger than the Hubble radius in less than a Hubble time? The
answer lies in describing how one measures the size of an object which is not a small per-
turbation in spacetime. If size is measured circumferentially, then the void is enormous
because its circumferential size is 2�Rwall(ti)� H�1

out(ti). (If spacetime were static, then
it would take a photon time �t ' 2�Rwall(ti)=c to encircle the void). However, if size
is measured radially (the time taken for a photon to cross the object if spacetime were
static), then the void is measured to be very small. If fact, an interesting comparison
can be made to measuring the size of a black hole, an overdense region. If one measures
its circumferential size, it is small (or at least �nite), but its radial size is in�nite.

The 1st-crossing time for a superhorizon-sized void was previous calculated incorrectly
because t was assumed to be the proper time outside and inside the void; in our notation,
it was implicitly assumed that �(t; r) = 1. Comparing Eqns(4.1) and (4.7), we indeed see
that the factor �in(ti) > 1 is missing from Eqn(4.1). Note in addition that the factor ofq
ti=t in Eqn(4.7) does not come from spacetime expanding at the wall, but rather from

the density outside the void redshifting, causing �in(t) to decrease. In fact, spacetime
is roughly non-expanding at the inner wall edge. If c�1Rwall(ti)=H

�1
out(ti) > �in(ti) � 1,

the actual position of photon A is approximately constant in time until the last moment:
RA ' Rwall(ti) until t ' ti+�tc (see Eqn(4.8)). Thus, spacetime at the inner edge of the
void wall is neither expanding nor contracting.

We note the interesting fact that if a photon inside the void is in thermal equilibrium
with average frequency �, its frequency is Tin. If it moves outside the void, its frequency is
blue-shifted to �0 = ��in = �(Tout=Tin) = Tout, the average frequency of thermal photons
outside the void. Thus, this photon is automatically in thermal equilibrium outside the
void, so that an outside observer could not detect the void's initial presence unless non-
thermal photons came out.g This is essentially because the 
uid is relativistic, or that �,

gBecause entropy is created at the shock (see VII), the photon with �Tin would actuall have a slightly
higher frequency than thermal outside the void.
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p, n and � depend only on the temperature (II-C). We can understand why the photon
is blue-shifted by way of comparison to an (overdense) black hole. Suppose an observer
falls into a black hole ticking o� photons at a �xed frequency. As this observer crosses
the event horizon, the frequency of the photon emitted last gets redshifted to in�nity as
observed by a stationary observer outside the black hole.12 The opposite e�ect happens
for a photon emitted from an underdense region. Because a photon leaving a void enters a
region with a much larger gravitational potential, the frequency instead gets blue-shifted.

In conclusion, the 1st-crossing time for a superhorizon-sized relativistic void embed-
ded in a FRW expanding universe is given by Eqn (4.9) (if Eqn(4.12) is satis�ed), and
depends sensitively on the quantity Rwall(ti)=H

�1
out(ti) (�in(ti)=�out(ti))

1=4. We emphasize
the important point that if c�1Rwall(ti)=H

�1
out(ti) < (�out(ti)=�in(ti))1=4 = Tout(ti)=Tin(ti),

then the 1st-crossing time is less than the outside Hubble time: �tc=H
�1
out(ti) < 1.

V. Pressureless Non-Viscous Voids
For the special case when the pressure and viscosity are zero, the equations of motion

can be solved analytically. These give the Tolman-Bondi dust solutions,10;12 which we
will review here brie
y. It is important to study the pressureless case not only as a test
problem, but also to see how removing 
uid forces a�ects the evolution of a void. (Because
p = Q = 0, the particles move only under gravitational forces: ��1 _U = �GNM=R2 (see
Eqn (2.22))).

Since �0 = 0 (Eqn (2.26)), we set �(t; r) � 1. The mass contained within r re-
mains constant: M(r) =

R r
0 4�nR

2dR=�, since _M = 0 (see Eqn (2.9)). And from
Eqn(2.30), �(t; r) = �(ti; r). For R0 6= 0, � = n can be found from Eqn(2.19): �(t; r) =
�(ti; r) R(ti; r)0R(ti; r)2=[R(t; r)0R(t; r)2]. The generalized pressureless Friedmann equa-
tion, Eq. (2:12), now becomes

_R2 = c2
h
�(r)2 � 1

i
+ 2GNM(r)=R: (5.1)

The quantity U2=2 � GNM=R = c2(�2 � 1)=2 is conserved during evolution and can be
interpreted as the generalized total energy. Eqn (5.1) can be integrated for a shell of
radius r:

R =
c�2GNM

�2 � 1
(cosh � � 1) ; t = �0(r) +

c�3GNM

(�2 � 1)3=2
(sinh � � �) ; for �(r)2 > 1

R =
c�2GNM

1� �2
(1 � cos �) ; t = �0(r) +

c�3GNM

(1� �2)3=2
(� � sin �) ; for �(r)2 < 1

R = (9GNM=2)1=3 (t� �0(r))
2=3 ; for �(r) = 1: (5.2)

These are the Tolman-Bondi solutions.
In these models, shell-crossing can occur. This happens when two adjacent shells

(labeled by r and r+dr) occupy the same position so that R0 = 0 and �!1. This may
lead to a non-unique continuation of the solution, 27 and thus computations have to be
stopped. This problem is believed to occur because the pressure has been arti�cially set
to zero. It is generally thought that adding pressure would prevent this situation from
occurring.h As will be seen, when �(r) > 1 in the void wall region, shell-crossing does
occur. The addition of enough arti�cial viscosity can prevent this from happening, how-
ever. Even though the viscosity given by Eqn (2.27) was designed to stabilize numerical
shocks, it has been found to prevent shell-crossing.

hThe author thanks T. Piran for this information.
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Table 1: Convergence test for Tolman-Bondi model

�R(ti) L1 s L1a s L1b s

8 1:2� 10�3 ::: 8:33 � 10�4 ::: 8:55 � 10�4 :::

4 4:13 � 10�4 1:48 2:26 � 10�4 1:89 2:16 � 10�4 2:0
2 1:55 � 10�4 1:32 6:09 � 10�5 1:82 5:35 � 10�5 1:97
1 6:56 � 10�5 1:24 1:81 � 10�5 1:75 1:41 � 10�5 1:92

For the numerical simulations in this section, we set GN = 1, c = 1, ti = 1, �(ti; R) =
0, �(ti; RB) = 0, C = :3, f = :005 and 
 = 5=3. Thus, the initial energy density and
Hubble radius outside the void are 4��out(ti) = 2=3 and H�1

out(ti) = 3=2, respectively (see
III-A).

We �rst examine the situation in which each mass shell's velocity initially compensates

for the gravitational attraction inwards: �(ti; R) = 1. Then U(ti; R) =
q
2GNM=R.

Figure 1 shows the energy density versus R R(ti; RB)=R(t; RB) (� R RjB(ti)=RjB (t)) for
a superhorizon-sized compensated void with c�1Rwall(ti)=H

�1
out(ti) = 333, �Rwall(ti) = 15,

� = :001, �R(ti) = 2:5 and k2 = 0. We show the analytic and numerical results at
times t = 1; 10; 100; and 300 where RjB (t) = 1002; 4651; 2:16 � 104; and 4:49 � 104

respectively. The triangles and squares are the numerical and Tolman-Bondi solutions,
respectively, although they are diÆcult to distinguish because the numerical results agree
so well with the analytic results. By t � 300, the density everywhere is approximately
constant; there is hardly a trace of the void's initial presence. Identical results are
obtained for subhorizon-sized voids. In addition, an initially uncompensated void evolves
similarly.

In Table 1, we show the results of a convergence test for q = � applied to the same
initial conditions as in Figure 1, but for variable �R(ti) (see III-C). (We only do this
test for �, because the accumulated error in M and R are much smaller). We set up
analytic conditions initially and integrate until t = 1:5. Because the inner grid point
or two ends up being the numerical culprit for non-second order convergence, we also
calculate L1a � 1

N�2

PN
i=3 ei and L1b � 1

N�10

PN
i=10 ei, where ei is the relative error. (This

is because the code consistently underestimated � at the innermost few grid points). To
the right of each global error estimate, the convergence rate is shown (Li / �R(ti)

s).
We see that the convergence rate for L1 is less than second-order, whereas that for L1 is
nearly second order.

