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Abstract 

It is a common belief among field theorists that path integrals can be com- 
puted exactly only in a limited number of special cases, and that most of 
these cases are already known. However recent developments, which gener- 
alize the WKBJ method using equivariant cohomology, appear to contradict 
this folk wisdom. At the formal level, equiwiant localization would seem 
to allow exact computation of phase space path integrals for an arbitrary 
partition function! To see how, and if, these methods really work in prac- 
tice, we have applied them in explicit quantum mechanics examples. We 
show that the path integral for the l-d hydrogen atom, which is not WKBJ 
exact, is localizable and computable using the more general formalism. We 
find however considerable ambiguities in this approach, which we can only 
partially resolve. In addition, we find a large class of quantum mechanics 
examples where the localization procedure breaks down completely. 
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1. Introduction 

The major failing of the path integral method applied to quantum field theory or 
quantum mechanics is that most physically relevant path integrals cannot be com- 
puted. The known exceptions fall roughly into three categories. There are the Gaus- 
sian forms, which are the basis of perturbation theory in quantum field theory. There 
are also certain exactly solvable models, usually quantum mechanical integrable sys- 
tems. In such cases the path integral is often computable due to the fact that the 
WKBJ approximation is exact. Thus the path integral localizes to a sum over clas- 
sical trajectories. The third category is path integral representations of topological 
quantities such as the Euler character or the Witten index. Here one often finds that 
supersymmetry in the path integral implies an equivariant cohomology structure, 
which localizes the path integral onto zero modes or characteristic classes. 

As emphasized in [l, 2, 31, the common denominator of most exactly computable 
path integrals is equivariant cohomology and localization. This raises the possibil- 
ity that by studying these methods directly we may greatly expand our inventory of 
doable path integrals, as well as WKBJ-like approximation schemes. Though equiv- 
ariant cohomology is usually associated with supersymmetric theories, it actually has 
very general application. The key ingredient required is some sort of differential form 
structure among the physical, auxiliary, or ghost variables. This is a rather weak 
requirement. In fact, as recently shown by Blau, Keski-Vakkuri, and Niemi[l], and 
by Niemi and Tirkkonen[4], equivariant cohomology can be exhibited in an arbitrary 
phase space path integral. Further, they showed formally that under seemingly weak 
conditions, this results in equivariant localization of these path integrals. They would 
thus be exactly computable! 

Of course, we do not really expect arbitrary phase space path integrals to be 
exactly computable. Since equivariant localization proofs are very formal, there are 
ample opportunities for subtle difficulties to creep in. Also phase space path integrals 
are themselves rather disreputable. As pointed out in [l], there is a well known 
false method for computing arbitrary phase space path integrals via Hamilton-Jacobi 
theory and (invalid) canonical transformations of the path integral variables[5, 61. 

In short, there is no substitute for simple, explicit examples, and that is the 
subject of this paper. In section 2. we briefly review equivariant cohomology and 
localization formulae for path integrals. In section 3. we make the formalism explicit 
by considering the phase space path integrals for the free particle and the harmonic 
oscillator. We use equivariant localization to write the partition function of a one- 
dimensional quantum mechanical system with an arbitrary static potential as an 
elementary contour integral. Along the way we see that this derivation breaks down 
for essentially all potentials which are bounded below. 

In section 4. we consider the 1-D hydrogen atom, whose potential is not bounded 
below. Its path integral is not WKBJ exact, and is not amenable to Morse theory 
analysis since its classical trajectories all coalesce at two points in phase space. Nev- 
ertheless we show that it is exactly compu’table via equivariant localization, module 
an important ambiguity which we discuss. 
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2. Equivariant Cohomology and Localization 

Equivariant cohomology is a simple and powerful generalization of ordinary de 
Rham cohomology and the calculus of differential forms (for details, see [7, 81). To 
describe differential forms with respect to some d-dimensional manifold M, it is con- 
venient to introduce a contravariant vector of anticommuting Grassmann variables 
co. Then differential forms can be represented as covariant tensor functions on M 
contracted with the P’s: 

0 - forms : d@), 

1 - forms : 4&)c”, 

2 - forms : hb(“)CaCb, 

etc.. 

The exterior derivative operator d can be written 

d 
d = c”--. 

axa 

(2.1) 

(2.2) 

It takes n-forms to n+l-forms and is nilpotent: d2 = 0. De Rahm cohomology is the 
classification of closed forms (forms which are annihilated by d) module exact forms 
(which are d of something). 

To define equivariant cohomology, we first introduce a new operation, zx, which is 
interior multiplication with respect to an (arbitrary) vector x”(z). Explicitly: 

Clearly Ix takes an n-form to an n-l form: 

Q$(~) = 0, 

w?ia(z)Ca = 4.x”, 

&,b(X)&b = $&b(fCb - X’C”). 

