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The renormalization of a general action for massive lattice fermions is discussed. The analysis applies for all
m,a. Preliminary results for the sell energy at one loop in perturbation theory are presented.

1. INTRODUCTION

This paper is a progress report of efforts to cal-
culate the renormalization of fermion masses and
bilinear currents in one-loop perturbation the-
ory [1}. When these calculations are finished,
they will permit a determination of heavy-quark
masses, they will give one-loop predictions for the
tuning of improvement parameters in the action,
and they will give a one-loop guide for extrapo-
lating matrix elements to the continuum.

After specifying a general action in sect. 2,
sect. 3 sketches an all-orders derivation for mass
and wavefunction renormalization in terms of the
fermion self energy. We have the self energy
to one-loop for the simplest action, and present
results with and without tadpole improvement.
Sect. 4 discusses current renormalization.

2. THE ACTION
Consider the action S =S¢+ Sg +Sg + -+,

So = mo / B(z)p(z) - sar / 3(z) A p(z)
+ / ¥(z)v-Di(z) (1)
+4 [3(@)0 +20)D5 - (1= ) DF ),

Sp = —4acaC / ¥(z) X B(z)¥(z), 2)

S& = ~4acs( [$(z)a-Bl2)u(2) 3)

Special cases are the Wilson action [2], which sets
r=( =1, cp =cg =90, and the Sheikholeslami-

J&
aFE

Wohlert action [3], whichsetsr=( = 1,¢g = ¢g.
To remove lattice artifacts in general the parame-
ters moa, r, {, cg and cg must all be adjusted [4).
In a non-relativistic setting, however, it is enough
to adjust mea, cp, and cg [4].

3. THE SELF ENERGY

The self energy X(p) is related to the
momentum-space propagator by

5~Yp) = S5 (p) - =(p), (4)

where Sp(p) is the free propagator. In perturba-
tion theory X(p) is the sum of all one-particle
irreducible graphs. The po-Fourier transform
C(t,p) = (2r)7" [dpo €'P°* S(p) obeys

Clt,p) = Za(p)e~BPMIQ + - .-, )

where E,, is the energy of a one fermion state with
momentum p, and '@ is a Dirac matrix satisfy-
ing (Q@70)% = Q0. The - - - denote multi-particle
states, which are irrelevant here.

The self energy has the decomposition

Z(p) =iy _ vusinpua Au(p) + C(p) (8)

B

in Dirac matrices. For a Euclidean invariant cut-
off C and A, = A Vu are functions of p? only.
With the lattice cutoff, however, they are con-
strained only by (hyper)cubic symmetry. For em-
phasis it is convenient to write, say, C(pg, p)-

To obtain an expressions for E, and Z; one
carries out the pg integration with the residue
theorem. For arbitrary p the energy E, is the
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solution of the implicit equation

14+ moa + ir¢pa® - C =

(7)
cosh Ea 4 (1 — Ap)v1 — P? sinh Ea,
for E. The abbreviation
2 _ S0 A pya 9

(1 - Ap)?sinh® Ea -

Here the self-energy functions Ay,(po,p) and
C(po, p) are evaluated at po = iE. The solution
of eq. (7), E = E,, defines the (lattice-distorted)
mass shell of the fermion. The residue is

Z;1(p) = (1 — Ag) cosh Epa — CVI- P2
+(VI=P2 4 Ag)sinh Epa

3=, Aj(¢ — Aj)sin® pja
(1 — Ag)sinh Epa

(9)

The notation f = (¢2)~1(df/dpo). In eq. (9) the
self-energy functions A, (pg, p) and C(po,p) are
evaluated on shell, i.e. py = iE,.