We have just seen that if U = UGRAV (�(ti; R) = 1), the void disappears. What
happens when U > UGRAV (�(ti; R) > 1) in the wall region? Recall that this corresponds
to a net outward peculiar velocity (II-D). Figure 2 shows the result for a compensated
void with c�1Rwall(ti)=H

�1
out(ti) = 333 , �Rwall(ti) = 15, � = :001, �R(ti) = 2:5, and

k2 = 0. We choose the initial velocity to be given by Eqn(3.5). Therefore, �(ti; R) = 1
everywhere except in the wall region, where �(ti; R) > 1. Again, the triangles and
squares represent the numerical and analytic solutions, respectively. The initial time
(ti) and t = 1:02; 1:048 are shown. Again, the di�erence between the numerical and
analytical results are small except at t = 1:048, where shell crossing occurs in both
solutions, a good check on the code. The comoving radius of the shell with the highest
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density, rshell(t), remains approximately constant in time. Because each shell in the wall
has constant total energy c2(�2 � 1)=2, the wall expands outward. (Since U > 0, R
increases. But since the total energy is constant and M(r) is constant, U must increase).
Identical results are obtained for subhorizon voids.

Figures 3a and 3b show the density as a function of R R(ti; RB)=R(t; RB) for a
subhorizon-sized, shallow, uncompensated and compensated void, respectively, at t =
1; 50; 100; 400 and 1000. Note that shell-crossing would have occurred at t = 116 and 2:1
for the uncompensated and compensated voids, respectively. Here, c�1Rwall(ti)=H

�1
out(ti) =

:0067, �Rwall(ti) = :001, �R(ti) = :0001, � = :5, and the velocity U(ti; R) is given by
Eqn (3.5). In addition, for Figure 3a, k2 = 4 and RjB (t) = :035; :49; :79; 2:13 and 4:26,
while for Figure 3b, k2 = 8 and RjB (t) = :035; :48; :76; 1:9 and 3:5. As can be seen, the
initial perturbation grows with time and eventually forms a thin, dense shell. Again, the
comoving coordinate for the shell with the highest density is approximately constant in
time after the shell has formed. As the shell travels outward, it pushes mass in front of
it, producing a shock. This situation is similar to that of a fast car colliding with slower
ones; although the faster car is not allowed to move through the slower cars, momentum
is still transferred to them. Note that the initially compensated perturbation forms a
thick shell more quickly than the uncompensated perturbation, although it then proceeds
to grow more slowly.

As long as the voids formed remain subhorizon-sized, they will eventually grow ac-
cording to a known similarity solution.28 An initially compensated (uncompensated) per-
turbation in an expanding FRW p = 0 universe will eventually form a dense, thin shell
that expands outward as Rshell � R(t; rshell) / t4=5 (t8=9). In Figure 3c, we show the
position of the void wall versus time for the results of Figures 3a and 3b. The trian-
gles and squares connected by lines are the numerical solutions for the compensated and
uncompensated cases, respectively, and the dashed and dotted lines are the self-similar
solutions for the compensated and uncompensated cases, respectively. As can be seen, the
initially compensated perturbation approaches the similarity solution more quickly than
the initially uncompensated perturbation, but for t >� 800, both solutions are self-similar.

VI. FRW Homogeneous Cosmologies
We now test our code against the exact FRW homogeneous and isotropic solution

for relativistic 
uids with p = �=3. As discussed in II-A,B and III-A, the FRW solution
is R(t; r) = ra(t) = R(ti; r)(t=ti)� where � = 1=2. In addition, 4�GN�(t) = 3c2=(8t2)
and U = R=(2t). For the numerical results shown in this section, we set GN = 1,
c = 1, 
 = 4=3, C = :3, ti = 1, �(ti; RB) = 106 and c�1RB(ti)=H�1(ti) = 250 so that
4��(ti; RB) = 3=8.

Figure 4 shows the relative error in � (III-C) for a simulation with �R(ti) = :5 and
k2 = 0. The analytical solution was set up initially, and the code was run until t = 1:1.
The solid, dotted and dashed lines are for f = :01, f = :005 and f = :0025. The relative
error at the outer boundary is seen to be very sensitive to f ; it is :05%, :15% and 2% for
f = :0025, :005 and :01 respectively. Note also the underprediction of � at the innermost
few grid points.

Table 2 shows the accumulated error at time t = 1:1 for simulations with k2 = 4. i

Again, L1b � 1
N�10

PN
i=10 ei, where ei is the relative error for q = �. In the �rst 7 columns,

we show the results for N = 25; 50; 100; 200; 400; 800 and 1600 (i.e. �R(ti) = N=250)

iWhen evolving voids, viscosity is absolutely necessary. It is therefore important to see how it a�ects
the solution where the 
uid is approximately homogeneous and isotropic. It turns out that it is virtually
una�ected by Q 6= 0, as it should be.
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Table 2: Ultrarelativistic Homogeneous convergence test

Number of grid points (N) L1
25 50 100 200 400 800 1600 f �R! 0 s

L1 :016 :010 :0073 :0058 :0050 :0046 :01 :004 ...
L1b :0071 :0056 :0049 :0045 :0044 :0043
L1 :012 :0067 :0038 :0023 :0016 :0012 :005 :00085 2:00
L1b :0015 :0012 :0010 :00091 :00088 :00087
L1 :011 :0059 :0031 :0017 :00096 :00060 :00042 :00025 :00025 1:77
L1b :00057 :00041 :00032 :00027 :00026 :00025 :00025

and for f = :01; :005; and :0025. For a given value of f , as N increases, L1 and L1b
approach the same constant value even though L1 starts out much larger. After this
constant value has been reached, L1 and L1b remain unchanged when �R(ti) is further
decreased, even though the relative error near the origin improves. This is because
beyond a certain point, all the accumulated error comes from the outer boundary, which
is immune to changes in �Rwall(ti) (see III-B).

Knowing that a given value of f limits convergence of the code, we can calculate the
convergence as a function of the asymptotic value of L1. We assume that L1(�R(ti)!
0) / f

s
. Column 9 gives the estimated value for L1(�R(ti) ! 0), and column 10

estimates the value of s. We see that s is nearly 2, which means that convergence in f is
nearly second order given a small enough value for �R(ti).

VII. Numerical Evolution of Voids
A. Nonrelativistic Fluids

In this subsection we examine the evolution of voids composed of nonrelativistic par-
ticles in zero gravity (GN = 0). If T is the 
uid temperature and � is a 
uid particle's
mass, T=� � 1. Since H�1 / GN

�1, these voids are subhorizon-sized. For the simu-
lations in this subsection, we set GN = 0, c = 1010, ti = 1, C = :3, 
 = 5=3, C = :3,
4��(ti; RB) = 2=3 and �(ti; RB) = 1.

We start with the shock tube problem, a standard test of 1-D slab codes.29 In addition,
it provides insight into the dynamics of collapsing voids. In a shock tube, the 
uid is
initially at rest and is separated into two regions with di�erent pressures and densities.
The pressure discontinuity produces a shock wave which propagates into the low pressure
region and a rarefaction wave which propagates into the high pressure region. An analytic
similarity solution exits for a perfect 
uid with slab geometry. It does not exist for the
spherically symmetric geometry however.30 Far from the origin however, the spherically
symmetric solution approaches the slab solution for small times and distances.14 We will
thus set up a spherically symmetric shock tube by evolving an uncompensated void far
from the origin, and compare the results to the exact slab similarity solution (brie
y
reviewed in Appendix D).

19



In Figure 5 we show the results for the shock tube problem with U(ti; R) = 0 (or
�(ti; R) = 1), Rwall(ti) = 20, �Rwall(ti) = :01, �R(ti) = :01, � = :01 and k2 = 5. (We
do not take the pressure gradient to be discontinuous initially, because the solution in
the original wall area is not as accurate then.j) We plot the pressure, number density,
velocity and speci�c energy as a function of the position R at ti and at t = 1:15. The
triangles connected by lines is the numerical solution, and the dashed lines is the slab
similarity solution. At t = 1:15, a strong shock wave (located at R ' 19:68) moves
inward and a rarefaction wave (between 19:85 <� R <� 20:14) moves outward. Note that
the shock is spread out over k2 ' 4�5 grid points. The numerical and analytical solutions
are seen to agree well in this limit, because the spherical geometrical e�ects are small
((Rshock(t)�Rwall(ti))=Rwall(ti) � :4=20 = :02). The distortion of the velocity distribution
is due to the small geometrical e�ect; the shock gets slightly stronger directly behind the
shock due to the smaller e�ective volume 4�R2�R those mass shells occupy relative to
shells further back. An important point to emphasize is that although initially the 
uid
is everywhere stationary (U(ti; R) = 0), it acquires a net momentum to the left in the
wall region.

