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Abstract

The Tevatron collider is now able to operate with two low-[ (B*=0.25-0.5m) interaction
regions denoted as BO and DO. This lattice allows independent operation of the interaction
regions which required that the previous collider lattice, used in 1988-89, had to be modified. In
order to see how well the lattice conforms to the design, measurements of the f function have
been carried out at 15 locations in the new Tevatron collider lattice. Agreement can be obtained
between the measurements and a computer model for the Tevatron, based on the design, only if
the strengths of the gradients in the quadrupoles in the low-§ triplet are allowed to differ from
their design values. It is also observed that the lattice is very sensitive to the precise values of the
gradients in these magnets.

. Introduction

The Tevatron is able to operate as a collider with two low—f (B*=0.25-0.5m) interaction
regions denoted as BO and DO. This lattice was designed to allow independent operation of the
interaction regions and is quite different from the previous collider lattice, used in 1988-89. The
design of these new low-[} insertions required the construction of new, strong, quadrupoles to get
to the desired value of *=0.25m at 1TeV. In addition new quadrupole correctors are required
outside of the triplet to match the lattice functions of the low-P insertion with the values in the
lattice arcs at the matching point, an essential requirement if operation of the interaction regions is
to be independent.

In addition to a new interaction region at DO, the Tevatron collider closed orbit is a helix
produced by electrostatic separators. This is done to reduce the beam-beam interaction between
the colliding protons and anti-protons. We can now run with smaller proton emittances, compared
to the last collider run, and thus increase the luminosity. Additional separators are used to make
the beams collide head on at the interaction points. The use of separated orbits complicates
operations but has only a small effect on the lattice functions.

As with any new facility it is very desirable to test how well the actval performance matches
the design expectations. With this as our objective, the lattice function 8 was measured at 14
locations within the insertion, and also at one point in the arc, and the results compared to the
calculations of B based on the design lattice. This note describes the results of that comparison.

l1. Method

The method used to measure the amplitude function B was proposed by Courant and Snyder
in their original paper on the Alternate Gradient Synchrotronf1]. The procedure is to vary the
strength of a single quadrupaole, at a point in the lattice where it is possible to do so, and measure
the resulting change in the tunes. The change in tune, in a given plane, is related to the value of 8
in that plane at that point, according to the following formula:

B= dn Av/(LAK2)
where AkZ=AB"/[Bp] and AB’ is the change in the gradient of the quadrupole and L is its length.

Because this relation is true only in the limit of very small AB’, at which the change in tune
is not measurable, tune changes were measured over a range of AB’ and the data were fitto a
second order polynomial. The slope of the {it at AB’=0 gives the desired value of J3.

The measurements of B, using this procedure, were made at 7 locations on both sides of the
interaction regions at BO and DO and at near the location of a tuning quadrupole at E17. During
these measurements there were only protons in the Tevatron.

It is obvious that no measurements, using this approach, can be made at the interaction
points since those points must be left clear for the experiments. Further the low value of B there

*Operated by Universities Research Association Inc., under contract with the United States Department of Energy.



means that even if a quadrupole could be placed at the interaction point large changes would have
to be made in the gradient to observe any tune shift. Knowledge of the values of the lattice
functions at the interaction point must come from a model of the lattice.

ll. Comparison With A Model For The Tevatron

An accurate model of the Tevatron would be able to reproduce the measurements made of
the f3 function described above. As is seen the agreement between the measurements and the
model using the design values for the the quadrupole gradients is not good (see figures 1a,1b,1¢).
The reason for the discrepancy was due to an inadequate knowledge of the transfer functions (the
relationship between the current in the magnet and the resulting gradient) of the strong
quadrupoles in the magnetic triplet.

The P function in the present low-f Tevatron lattice is very sensitive to small changes
in the strengths of the quadrupoles in the low-J triplet. Figure 2 shows the change in the
function in the arcs when the gradients of the 232" quadrupoles at BO are changed by 0.1%. In
order to predict the behavior of the f function in the Tevatron it is necessary to know the transfer
constants, i.e. the relationship between the current through the quadrupole and the resulting
gradient, for the magnets in the triplet to better than 0.1%.

The fabrication methods used to construct these quadrupoles would lead us to expect magnet
to magnet variations in the transfer constant of 0.05% for the 232" quadrupoles and 0.07% for the
132" quadrupoles. Thus the manufacturing tolerances are not good enough to enable us to predict
the characteristics of the lattice. The other new quadrupoles in the low—p insertions have larger
uncertainties (~0.1%) but are they weaker and are also at points in the lattice where they are less
critical in determining the values of .

An attempt was made to measure the transfer constants at the Fermilab Magnet Test Facility
(MTF). Unfortunately there were serious problems with the measuring techniques which made
the absolute values of the measured transfer constants unreliable, and therefore they have not
been used in our mode] calculations.

Despite the fact that we could not measure, at MTF, the absolute values of the transfer
constants we should be able to make use of the relative strengths of the magnets as measured at
MTF to account for the variance in quadrupole gradient due to manufacturing tolerances. These
relative measurements have been incorporated into our model.

We have attempted to fit the measured values of B by varying, in our computer model, the
strengths of the magnets in the triplet. Unfortunately the properties of the triplet are such that the
three quadrupoles are at essentially the same phase. This means that we are unable to extract
meaningful values only for the strength of the triplet and not for the individual elements.

We find reasonable agreement between the model and the data with reasonable changes in
the nominal values of the quadrupoles in the triplet (figures 3a,3b,3c). Because of the correlation
between the fitted transfer constants this procedure does not yield the values of the transfer
constants for the individual quadrupoles but the procedure does give a reasonable model of the
lattice.

IV. Conclusions
The B function in the Tevatron collider lattice is very sensitive to the precise values of the
strengths of the quadrupoles in the low-P triplet. Changes in the integrated gradients by 0.1% can
produce significant changes in B in the arcs as well as in the low-J insertions.
We have been able to get reasonable agreement between the measured values of B and our
model by making reasonable changes in the nominal values of the strengths of the magnets in the
triplets producing the low-J interaction point.
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