The p dependence of Z3(p) is an artifact of
the lattice cutoff. An acceptable definition of the
wavefunction renormalization constant is

Z;l =eM1%_ Aq cosh Mya+ Agsinh Mja—C (10)

at p = 0, where M; = Ep is the (all-orders) rest
mass of the fermion.
Eq. (7) at p = 0 determines the rest mass via

eM1% = 1 4 mya + Agsinh Mya ~C (1
and the dynamic mass M, = (d?E,/dp}); 2, via

eM;a (C —A1)2

=r(+ -
Maa . (1 — Ag)sinh M,a (12)

d . . )
'+d_p2 [Ao(zE,,p) sinh Epa — C(zE,,,p)] .
1

A total p;-derivative includes an explicit part and
an implicit part through the E, dependence. In
eqs. (11) and (12) the self-energy functions and
derivatives are evaluated at py = iM, and p = Q.

For a massless fermion, My = Ms = 0. The
bare mass that induces M; = 0 obeys

My = 0(01 0; mo::a)‘ (13)
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Figure 1. Plot comparing Ml[l]a vs. Mpa (solid

curve) and Mlma vs. Moa (dashed curve). The
static point is indicated by the box {5].

The third argument of C denotes the parametric
dependence. It is useful to take care of this term
once and for all, and write

eMis = 1+Moa+AosinhM1a—6‘ (i4)

where Moa = mya — my.a = (26)~1 — (2x,)71,
and C(iMia,0; mga) = C(iMiq,0; mga) — my.a.

We turn now to one-loop results for r = ¢ = 1,
cg = cg = 0, with and without tadpole improve-
ment. In perturbation theory the rest mass has
an expansion

Mia =log(l + Moa) + Zggle{‘]a. (15)

i=1

In the tadpole improved version Mpa = M, a/ug,
where up is a suitable (gauge invariant) average
link. In applications both up and k. would be
taken from Monte Carlo calculations. Below we
choose up = (8x.)~!. Figure 1 shows the one-loop
correction to the rest mass M;. As expected, M{ll
is significantly smaller than Mlm.

For the dynamic mass it is better to define a
renormalization factor via My = myZys, where

Moa(l + Mod)(? + Moa)
2¢%(1 + Moa) + r( Moa(2 + Moa)
1s the tree-level expression for the dynamic mass,
except that the linear mass divergence is ab-
sorbed, order by order, into Mopa. The tad-
pole improvement is My = myZys, where s, is

maea =

(15)



0.25 P

™

0.15 ;

T o1

0.05

T I T PP T T T

!
iy

0,05 B L L T ST ST T
0 5 10 15 20 25 30 35 40 45 50

M3a

Figure 2. Plot comparing Z,[‘lll (solid curve) and
Zj[:!] vs. Maa (dashed curve).

given by the right-hand side,of eq. (16), but with
Moa — Moya. The factors Zy have series

(v )
(=) (=)
Zm =1+ g2ZY (17)
=1
Figure 2 shows the one-loop renormalization of
the dynamic mass. Again, IZE,]I is significantly
smaller than IZI[J,II.

To define the perturbative coefficients for the
wavefunction renormalization constant, factor
out eMis The tadpole improved constant is
Zy = ugZy. The perturbative series are

=) 20 ()
Mz =143 g2z (18)
=1
The one-loop coefficient has an infrared diver-
gence, which can be regulated with a gluon mass

- ()
A. Figure 3 plots the IR-finite (z;m = sz +
log(A2a?)/(672). Once again, 251] is significantly
smaller than zg].

4. VERTEX CORRECTIONS

A full vertex function takes the form

V(plg) = S(p)T(plg)S(q). (19)

In perturbation theory T is given by the sum of
all truncated three-point diagrams. To put the
external lines on shell, one Fourier transforms

Zé”
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Figure 3. Plot comparing z£1] vs. Mopa (solid

curve) and Egl] vs. Moa (dashed curve). The
static point is indicated by the box [5).

in po and go. Poles arise precisely as in the self-
energy derivation, so the on-shell truncated ver-
tex function is T'(iE,, PliEq,q). Consequently,
when normalization conditions introduce a factor
1+mga at tree level, the all-orders generalization
is M2, just as with Z;!.
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