In Figure 6a we show the long-term results for an initial con�guration with Rwall(ti) =
1 but otherwise identical to Figure 5. The pressure, number density, velocity and speci�c
energy are shown at the initial time ti = 1 with dashed lines, and long after the collision
at t = 2:5 with triangles and connecting lines. Although it is not shown for clarity,
the 
uid con�guration before the shock rebounds at the origin is similar to Figure 5: a
shock heads toward the origin and a rarefaction wave moves away from the origin. When
the (spherical) shock crashes into the origin, the volume e�ect proves harsh as the 
uid
collides with itself in a vanishingly small volume. This causes the pressure at the origin
to become very large in order to repel the 
uid (not pictured here). Note that the 
uid
at the shock as well as far behind it must be repelled, since it is all moving toward the
origin.k When the dust settles, we �nd that a weak shock has rebounded back. This
outward-moving shock can be seen at R(t=2.5) ' 1:3. Due to the volume e�ect however,
this shock will become weaker as it moves outward further. Also seen at t = 2:5 is the
original (outgoing) rarefaction wave located between 1:3 <� R <� 2:4. Note that at t = 2:5,
the 
uid is (and will approximately remain) at rest near the origin because the velocity
is zero and the pressure is constant. However, a large distortion has been left behind in
the 
uid in the form of low density and high kinetic energy. This consists entirely of the

uid originally in the void. The low-n, high-� values for the �rst 5-6 grid points, however,
is arti�cial. This is a consequence of using VonNeumann-type arti�cial viscosity called
\wall-heating", and is caused by the collision between 2 shocks.31

In Figure 6b we show the initial and long-term pressure, number density, velocity and
speci�c energy as a function of the radius for a compensated, nonrelativistic void. The

jThis is primarily because we calculate n via _n / (R2dR)�1 rather than _n / (r2dr)�1

kIt is this reversal that requires a very robust di�erence scheme. All of the \obvious" di�erence
schemes failed after the inbound shocks reached the origin. Setting f = r2 in Eqn (2.20) and using those
di�erence schemes listed in Appendix B are the very necessary requirements.
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Table 3: Nonrelativistic collapse times

Void type �Rwall(ti) = :02 �Rwall(ti) = :04 �Rwall(ti) = :08 �Rwall(ti) = :12
Collapse Time �tc jj Percent Change: (�tc ��tc(:02)un)=�tc(:02)un

uncompensated :38 jj ::: :41 jj 8% :45 jj 18% :50 jj 32%
compensated :15 jj � 61% :20 jj � 47% :27 jj � 29% :32 jj � 16%

initial distribution is identical to Figure 6a except for the energy density, and �Rwall(ti) =
:02. Again, the 
uid con�guration at ti = 1 is shown as dashed lines and that at t = 2:5
is shown as triangles connected by lines. An inbound shock is again formed from the
initial pressure gradient at the inner edge of the void wall. Unlike the uncompensated
case however, a weak outgoing shock wave is formed instead of a rarefaction wave. At
t = 2:5, it is located at R = 3:2. Like the uncompensated void, the pressure at the origin
becomes very large after the shock collides with itself there, and a weak shock rebounds.
At t = 2:5, this rebounded shock is located at R ' 2:3, which is farther out than that for
the uncompensated void (R ' 1:3). This is because the inbound shock produced from
the compensated case is much stronger than for the uncompensated case. And again
there is a large distortion left near the origin containing all the 
uid initially in the void,
although it is somewhat di�erent spatially.

We now compare the collapse times for uncompensated and compensated voids of
varying wall thicknesses. (The collapse time is de�ned to be the time taken for the shock
to reach the origin). We set Rwall(ti) = 1, � = :01, k2 = 3 and �R(ti) = :01. Table 3
shows the results for �Rwall(ti) = :02, .04; :08 and :12, where we calculate the percent
change by comparing the collapse time with the uncompensated �Rwall(ti) = :02 collapse
time of �t = :38. As �Rwall(ti) increases, the collapse time increases. In addition, the
collapse time for compensated voids is substantially smaller than for uncompensated
voids.

In conclusion, nonrelativistic voids with zero gravity collapse in the form of a shock,
the strength of which depends on the details of the void wall. Some time after collapsing,
the 
uid is virtually at rest everywhere, with n and � inhomogeneous near the origin.

B. Special Relativistic Fluids
In this subsection we consider the evolution of special relativistic voids with T=�� 1,

where T is the temperature and � is the mass of a 
uid particle. Thus, �=c2 � 1, and we
set GN = 0, c = 1, ti = 1, C = :3, 
 = 4=3, �(ti; RB) = 103, U(ti; R) = 0 (or �(ti; R) = 1)
and 4��(ti; RB) = 3=8 in this subsection.

In Figure 7a, we showM , �, 4�� and � as a function of R for a relativistic shock tube
problem. Here Rwall(ti) = 1, k2 = 3, �Rwall(ti) = :02, �R(ti) = :01 and � = 10�4. As in
the nonrelativistic case, an inbound shock is formed. (This is observed most easily in the
plot of 4�� versus R). However, an outgoing \rarefaction wave" is not observed, as it is in
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the nonrelativistic case (see Figure 5). If a wave were to propagate outward, it could go
at most the distance a photon would travel. But from Eqn(4.3), we know that a photon
starting from the outer wall edge only moves the distance �RB = :04 (:065) in time
�t = :04 (:065). Since this is of order the grid point thickness, if an outbound wave were
present, it would not be observed at this time anyway. On the other hand, an inbound
photon starting from the inner wall edge would travel the distance �RA = :4 (:65) (from
Eqn(4.4)) in time �t = :04 (:065), since �out(ti)=�in(ti) ' 104. Reexamining Figure 7a,
we now notice an important result; the inbound shock's position is approximately equal
to photon A's location|the shock moves inward at roughly the speed of light. This is
actually not so surprising, because the speed of sound for a perfect 
uid with p = �=3 is
:57c (III-C).

Consider next voids compensated in energy density. Because of relativistic-particle
di�usion, we expect the inbound shock to again travel at approximately the speed of light.
Since the value of �in(ti) does not depend on the functional form of � in the void wall
(Eqn (2.14)), the shock should move the same distance per time as for the uncompensated
void. We ran a compensated void simulation with the same initial conditions as from
Figure 7a (except for � in the void wall), and found that at t = 1:04 and 1:065, the
compensated shock is ahead by only �R = :05. However, this can be accounted for by
the slightly di�erent values of � initially at the inner edge of the wall. Thus, special
relativistic compensated and uncompensated voids collapse at approximately the same
speed, unlike nonrelativistic voids (see Table 3).

In Figure 7b, we show the numerical results for an uncompensated void withRwall(ti) =
1, k2 = 3, � = 10�4 and �R(ti) = :01, and for �Rwall(ti) = :02, :04, :06 and :1. It is
clear from this �gure that in all four cases the shock reaches the origin at �tc � :08;
�tc is approximately independent of �Rwall(ti). (Compare this with Table 3). Using
Eqn (4.4), we estimate the time for light to reach the origin at �tc ' Rwall(ti)=� ' :09,
in agreement with the simulations.l (During this time, photon B would only move out-
ward the distance �RB = �tc ' :09). The value of �Rwall(ti) however, does in
uence
shock formation-time and strength. As �Rwall(ti) increases, the shock formation time
increases and the shock strength decreases.

We now examine the what happens to the void after the shock collides at the origin.
In Figure 7c, we show the numerical results for an uncompensated void with Rwall(ti) = 1,
�Rwall(ti) = :02, � = 10�4, k2 = 8 and �R(ti) = :01. m We show p; n; U and � as
a function of R at the initial time ti and at times 1:04 and 3:0, where the second and
third times are before and after collision at the origin, respectively. At t = 3, p0 ' 0 and
U 0 ' 0 near the origin; the 
uid there is roughly at rest. Two weak outgoing waves are

lBecause �in actually increases slightly due to the dissipation of energy at the shock, the actual travel
time for the shock to reach the origin, �tc, is decreased slightly.

mAfter colliding, a very weak shock rebounds. The generalized functional form for the arti�cial
viscosity, however, was derived in the strong shock limit. Thus, a large value of k2 was needed to
maintain numerical stability after the collision. A new functional form for Q will have to be used in
future simulations to stabilize the weak outgoing shock.34
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observed: the shock (at R � 1) and a \rarefaction wave" (between 1:1 <� R <� 2:1). In
addition, in contrast with nonrelativistic voids, n0 � 0 and �0 � 0 near the origin.n This
result is expected; since n / p3=4 / T 3 and � / p1=4 / T (from the discussion following
Eqns (2.28)) for a non-viscous 
uid, if p0 ' 0, then it follows that n0 ' 0 and �0 ' 0.
This is a consequence of the fact that �, p, n and � depend only on the temperature for
�=c2 � 1 and Q = 0. We therefore �nd that after the collapse, there is only a small trace
of the void's initial presence!

We conclude that a special relativistic void collapses in the form of a shock which
travels at approximately the speed of light into the void. Thus, the collapse time is of
order the 1st-crossing time. Some time after the collapse, the 
uid becomes approximately
homogeneous and isotropic everywhere.