Furthermore tX is nilpotent. 
We can now define an equivariant exterior derivative dx by 

(2.4) 

d,=d+t,. 

Note that dx takes an n-form to both an n+l-form and an n-l form. Now, d, is not 
generally nilpotent: 

d; = (dz, + txd) = Lx, (2.6) 

where /Z, is the Lie derivative with respect to the vector x”(z). Thus d, is nilpotent 
only on the subspace of differential forms which are annihilated by the Lie derivative 

4? 
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Without going into more rigorous mathematical detail, we are already in a position 
to sketch the general derivation of equivariant localization formulae. Suppose we want 
to compute an integral over the manifold M of some general form o, where by a general 
form we mean a linear combination of different n-forms (including a top-form): 

/ 
a 

M 
(2.7) 

In order to apply equivariant localization, we must be able to find a vector x” such 
that, with respect to x0, a is equivariantly closed: 

d,a = 0 . P-8) 

In addition, we must be able to find some other differential form /3 which is in the 
subspace annihilated by Lx: ,Q3 = 0, and is not equivariantly exact. When this can 
be done, one constructs the following modified integral: 

where X is a numerical parameter. It is then straightforward to show that, formally, 
this modified integral is independent of the value of A: 

= 0. 

(2.10) 

In the above we used d,a=O, d,d,p=O, and the fact that the integral of an equivari- 
antly exact form vanishes. 

Thus, provided the limits X-0 and X-VW exist, we obtain the following localiza- 
tion formula: 

/Ma = jiim/Mo eexdxP . (2.11) 

The original integral over M has been localized to a subspace M,, which is the support 
for the nontrivial equivariant cohomology (d,P = 0). 

When applied to ordinary (finite dimensional) integrals over compact manifolds, 
the above arguments can be made rigorous, and the right hand side of (2.11) (for 
suitable choice of ,f3) reduces to the WKBJ formula. This is the Duistermaat-Heckman 
theorem. 

At the formal level, this result was extended in [l] to apply to general phase space 
path integrals. Consider a general bosonic quantum mechanical phase space path 
integral: 

i(T) = /[d(Liouville)] eis = /[dg"]\ll;lrtlliballe*Pi/oT dt (&& - H(4)) , (2.12) 
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where p(t) are the coordinates of phase space (satisfying periodic boundary condi- 
tions), 0,(o) are their conjugates, H is the hamiltonian, and w.b is an antisymmetric 
tensor giving the symplectic 2-form whose matrix inverse defines Poisson brackets: 

&b = a& - a&, . (2.13) 

Introducing real Grassmann auxiliary coordinates c”(t), which also satisfy periodic 
boundary conditions, we can write: 

Z(T) = /[dF][dc”] expiiT dt (8,$” - H(4) + $%&bcb) . (2.14) 

We can then identify loop space differential forms as tensor functionals of the @‘(t)‘s 
contracted with the c~(~)‘s. There are two vectors of obvious significance for defining 
equivariant operations. One is the hamiltonian vector field, which is defined by the 
relation: 

&H(4) = w.b?& . (2.15) 

The other is a, since +a, generates time translations on our dillerential forms. 
In [I], equivariant cohomology is defined with respect to the vector 

x>(t) = 5%) - x%4(t)) 3 (2.16) 

since, as one can easily verify, dsS = 0. Furthermore, the zeroes of x%(t) correspond 
to the classical trajectories. Thus, if we shift the action by ds of a l-form p 

S-+S+MsP, (2.17) 

and choose p proportional to ~2, we can expect to obtain a WKBJ localization of 
Z(T). Since both xz and ca are contravariant, we cannot construct such a p without 
also introducing a metric on loop space, G.b(tr, ts). Then we may define /3 as 

P = Jdt& Gob(tl,tZ)x~(t,)cb(tZ) . (2.18) 

Recalling that the localization argument requires L&=0, one finds that this reduces 
to the condition 

.&Gas(h, tz) = 0 . (2.19) 

In other words, ,& must be a Killing vector of the loop space metric. It is easy to see 
that Li automatically annihilates Gob(tl, ts) provided it takes the form 

G.s(h,tz) = gab(d(t)) a(t, - tz) . (2.20) 

Then (2.19) reduces to the constraint 

&Nab(d) = 0. (2.21) 

In other words, xk must be a Killing vector of the finite dimensional metric gab. 
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As shown in [l], the formal procedure just outlined results in a WKBJ localization 
of the path integral (2.12). Thus in the case where these formal steps actually carry 
through, the path integral is WKBJ exact. As already mentioned, there are a number 
of known examples where this occurs. This is well-trodden territory, and we have not 
attempted to explore it further. 