C. General Relativistic Fluids
In this subsection we study the evolution of general relativistic voids for T=� � 1,

where T is the temperature and � is the mass of a 
uid particle. We set GN = 1, c = 1,
ti = 1, C = :3 and 
 = 4=3. Therefore, the outside Hubble radius and density (that
outside the void) are cH�1

out(ti) = 2 and 4�GN�(ti; RB) = 3=8.
In Figure 8, we show the pressure, number density, velocity and speci�c energy

for a general relativistic void at the initial time ti and for t = 1:04 and t = 1:065.
The initial conditions are identical to those of Figure 7a, except that k2 = 4 and

U(ti; R) = UGRAV =
q
2GNM=R (or �(ti; R) = 1). Because the void is subhorizon-

sized (c�1Rwall(ti)=H
�1
out(ti) = 1=2), its evolution looks virtually the same as that for

the special relativistic void shown in Figure 7a; at the void wall, the gravitational
force is M=R2 + 4�pR=c2 ' 8��R=3 ' 10�1, which is much less than the 
uid force
�2p0=(4pR0) ' (4�R(ti))�1 ' 12 (see Eqn. (2.8)).

In Figure 9a, we show the pressure as a function of R R(ti; RB)=R(t; RB) (� R(t; r)
RjB (ti)=RjB (t)) for a general relativistic superhorizon-sized void at ti, t = 2:0 and t = 8:0
with �(ti; R) = 1, Rwall(ti) = 50, �Rwall(ti) = 1:, k2 = 4, � = 10�4, �(ti; RB) = 103 and
�R(ti) = :5. (This void is 50=2 = 25 times the outside Hubble radius). In addition,
RjB (t) = 100:2; 139:1; and 271:8. Even though GN 6= 0 here, a strong inward shock still
forms. This is because particles are di�using into the void, having been accelerated away
from the high-pressure wall. (Note that at the wall, the acceleration due to gravity is
GNM=R2 +4�pR=c2 ' 10, whereas that due to the 
uid force is only �2p0=(4pR0) ' :25.
This small relative amount however, is enough to form the shock). Note that because
of expansion, the pressure outside (and to a lessor extent inside) the void redshifts. By
t = 8, the pressure outside the void has redshifted from p ' 10�1 to 2�10�3, the expected
amount since p / 1=t2 so that pout(8) ' 10�1=64 ' 2 � 10�3. At the same time, the
pressure on the inside has only redshifted from p ' 10�5 to 5� 10�6, because the inside

Hubble time is larger than that outside: H�1
in (ti)=H

�1
out(ti) =

q
�out(ti)=�in(ti) = 100.

From Eqn(4.9), the 1st-crossing time is �tc ' 50=10(1 + 25=(2 � 10)) = 11:25, in rough

nFor the innermost 7-8 grid points, � and n are too large and too small, respectively. This is again
due to \wall-heating".

23



agreement with the numerical collapse time of �tc ' 8. Thus, the collapse time is
found to be approximately equal to the 1st-crossing time|the the shock moves inward
at roughly the speed of light. This is not surprising however, because the speed of sound
is :57c (III-C).

Figures 9b and 9c show the pressure as a function of R R(ti; RB)=R(t; RB) for a
general relativistic superhorizon-sized void with c�1Rwall(ti)=H

�1
out(ti) = 25, �(ti; R) = 1,

k2 = 4, �Rwall(ti) = 1, �(ti; RB) = 106 and �R(ti) = :5. In addition, � = 10�6

and RjB(t) = 100:2; 125:1, and 148:7 for Figure 9b, and � = 10�10 and RjB (t) =
100:2; 102:6; and 104:4 for Figure 9c. The numerical collapse times in Figures 9b and 9c
are �tc = 1:3 and :09, respectively, which are both smaller than the outside Hubble time.
(Note that �tc = :09 is 1=20th the outside Hubble time). Since �(ti) equals 31:6 and
316, respectively, the 1st-crossing times from Eqn(4.9) are �tc ' 50=31:6(1 + 25=31:6) '
2:2 and 50=316(1 + 25=316) = :17, respectively. The 1st-crossing times are larger than
the numerical collapse times because �in(t) increases during the collapse due to the
dissipation of energy at the shock. Thus, the gain in entropy at the shock only makes
the collapse time shorter. For example, in Figure 9c, �in(t) increases from its original
value of �in = 316 to �in � 450 � 500 during the collapse. Using �in = 500, we would
predict �tc � :1, which is roughly correct.

We note however, that in Figure 9c (and to a lesser extent in Figure 9b), only part of
the void has been �lled in at the collapse time tc � ti + �tc. Thus, thermalization and
homogenization has not been achieved by tc. We note from Figures 9a,b and c that as
the initial relative energy density inside the void decreases, the fraction of the void �lled
in at the collapse time decreases. However, since the energy density inside the somewhat
�lled void is still much less than �out(tc), �(tc) inside the \void" is still much greater
than one. And because �(tc) is also larger than one inside the \void", the distance light
can travel is still greater inside than outside the void. Thus, although the void has not
yet homogenized, this may only take an additional small amount of time.

Figures 10a and 10b show the pressure versusR R(ti; RB)=R(t; RB) for a superhorizon-
sized uncompensated and compensated void, respectively. Here, �(ti; R) = 1, Rwall(ti) =
500, �Rwall(ti) = 10:, k2 = 4, �(ti; RB) = 106, �R(ti) = 5:, and � = 10�10. (These voids
are 250 times the outside Hubble radius). The pressure is shown at ti = 1 and t = 1:7
for each void, and at t = 2:1 and t = 2:0 for the uncompensated and compensated voids,
respectively. In addition, in Figure 10a, RjB (t) = 1002; 1288; and 1424, while in Figure
10b, RjB (t) = 1002; 1307; and 1418. The important point to note is that the shock
reaches the origin at t ' 2:1 for both voids. This is due to the di�usion of particles
into the void, and does not depend on the compensatedness of the void because �in(ti)
depends only on �in(ti)=�out(ti). (This is similar to that for special relativistic relativistic
voids (VII-B)). This roughly agrees with the predicted collapse time �tc = 500=316(1 +
250=(2 � 316)) ' 2:2 from Eqn(4.9). Note also that at t ' 2, the di�erence between
Figures 10a and 10b is small. For the compensated void, there is no perceptible outbound
shock, and the original density \bump" in the void wall is stretched and damped out. In
fact, the 
uid initially in the compensated void's wall is moving inward at t ' 2:1.
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Up to this point, we have shown the evolution of general relativistic uncompensated

and compensated voids for the initial velocity pro�le U = UGRAV =
q
2GNM=R (or

�(ti; R) = 1), where the initial velocity per shell just balances gravity. If the wall ini-
tially has an outward peculiar velocity (as expected from �rst-order in
ation, for exam-
ple), then U(ti; Rwall(ti)) > UGRAV(ti; Rwall(ti)) (or �(ti; Rwall(ti)) > 1), as discussed in
II-D. In Figure 11, we show 4�p, M , � and � versus R R(ti; RB)=R(t; RB) for a com-

pensated superhorizon-sized void with U=c = R
q
8�GN�=3 (Eqn(3.5)), Rwall(ti) = 500,

�Rwall(ti) = 10:, k2 = 4, �(ti; RB) = 106, �R(ti) = 2:5, f = :005 and � = 10�10.
The voids are superhorizon-sized: Rwall(ti)=H(ti; RB)�1 = 250. In addition, RjB (t) =
601:2; 783:9; and 911:8, and we show the con�gurations at ti and at times t = 1:7 and
t = 2:3. The void wall is initially moving outward with a very large peculiar velocity,
since �(ti; Rwall(ti)) ' 900.

We �nd the very interesting result that even though the wall has a large outward
peculiar velocity, the inner part of the void still collapses. This is because the 
uid near
the base of the void wall gets accelerated into the void right away, pulling adjacent 
uid
with it. It is true however, that at t � 2 the density pro�le looks di�erent than that
from Figure 10b. This is because the 
uid in the void wall takes more time to lose its
outward velocity. Since the numerical collapse time is �tc = 1:3 from Figure 11, we �nd
that the extra time taken for the void to collapse is approximately 1:3� 1:1 ' :2, which
is still less than the outside Hubble time. (This follows qualitatively from our discussion
in Section II-D, where it was argued that � would decrease very quickly at the inner
edge of the wall, since _� / ��2p0). These new results show that the collapse time of a
superhorizon-sized void with a large outward peculiar wall velocity can be of order the
1st-crossing time. Since the minimum thermalization and homogenization time is the
1st-crossing time, the time for thermalization and homogenization of this void may be
short.

In Figure 12, we show the void radius versus cosmic time for a void with initial
size Rwall(ti) = c1023H�1

out(ti) . If the temperature outside the void initially is Tout(ti) =
1014GeV, then the initial time is ti = 10�33 seconds.2 And because recombination oc-
curs at trec ' 1012 seconds, trec=ti = 1045, which is near where the dashed lines in-
tersect at the top of Figure 12. Therefore, the plot consists the radiation dominated

epoch in the early universe, where the scale factor outside the void is a(t) = a(ti)
q
t=ti.