Instead, we turn to the recent paper by Niemi and Tirkkonen(41, in which they 
apply a di&-ent equivariant localization scheme to the general phase space integral 
(2.12). The difference lies in the choice of the l-form p: instead of (2.18) they choose 

P = +gab@C” , (2.22) 

where we suppressed the t integrations which accompany index contractions. The 
equivariant localization procedure is otherwise the same as described above. One 
then obtains a localization of Z(T) not onto classical trajectories, but rather onto the 
time independent modes of p(t) and c”(t). Their result (correcting a minor typo) is 

Z(T) = J &f,;&-$ e-i=Wd+i+Tc&& 
1-1 (2.23) 

In this expression, the determinant is an ordinary matrix determinant, and the inte- 
grals are finite dimensional integrals over the time-independent real variables & and 
real Grassmann variables %. The tensors R ob and R.6 can be expressed as geometric 
quantities in terms of the metric gob and the hamiltonian vector ,Y& which is a Killing 
vector of C&b: 

0-b = 2x$ , 

%b= &bed&$ 

(2.24) 

Now (2.23) is a remarkably simple result. If this localization proved to be valid 
for some large class of physically relevant partition functions, it would be an excit- 
ing and important achievement. Less optimistically, we have here at the very least 
an alternative to WKBJ methods which is equally nonperturbative. Further, both 
WKBJ and the Niemi-Tirkkonen formula are merely examples of much more general 
equivariant localization techniques. 

3. Application to I-D Quantum Mechanics with Static Potentials 

The simplest possible application of (2.23) is to one dimensional quantum mechan- 
ics with static potentials. In this case there are only two phase space coordinates, 
x(t) and p(t), and the Hamiltonian is of the form 

H = ;p” + V(z). (3.1) 
For the moment, let us confine ourselves to potentials which are bounded below. Then 
it is convenient to define “harmonic” and polar coordinates as follows: 

p = rsin0, 

V(x) - KG. = ;w2yz = f-cod?, 
H = $p’ + +2y2 + v,,~, = +’ + vmi,. 

(3.2) 
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Note that we only change variables in the time independent coordinates of the local- 
ized integral, never in the original phase space path integral. 

The advantage of working in polar coordinates is that the hamiltonian vector field 
has only one nonvanishing component: 

xe=x=-w!!! 
dx ’ (3.3) 

and it is straightforward to solve the constraint Lngob = 0, which is equivalent to: 

x&gee + 2geeaex = 0 , 
ae(xi7re) t geearx = 0 , (3.4) 

xaegrr + 2g,ea,x = 0 . 

The general solution is: 

gee = f$ , 

,,=$+oar(+$), (3.5) 

2 
grr - f;T) - -(sre)2 + h(r) . 

Note that the metric is not completely determined by the constraint; the general 
solution (3.5) involves three arbitrary functions of r: f, fs, and fs. This is not 
surprising, since we expect that the localized integral (2.23) is at least partially metric 
independent. 

A much worse feature of the general solution (3.5) is that g,e(r, 0) is not, in general, 
a single-valued function. To see this, observe that gre(O=O) = g,e(B=2n) only obtains 
if 

(3.6) 

which is equivalent to 

J 
2n 

d0 d.z = constant . 
0 & 

(3.7) 

The harmonic oscillator gives the only solution of (3.7). Thus we conclude that, 
for essentially all static potentials which are bounded below, the Niemi-Tirkkonen 
equivariant localization procedure fails, due to the nonexistence of a single-valued 
metric satisfying the Lie derivative constraint. 

What of the harmonic oscillator, the sole survivor of this calamity? In this case 
we have 

x=-w, 

gee = g) , gpe = -ad , grr = F +js(r) 
w 
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The antisymmetric tensor R ab 
independent component: 

and the curvature tensor Rabcd each have only one 

ner = -% , Roror = SC?,, , 

where we have introduced the (as yet) arbitrary function c(r): 

fbr f c(r) = - = ___. 
2& w7K 

It is now straightforward to plug into the localization formula (2.23). Performing the 
Grassmann integrals and the 0 integral leads to the following simple result: 

Z(T) = ; lrn dr 2 (-&&T) 

So, in the special case of the harmonic oscillator, the localization formula reduces to 
a total derivative. The final result is 

(3.12) 

It is surprising that, even in such a simple case as the harmonic oscillator, the 
final result of the localization procedure is ambiguous, i.e. it depends on the value 
at r=O of the arbitrary function c(r). The correct result for the path 
obtained if we impose the additional ad hoc boundary condition 

integral is only 

(3.13) 

As we will see in the next section, such ambiguities appear to be a general feature of 
equivariant localization of phase space path integrals. Thus the localization formulae, 
even when they are otherwise valid, are incomplete. This could have been anticipated 
even in the formal derivation. An obvious requirement[g] which must be incorporated 
into the localization procedure is that the I-form fl should be homotopically equivalent 
to 0 under the “supersymmetry” transformation generated by ds. Thus one expects 
generally that additional inputs are required when choosing gob, in order to ensure 
that we are in the trivial homotopy class. 