Because R(ti; RB)=R(t; RB) =
q
ti=t, any comoving point (de�ned as R /

q
t=ti, not

r = const) is a vertical line in this plot. The dashed line labeled rCM shows the
void size if it were comoving with spacetime, as previously suggested (see IV). The
Hubble radius outside the void is cH�1

out � RHOR = 2ct, and is shown as the dashed
line labeled by rHOR. As can be seen, rHOR and rCM intersect at t=ti ' 1046 (or
10�11 seconds), shortly after recombination. (This also follows from Eqn(4.2), since
�tc ' H�1

out(ti)(c
�1Rwall(ti)=H

�1
out(ti))

2 ' 1046). If a superhorizon-sized void were to con-
formally expand with spacetime, then this void would just barely be around to distort
the microwave background at recombination.8
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The dash-dot lines show the position of the 1st-crossing photons (i.e. the inner void
wall) from Eqn(4.8). We show �in(ti) = 5�1011, 1015 and 1020 (since we require �in(ti) >�p
1023 (from Eqn(4.12))), with the predicted 1st-crossing times of tc=ti ' �tc=ti = 4�1022,

1016 and 106 respectively. If �tc=H
�1
out(ti) > 1, the radius of the inner edge of the wall

is constant (R ' const) until time t ' tc ' ti(�
�1
in (ti)Rwall(ti)=H

�1
out(ti))

2, at which
point R rapidly decreases to zero (see Eqn(4.8)). If the reheat temperature is TRH =
Tout(ti) = 1014GeV, then the void with �in(ti) = Tout(ti)=Tin(ti) = 1020 may thermalize

by t ' 10�27 seconds (or at T ' TRH
q
ti=t ' 1011GeV), far before recombination or

nucleosynthesis. (Note that this value of �in(ti) corresponds to an initial void temperature
of Tin(ti) = TRH�in(ti)�1 = 10�6GeV = 1keV).

In conclusion, we have seen that a compensated or uncompensated superhorizon-sized
void collapses as 
uid in the wall di�uses into the void at the speed of light. Thus, the
collapse time is found to be approximately equal to the 1st-crossing time calculated in
Section IV, which is much smaller than previously thought.

VIII. Discussion
In this paper, the evolution of a superhorizon-sized void embedded in a Friedmann-

Robertson-Walker (FRW) universe was studied by numerically evolving the spherically
symmetric general relativistic equations in the Lagrangian gauge and synchronous co-
ordinates. (A superhorizon-sized void is a void larger than the Hubble radius outside
the void: c�1Rwall(ti)= H

�1
out(ti) > 1, where ti is the initial cosmic time, cH�1

out(ti) is the
Hubble radius outside the void and Rwall(ti) is the radius of the void). The particles are
assumed to be in local thermal equilibrium so that they can be described as a 
uid, and
the perfect 
uid equation of state is chosen. The inside of the void is initially chosen
to be homogeneous and non-expanding. We are particularly interested in the evolution
of voids with T=� � 1, where T is the local temperature and � is the mass of a 
uid
particle. This corresponds to a radiation-dominated period in the early universe. We
�nd that for p = �=3, general relativistic voids collapse via a shock propagating inward
from the void wall. The shock is formed from the steep pressure gradient at the inner
edge of the wall. It moves at approximately the speed of light; this is not surprising,
since the speed of sound is :57c. Thus the void collapse time (the time taken for the
shock to reach the origin) roughly equals the photon 1st-crossing time (the time taken
for a photon initially at the inner wall edge to reach the origin). At the time this shock
reaches the origin, much of the 
uid in the original wall area is moving toward the origin
behind the shock. The energy density of this 
uid (i.e. the 
uid behind the shock) is
less than that outside the void. At the collapse time then, only part of the void has been
�lled in with 
uid. In particular, as the initial energy density inside the void decreases,
the fraction of the void �lled in at the collapse time decreases.

Because the shock moves inward at roughly the speed of light, we can calculate the
approximate collapse time. For p = �=3, the 1st-crossing time is

�tc = c�1Rwall(ti)

 
�in(ti)

�out(ti)

!1=4 241 + c�1Rwall(ti)

2H�1
out(ti)

 
�in(ti)

�out(ti)

!1=435 (8.1)
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for Rwall(ti)=H
�1
out(ti) <�

q
�out(ti)=�in(ti), where �in(ti) and �out(ti) are the initial 
uid en-

ergy densities inside and outside the void, respectively, and � = T 4. If c�1Rwall(ti)=H
�1
out(ti) <

(�out(ti)=�in(ti))1=4, then �tc=H
�1
out(ti) <� 1; the 1st-crossing time is less than or compara-

ble to the initial Hubble time outside the void. In fact, as the density inside the void
approaches zero, the collapse time goes to zero!

It may seem contradictory that the 1st-crossing time for a superhorizon-sized relativis-
tic void can be less than the outside Hubble time (i.e. or that light travels comparatively
farther inside a void than outside). There are several points to make about this. First, if
we choose Eulerian instead of Lagrangian synchronous coordinates to evolve special rela-
tivistic voids (GN = 0), then the 1st-crossing time is not fast. This is because spacetime
is sliced di�erently in time inside the void. Since a similar 1st-crossing time is obtained
for general relativistic voids, it might be argued that the quick collapse time is a �g-
ment of the Lagrangian gauge used. However because the FRW metric has a coordinate
singularity at the Hubble radius when transformed to Eulerian synchronous coordinates,
superhorizon-sized voids cannot be evolved in these coordinates. Any prior intuition from
special relativistic voids in these coordinates therefore, must be carefully applied.

Second, calling a void \superhorizon-sized" is deceptive. Although the 1st-crossing
time for a superhorizon-sized perturbation in the FRW universe is greater than the outside
Hubble time, this does not imply that the same is true for a superhorizon-sized void. This
is because the void is not a small perturbation in general (i.e. (�out � �in)=�out ' 1). If
the void's size is de�ned to be the spacelike circumferential radius relative to the outside
Hubble radius, then the void is superhorizon-sized if Rwall > cH�1

out. However, if the
voids's size is de�ned to be its radius relative to the Hubble radius inside the void, then

its size is smaller since c�1Rwall(ti)=H
�1
in (ti) = c�1Rwall(ti)=H

�1
out(ti)

q
�in(ti)=�out(ti); it is

subhorizon-sized if c�1Rwall(ti)=H
�1
out(ti) <

q
�out(ti)=�in(ti) ! (We call this latter size the

\radial size", because it is the time taken for a photon to cross a static void multiplied
by c). This is because the Hubble radius is much larger inside than outside the void.
Since the void is an underdense region, we expect the opposite relative size problem to
occur for overdense regions where the gravitational potential is large, not small. As an
example, a black hole's circumferential size is small (or at least �nite), while its \radial
size" is in�nite.

The original motivation for studying this problem was to determine the evolution of
voids formed from �rst-order (e.g. extended) in
ation. These voids are compensated in
energy density, and the walls initially have large outward peculiar velocities.34 Previous
authors estimated the minimum homogenization time by determining the 1st-crossing
time. They found it to be6;8;9

�tc ' H�1
out(ti)

 
c�1Rwall(ti)

H�1
out(ti)

!2
: (8.2)

This estimate was based on the assumption that a superhorizon-sized void would con-
formally expand with spacetime. The present work throws considerable doubt on this
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assumption and its implications (i.e. a long thermalization time for superhorizon-sized
voids) for several reasons. First, the 1st-crossing time is much shorter than this estimate.

For �tc=H
�1
out(ti) > 1, this estimate is o� by the factor

q
�in(ti)=�out(ti) (see Eqn(8.1)).

Since the minimumthermalization time is the 1st-crossing time, this implies that thermal-
ization and homogenization may happen much quicker than suggested. This would have
profound e�ects upon our understanding of the evolution of superhorizon-sized voids in
the early universe. Second, the inner edge of the void collapses (not expands) in roughly
the 1st-crossing time, even (apparently) for voids with large outward peculiar veloci-
ties. This collapse occurs because the wall decelerates from the positive wall pressure
( _U / �p0 < 0). If the wall pressure were negative instead (e.g. the wall pressure of a
vacuum bubble), the wall would accelerate outward. Thus, 
uid from at least part of the
wall rushes into the void, partially \�lling it" at the 1st-crossing time. Because the light
travel distance is still large there, the void may still �ll up in a relatively short amount
of time. Third, the void wall can cease expanding by many mechanisms. Because 
uid
rushes into the void, large velocity gradients are formed in the original wall area which
\pull" on the wall and can slow it down. In addition, when the peculiar wall velocity is
much larger than the gravitational velocity, the deceleration of the wall is proportional to
the velocity squared which can be enormous. Finally, an outgoing wave will be damped
and slowed down in any case, by virtue of the volume e�ect caused by the spherical
geometry. Thus even if the wall initially expands outward conformally (or faster), it may
stop doing so rather quickly, as the simulations appear to suggest. In any case, even if
the outer part of the wall can carry out some mass for a long period of time, the interior
region will continue to �ll in and homogenize. Since overdensities will most likely form
near the origin after collapse, perturbations, small waves and/or overdensities will most
likely be around at recombination. These perturbations could have interesting ampli-
tudes, and therefore could alter the standard Harrison-Zeldovich density spectrum. In
any case, because the qualitative void evolution picture previously suggested is at least
partially incorrect, it is reasonable to expect the estimated thermalization time to be
erroneous; the \big-bubble problem" might not be a problem after all.

It is important to point out that in order not to distort the microwave background,
the thermalization time only needs to decrease somewhat from the estimate given by
Eqn(8.2). The largest superhorizon-sized void from minimalist in
ation is roughly c�1

Rwall(ti)=H
�1
out(ti) ' 1027. 8 If the initial time after reheat is ti = 10�33 seconds (TRH =

1014GeV), then at recombination (trec = 1012 seconds), this void would not have ther-
malized according to Eqn(8.2). Using these initial conditions with Eqn(8.2), it is easy
to see that voids for which c�1Rwall(ti)=H

�1
out(ti) >� 1023 were traditionally troublesome.

However, since 1023 is such an enormous number, a very slight change in the functional
form for the thermalization time, �tH, can cause thermalization to occur before recom-
bination. For instance, if we suppose that the thermalization time can be written as
�tH ' c�1H�1

out(ti)(Rwall(ti)=H
�1
out(ti))

p, then an acceptable range for p is p <� 1:6, which is
not dramatically di�erent from 2. The point is that the \big-bubble problem" can only
be resolved by accurate knowledge of the thermalization time, because estimates o� by
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a somewhat small amount can lead to erroneous conclusions.
Of the many questions which remain unanswered, the most important is to deter-

mine what happens to a superhorizon-sized void after it collapses. If it thermalizes and
homogenizes, at what time does this happen? As mentioned previously, at the time of
1st-crossing, the energy density within the former void region is greater than �in(ti), but
is still less than �out(t). In addition, the bulk motion of much of the original wall 
uid
is inward so that spacetime is collapsing and not expanding there; thermalization and
homogenization has not occurred. However, since the \void" is still relatively underdense
at this time, the light travel distance will be comparatively large, thereby allowing for
the possibility of relatively fast thermalization and homogenization. We have found that
special relativistic voids eventually nearly homogenize after creating an overdense region
at the origin. In this case, all but the 
uid near the origin becomes roughly homogeneous
fairly quickly. The 
uid near the origin however, is overdense for a relatively long time.
If general relativistic voids behave similarly, then after collapsing, an overdense region
would form at the origin. This would take a relatively long amount of time to di�use
away, and would eventually result in a nearly homogeneous and isotropic universe. In any
case, since this overdense region would form very quickly, it is unlikely that empty voids
would be around any time near recombination, as previously suggested.32;8;9 Instead,
overdensities, perturbations and small waves with strange 
uid velocities may be. Future
work will study the consequent evolution of a general relativistic void after collapse,33

as well as the evolution of a superhorizon-sized void from �rst-order (e.g. extended)
in
ation.34
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Appendix A: Transformation of the FRW metric to Eulerian Coordinates
As discussed in Section IIA., the metric in Eq. (2.1) can be subjected to transforma-

tions of the type t = f1(t0; r0) and r = f2(t0; r0) without altering its spherical symmetry.
If we set r2 = k(t; r), then we can rewrite Eq. (2.1) as

ds2 = �(N2 � S2)dt2 + 2Sdtdr + h2dr2 + r2d
2; (A.1)

where we have introduced the lapse and shift functions as N(t; r) and S(t; r), respectively.
This is the Eulerian gauge with synchronous coordinates if we choose S = 0. As we shall
see, when the FRW spatially 
at metric is transformed in this manner, the resulting
metric has a coordinate singularity at the horizon. Thus, the study of superhorizon-sized
voids is not possible in these coordinates.

Consider the FRW k = 0 metric given by Eqn (2.3). Letting er = ra(t), we can rewrite
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this as

ds2 = �
 
1 � er2 � _a

a

�2!
dt2 � 2er _a

a
derdt+ der2 + er2d
2; (A.2)

where we set c = 1 everywhere in this appendix. This is the Eulerian asynchronous
form of the FRW metric. We notice that this takes the form of Eq. (A:1) with N = 1,
S = er _a=a and h = 1. Since a(t) / t�, where � = 1=2 and 2=3 in radiation (p = �=3)
and matter (p = 0) dominated universes respectively, we can eliminate the derdt term by
de�ning

t = �er=g(et; er) (A.3)

and ensuring that the condition

@g

@er = g
� + (1 � �)g2

�er(1� g2)
(A.4)

hold. De�ning � � (1� �)=� and � � 1=[2(1� �)], this last expression can be integrated
to obtain

h(et)er = g=(1 + �g2)�; (A.5)

where h(et) is an arbitrary (integration) function of et only. The metric then becomes

ds2 = �
 
her
g

!4
(1 + �g2)2(�+1)

1� g2
det2 + 1

1� g2
der2 + er2d
2: (A.6)

This metric has a coordinate singularity at g = 1, which from Eqn(A.3) occurs at
r = t=a(t) ��1. But this is the comoving radius of the Hubble radius (rHOR), since
H�1 = t=� = rHORa(t). Therefore, we have shown that for the FRW models expressed in
Eulerian, synchronous coordinates, a coordinate singularity occurs at the Hubble radius.

As an interesting examplewe take � = 1=2, which corresponds to radiation-domination
(p = �=3). In addition, we choose h � �=et. Using Eqs. (A:5) and (A:3) together wither = r a(t) = r a(ti)(t=ti)1=2, we �nd that � = � = 1, et = t + (a(ti)r)2=(4ti) and

g = (1�
q
1 � 4(er=et)2)=(er=et). In addition, the metric simpli�es to ds2 = �(1�g2)�1det2+

(1 � g2)�1der2 + er2d
2. Note that even though the energy density is spatially constant
on a hypersurface t = constant, on a hypersurface of constant et, � / t�2 = 4g2er�2 =
4et2(1�q1 � 4(er=et)2 )2=er4 which is not spatially constant.

Appendix B: Di�erencing of the Equations
In this appendix, we list the expressions as they are di�erenced in the code. We use

the shorthand notation �G � Gj
i+1 � Gj

i or �G � Gj
i � Gj

i�1 for forward or backward
di�erencing, respectively. The equations involving spatial derivatives are

_U = ��
 
GNM

R2
+
4�GN (p+Q)R

c2

!
� 3

��R2

w�(r3)
4��(p+Q)

_n = �n��(R
2U)

R2�R

_� = �4��(p +Q)�(R2U)

�r2�r
; (B.1)
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We note that there are many other schemes which could potentially be used. (For ex-
ample, one could write �r3=3 instead of r2�r in the expression for _� ). Although these
variations can produce and propagate the shock and rarefaction waves, they can not han-
dle the bounce of the shock at the origin. The only set of di�erence equations which we
have found to do this are given above. For the Tolman-Bondi pressureless dust models
(Section V), it is found that more accurate solutions are obtained near the origin when
di�erencing the _n equation as follows: _n = �(n2��(R2U))=(�r2�r). The Tolman-Bondi
�gures shown in this paper, however, use the di�erence equations as written in Eqns(B.1).

Appendix C: General Relativistic Jump Conditions
In this appendix, we derive the jump conditions for general relativistic shocks. This

closely follows the derivation by May and White (1965)14. These conditions will then be
used to derive a more general arti�cial viscosity expression. In addition, the shock jump
conditions for ultra special relativistic shocks are derived.

Let the variables a and b represent labels for comoving observers ahead and behind
the shock, respectively. If each observer measures the invariant interval separating the
same two events on the world surface of a shock, using Eqn(2.2), we obtain

[ds2] = [�c2�2dt2 + �2dr2 +R2d
2] = 0; (C.1)

where [G] � Ga � Gb. Because the shocks are radial, we can choose the two events to
have dr = dt = 0 but d
 6= 0. Therefore, R is continuous across the shock: [R] = 0.
Now consider two events with dr 6= 0 and dt 6= 0. Then from Eqn(C.1),

[c2�2 �M2
s =n

2] = 0; (C.2)

where rs is the position of the shock in comoving coordinates, drs=dt is the shock \speed",
and Ms � f (drs=dt)=(4�R2) from Eqns(2.19) and (2.5). This is the �rst of the jump
condition equations.

It can be shown that the jump conditions for the Schwarzschild metric (but not for
the comoving metric) are 35;14

[T�
�@g=@x�] = 0; (C.3)

where g is the equation for the world surface of the shock. Therefore we must �rst �nd
the jump conditions in the Schwarzschild frame and then transform back to the comoving
frame. The Schwarzschild metric is ds2 = �c2A2dT 2 +B2dR2 +R2d
2, where R is now
the \Eulerian" coordinate radius. Since R is a coordinate, [R] = 0, and using the same
argument as above for the two observers,

[c2A2 �B2S2] = 0; (C.4)

where S is the shock \speed" in this frame: cS � dRs=dT . For the Schwarzschild metric,
the solution for the metrics functions are well known: B2 = 1 � 2MG=(Rc2) = A�2

where M(R;T ) = 4�c�2
RR
0 �R

2dR. As long as � is not in�nite in the shock, the mass is
continuous across the shock, [M ] = 0. Then [B] = [A] = 0. And using Eqn (C.4), we
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�nd that [S] = 0. We conclude that in the Schwarzschild frame, the metric components
and the shock \speed" are continuous across the shock: [A] = [B] = [R] = [S] = 0.

We now derive the jump conditions in the Schwarzschild frame. If a shock is located at
position Rs(T ) at time T , the equation for the world surface of a shock is g = Rs(T )�R =
0. In addition, the perfect 
uid stress-energy tensor in the Schwarzschild frameo is

T 0�
�
= c�2(�+ p)g0��u

0�u0� + pg0��g
0�� = nwg0��u

0�u0� + pg0��g
0��; (C.5)

and the conservation of mass equation is [nu0�@g=@x�] = 0. 35;14 Using Eqns (C.3), the
junction conditions becomeh

T TT S � TRT
i
= c2

h
(�A2(u0T)2nw + p)S + nwA2u0Tu0R

i
= 0 (C.6)h

T TRS � TRR
i
=
h
SnwB2u0Tu0R � (nwB2(u0R)2 + p)

i
= 0 (C.7)h

nSu0T � nu0R
i

= 0: (C.8)

We would like to express these equations in terms of the comoving metric functions.
First, we can rewrite the shock velocity in the comoving frame as cS = (Rt+Rr _rs)=(Tt+
Tr _rs). In addition, we can relate the metric functions from the comoving frame to those in
the Schwarzschild frame by g0�� = (@x0�=@x�) (@x0�=@x�) g��. We then obtain (cA)�2 =
(c�)�2T 2

t ���2T 2
r , B

�2 = �(c�)�2R2
t +��2R2

r and (c�)�2TtRt = ��2TrRr. In addition,
the \mass" M(r; t) contained within comoving radius r is continuous across the shock,
since [M ] = [nR2(1 + �=c2)]dR )

dR!0 0. Using Eqn (2.12), we �nd that [�2 � U2=c2] = 0.
We can use these relations to calculate the 4-velocity as measured in the Schwarzschild

frame. Since the 4-velocity in the comoving frame is u� = (�c��1; 0; 0; 0), and the ve-
locity transforms as u0� = (@x0�=@x�) u�, u0� = ���1(c _T ; _R; 0; 0), where _T = @T=@t
and _R = @R=@t. Since U � _R=�, and using the fact that the 4-velocity is normal-
ized to u0�u0� = �c2 = c2A2(u0T )2 � B2(u0R)2, we can rewrite the 4-velocity as u0� =
�(A�1pB2U2 + c2; U; 0; 0). In the special relativistic limit (GN = 0), A = 1 and B = 1
and this becomes

u0� = �((U2 + c2)1=2; U; 0; 0) = �(c�;�v; 0; 0); (C.9)

where we have de�ned v � U=� so that � = (
q
1� (v=c)2)�1. In the special relativistic

limit, then, v is the 
uid particle's radial velocity, � is usual gamma-factor (i.e. energy
per particle mass), and U is the particle momentum per particle mass.

We can now rewrite Eqn (C.6)-(C.8) and [S] = 0 in terms of the comoving metric
functions using the fact that Tr=Tt = c�2U�=(��) and [ _rs] = 0. We obtain

[UMs=(nc
2) + ��] = 0 (C.10)

[c2Ms�(1 + �=c2) � pU�] = 0 (C.11)

[MsU(1 + �=c2)� p��] = 0 (C.12)

[Ms�=n + �U ] = 0: (C.13)

oWe denote quantities in the Schwarzschild frame by primes.
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Eqn (C.2) and Eqns (C.10)-(C.13) make up the required shock conditions. One of them
however, is redundant. It can be shown that in the nonrelativistic limit, the above
conditions reduce to the Lagrangian shock jump conditions given in Ref 21.

The case considered by May and White (1967) is the penetration of a shock into a
non-relativistic medium. We set GN = 0 and �a = pa = Ua = 0 and take � = p=[(
�1)n].
Using Eqns (C.11) and (C.12) with the fact that U2

b = �2b � 1, the energy behind the
shock is found to be �b = �b � 1. Using Eqns (C.12) and (C.13), we eliminate �b and
�nd that � � nb=na = (1 + �b
)=(
 � 1). From Eqn (C.12), we �nd that

M = (
 � 1)nb�b�b=Ub; (C.14)

and plugging this into Eqn (C.2), we determine that �b = 1=(1 + 
(�b � 1)). Finally, we

plug this into Eqn (C.14) and �ndMs = cna
q
(�b � 1)=(�b + 1) (1+�b
)=[1+
(�b�1)].

(It turns out that Eqn (C.10) gives no new information). Thus, all quantities behind the
shock can be expressed in terms of �b, the \strength" of the shock.

How does this a�ect the arti�cial viscosity needed to smooth the shock? Von-
Neumann's viscosity22 is Q = k2n(U 0)2dr2 for U 0 < 0 and 0 otherwise, with the shock
being spread over roughly k2 grid points. Over the k2 points, Q � n(Ub � Ua)2 = nU2

b =
c2n(�2b � 1) = c2n(�b � 1)(�b + 1): Using the fact that �b=c2 = �b � 1, Q � n�b�b � p�
which is greater than the pressure p by the factor of � � 1. Since Q should be of order the
pressure in the shock region, we divide by �: Q = k2n(U 0)2dr2=� for U 0 < 0 and Q = 0
otherwise. In the nonrelativistic limit, � = 1 and Von-Neumann's arti�cial viscosity is
obtained.

In this paper, we are more interested in the case where the 
uid on both sides of
the shock is ultrarelativistic. We �rst set GN = 0 and Ua = 0. Then Eqn(C.2) and
Eqns(C.10)-(C.13) can be manipulated to yield

Ub =
q
�2b � 1 (C.15)

M = cna�
q
�2b � 1 �a = (�b� � 1) (C.16)

� = �b(1 + 
�b=c
2)� (1 + �a=c

2) = [�b=c
2(
 � 1)] (C.17)

�b=c
2 = �1 + �b(1 + �a=c

2) + (
 � 1)(�b � ��1)�a=c
2 (C.18)

�b = j� � �bj �a = (�b� � 1): (C.19)

(It can be shown that these equations reduce correctly in the �a ! 0 limit). Now, if we
set 
 = 4=3 and take the ultrarelativistic limit, �b=c2 > �a=c

2 >> 1, Eqn (C.17) becomes
� = 4�bf1�3�a=(4�b�b)g ' 4�b. Then the equations can be approximately solved to give

�b ' 4�a�b(1 � (4�b)
�2) = 3; (C.20)

which to lowest order is �b ' 4�a�b=3. Therefore, �b depends not only on �b but also on
�a. We generalize the arti�cial viscosity to

Q = k2n
�
1 + �= (�c2)

�
(U 0)2dr2= � for U0 < 0

Q = 0 otherwise: (C.21)

33



For a strong shock then, Q � n�U2=(�2c2) � n� � p, as desired. And when c2 !1, this
becomes VonNeumann's original expression. Note that because this was derived in the
limit of strong shocks, it does not work as well for weaker special or general relativistic
shocks.33

We now write down the exact solution of Eqns (C.15)-(C.19) for conditions behind the
shock in terms of �b only and quantities in front of the shock. Because � = n� in this limit,
we can rewrite Eqns (C.17) and (C.18) as � = 4�b�b=(3�a+�b) and � = (3�b+�a)=(4�a�b)
respectively. Setting them equal, we can solve for �b. Then, all others quantities are
determined. They are

Ub =
q
�2b � 1 (C.22)

�b
�a

=
16�2b � 10

6

�
1 +

q
1 � 36 (16�2 � 10)�2

�
(C.23)

M = � na�a(3�b=�a + 1)

4�b
q
3�b=�a

(C.24)

� � nb
na

=
4�b

3(�b=�a)�1 + 1
(C.25)

�b
�a

=
3 + �b=�a

4�b
(C.26)

�b =
�a
�b
�a =

3 + (�b=�a)�1

4�b
�a: (C.27)

We note from Eqn (C.27) that [�w] = 0.
Appendix D: Nonrelativistic Shock Tube Problem

In this section, we sketch the derivation of the slab shock tube solution for non-
relativistic 
uids.29 We start with a 
uid in which the pressure p and speci�c volume
V � 1=n (where n is the number density) to the left and right of x0 are p1; V1 and p2; V2
resectively|thus, p and V are discontinuous across x = x0. We assume here that our
coordinates are oriented so that p1 < p2 and V1 > V2. In addition, the 
uid is initially at
rest: v1 = v2 = 0. Because there is no scale to the problem, the solution is a function of
x=t only, where x is the Eulerian coordinate. At time t later, there are 4 regions. Region
1 and 2 are at rest with p = p1; V = V1 and v = v1, and p = p2; V = V2 and v = v2
respectively. Separating region 1 and 3 is a shock wave, with position xd. Region 3
contains the 
uid behind the shock, and region 30 is wedged between regions 3 and 2 and
contains the rarefaction wave. The boundary between region 3 and 30 is called a contact
discontinuity and is at position xc. The velocity and pressure are constant across this
boundary: p30 = p3 and v30 = v3. The number density, however, is not. Finally the
boundary between region 30 and region 2 is located at xa. We will calculate p; V and v
for regions 3 and 30 at time t, assuming that � = pV=(
 � 1). We will solve for the
following unknowns: p3; v3; n3; n30 and p; n; and v in the rarefaction wave.

Across a shock front, v1�v3 =
q
(p3 � p1)(V1 � V3) and �1��3+ 1

2(V1�V3)(p1+p3) = 0.
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Using � = pV=(
 � 1), they become

V3 = V1[(
 + 1)p1 + (
 � 1)p3]=[(
 � 1)p1 + (
 + 1)p3] (D.1)

v3 = �(p3 � p1)
q
2V1=[(
 � 1)p1 + (
 + 1)p3] (D.2)

The similarity solution for a rarefaction wave is 20

p = p2[1� (
 � 1)jvj=(2c2)]2=(
�1) (D.3)

V = V2(p2=p))
1=
 (D.4)

v = 2(c� c2)=(
 � 1) (D.5)

jvj = 2(c2 � x=t)=(
 + 1); (D.6)

where the local speed of sound is given by ci =
p

piVi. We can equate the speed of the


uid v3 to the 
uid velocity in the rarefaction wave between regions 3 and 30. We �nd

v30 = 2c2[(p2=p3)
(1�
)=(2
) � 1]=(
 � 1) (D.7)

Combining Eqns (D.2) and (D.7), we �nd that

p3 = p1 +
1


 � 1

s
2
p2n1
n2

q
(
 � 1)p1 + (
 + 1)p3

h
1� (p3=p2)

(
�1)(2
)
i
: (D.8)

This equation can now be solved numerically for p3. We can then determine v3; n3; and n30

using Eqns (D.2), (D.1) and (D.5). In addition, we �nd p; n and v from Eqns (D.3),
(D.4) and (D.5). in the rarefaction wave.

The �nal step to the solution is determining the location of the boundaries separating
these regions. Since the rarefaction wave is moving at the sound speed in region 2,
xa = tc2. Since the velocity at b is vb = v30 from Eqn (D.7), we then use Eqn (D.6)
to �nd its position: xb = tc2[1 � (
 + 1)=(
 � 1) [1 � (p2=p3)(1�
)(2
)]]. The contact
discontinuity moves with the 
uid and its position is thus xc = v3 t. Finally, the shock
position can be determined by transforming to a frame in which the shock is constant
and using mass conservation. We then transform back to �nd the the velocity of the
shock to be vs = (n3=(n3 � n1))v3 so that xd = vst.
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FIGURE CAPTIONS
Fig. 1: The evolution of a compensated, pressureless void with radius Rwall(ti) =

333cH�1
out(ti) and for velocity U(ti; R) =

q
2GNM=R. The energy density as a function of
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RR(ti; RB)=R(t; RB) ' R(ti=t)2=3 is shown at the initial time ti = 1 and at times t = 10,
100 and 300.

Fig. 2: Same as for Figure 1 but with velocity U(ti; R) = c�1R
q
8�GN�=3. A dense,

thin, outward-moving shell is formed. Shell-crossing occurs at t = 1:048.

Fig. 3a: The evolution of a pressureless, uncompensated void with radius Rwall(ti) =

:0067cH�1
out(ti) and velocity U(ti; R) = c�1R

q
8�GN�=3. Arti�cial viscosity is used to pre-

vent shell-crossing. The energy density as a function of RR(ti; RB)=R(t; RB) ' R(ti=t)2=3

is shown at the initial time ti = 1 and at times t = 50, 100, 400 and 1000.

Fig. 3b: Same as Figure 3a but for a compensated void.

Fig. 3c: The radius of the shell versus time for the results pictured in Figures 3a and
3b. The predicted self-similar solutions are overlaid as a dotted and dashed line for an
uncompensated (Rshell / t8=9) and compensated (Rshell / t4=5) void respectively.

Fig. 4: The relative errror in the energy density versus RR(ti; RB)=R(t; RB) '
R
q
ti=t for an initially homogeneous and isotropic FRW universe with p = �=3 at time

�t=ti = :1. The results are for f = :01, :005, and :0025 shown with solid, dotted and
dashed lines, respectively.

Fig. 5: The nonrelativistic shock tube for Rwall(ti) = 20, �Rwall(ti) = :01 and
GN = 0. The dashed lines represent the exact slab similarity solution.

Fig. 6a: The nonrelativistic evolution of an uncompensated void with GN = 0. The
dashed line is the initial time ti = 1, and the triangles with connecting lines is at time
t = 2:5 after the inbound shock has bounced and the 
uid has begun to settle down.

Fig. 6b: Same as Figure 6a but for a compensated void.

Fig. 7a: Collapse of a special relativistic, uncompensated void for Rwall(ti) = 1,
�Rwall(ti) = :02, T=� � 1, GN = 0, U(ti; R) = 0 and � = 10�4. Shown is M , �, 4��
and � versus R for the initial time ti = 1 and for times t = 1:04 and 1:065 (before the
shock reaches the origin).

Fig. 7b: We plot 4�p versus R for special relativistic voids with initial varying wall
thicknesses at the initial time (unlabeled) and at later times t = 1:04 and 1:07, 1:08 or
1:065. The parameters are the same as in Figure 7a but with �Rwall(ti) = :02, :04, :06
and :1.

Fig. 7c: Collapse, thermalization and homogenization of a special relativistic void.
The parameters are the same as in Figure 7a. Shown is the initial time ti and times
t = 1:04 (void collapsing) and t = 3:0 (after collapse).
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Fig. 8: Collapse of a general relativistic, uncompensated void for Rwall(ti) = 1,

�Rwall(ti) = :02, T=� � 1, U(ti; R) =
q
2GNM=R and � = 10�4 at the initial time

ti = 1 and at times t = 1:04 and 1:065.

Figs. 9a,b,c: Collapse of general relativistic, uncompensated voids for Rwall(ti)=

H�1
out(ti) = 25, �Rwall(ti) = 1, T=� � 1, U(ti; R) =

q
2GNM=R. Figures 9a, 9b and 9c

show the pressure versus RR(ti; RB)=R(t; RB) ' R
q
ti=t for � = 10�4, � = 10�6 and

� = 10�10, respectively.

Figs. 10a,b: Collapse of general relativistic, uncompensated and compensated void
in 10a and b, respectively. Rwall(ti)=H

�1
out(ti) = 250, �Rwall(ti) = 10, T=�� 1, U(ti; R) =q

2GNM=R and � = 10�10 for both. Shown is the pressure versus RR(ti; RB)=R(t; RB) '
R
q
ti=t.

Fig. 11: Collapse of a general relativistic, compensated void for Rwall(ti)=H
�1
out(ti) =

250, �Rwall(ti) = 10:, T=� � 1, U(ti; R) = c�1R
q
8�GN�=3 and � = 10�10. Shown is

the pressure versus RR(ti; RB)=R(t; RB) ' R
q
ti=t.

Fig. 12: 1st-crossing times versus R
q
ti=t for general relativistic voids with initial

radius Rwall(ti) = c1023H�1
out(ti) and outside temperature Tout = TRH, where TRH is the

reheat temperature. The dash-dot lines are for �in(ti) = Tout(ti)=Tin(ti) = 5 � 1011, 1015

and 1020 and the temperature at which each void potentially thermalizes is T = 500,
106 and 1011GeV respectively. We also plot (long dashes) the evolution of a conformally
stretched perturbation with the same initial size, rCM, and the Hubble radius (short
dashes) outside the void, rHOR. If TRH = 1014GeV, then recombination occurs at t=ti =
1045 (or at temperature Trec ' 3� 10�9GeV), where rCM and rHOR intersect.
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