Before moving on to more interesting problems, let us consider the phase space 
path integral for the free particle. In this case H = ip*, and f=x=p. The localiza- 
tion procedure again has ambiguities, which can be eliminated by fixing the metric 
for the free particle to be: 

gab= (;I ;;) = (; ;) (3.14) 



The localization formula can be reduced to 

Z(T) = Jdpdz i$ 

With the metric (3.14) we have c(p) vanishing identically, and the above produces 
the correct result. 

4. The 1-D Hydrogen Atom 

The l-d hydrogen atom is the static potential problem with hamiltonian(lO] 

While the partition function can be computed exactly by solving the Schrodinger 
equation, the path integral for the partition function cannot be directly performed 
by standard techniques. In particular it is not WKBJ exact. The classical bound 
state orbits coalesce at x=0, p -+ fco, making this system highly unsuitable for 
localization onto classical trajectories. We wish to examine whether another form of 
equivariant localization, such as (2.23), may apply to systems of this type. 

In considering bound states it will again be useful to change variables (of the time 
independent modes only!). We define hyperbolic coordinates 

p = lrlsinh Q , 

2e* 
2= 

r(r(coshs0: ’ 
(4.2) 

so that H = -V. The original phase space maps into -ca 5 r,cr 5 M. The 
hamiltonian ye& has only one nonvanishing component: 

,f = x = - &r%osh 3a 

The Lie derivative constraint LHg.6 = 0 has exactly the same form as (3.4), with 
(r,B) replaced by (~,a). Thus the general solution for gab has precisely the form 
(3.5). However in the present case, since (I is a hyperbolic coordinate, we do not 
encounter a single-v&redness problem in defining gr,,. Explicitly: 

+ itan-‘(sinh a) 
I 

fi(T) + - 
x ’ 

which is perfectly well-defined. 
A tri;ial calculation gives 

(4.4) 

(4.5) 
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The curvature can then be computed rather easily by exploiting the relation 

f&r = 2&ror~ (4.6) 

One obtains 

&,r = & 
( 
f”- u$ _ 2 

- 1 
. 

With these results, one can easily show that the localization formula (2.23) can be 
reduced to the following simple expression: 

Z(T) = 11 dr l; da $i ( -z-&+‘~) , (4.3) 

where the function c(r) is defined by 

(4.9) 

In fact (4.9) is a general result; it follows from (2.23) for any static potential which 
is unbounded below. 

As for the harmonic oscillator, we have obtained a remarkably simple result, which 
is unfortunately ambiguous due to its dependence on the (as yet) arbitrary function 
c(r). Actually the ambiguity appears to be much worse, since the harmonic oscillator 
result only depended on c(0). We can improve the situation by performing some addi- 
tional manipulations on (4.9). We perform the a integration, and expand sin CT as a 
power series. Then, assuming that we can interchange integrations and summations, 
we have a simple expression for the integrated partition function: 

irn dT -WT = -12d “g, /_m_ dr st2, _ 1,1- ( z ) . (4.10) 
?Tq 

We then make the mild assumption that the only singularities of the integrand in 
(4.10), assumed to be an analytic function of complex r, are poles on the real axis. 
We can then convert (4.10) into a contour integral, adding the prescription that the 
contour includes all poles except the one at P = 0 (if we include all the poles, the 
integral simply vanishes). However, since the contour can be closed above or below, 
this is the same as including only the pole at r = 0. We therefore obtain 

J -dTZ(T)=4 . (4.11) 
0 

Thus we see that the result depends only on the behavior of c(r) as r goes to zero. 
To resolve this remaining ambiguity, we need an additional input. To see what this is, 
let us consider the main difference between the WKBJ localization of path integrals 
and the localization procedure which led to (2.23) and (4.9). In the former case 
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the original path integral is reduced to a sum of small fluctuation integrals around 
the classical trajectories. In the latter case, the original path integral is reduced 
to a sum of small fluctuation integrals around individual points in the phase space 
parametrized by the time independent modes (z,p). From this fact we conclude that 
the contribution to (4.9) from the region I + co, p N 0, should be approximately 
equal to the corresponding contribution in (3.39) for the free particle, provided that 
T is not near co. 

We have applied this matching condition by computing the general metric for the 
l-d hydrogen atom in (s,p) coordinates. We then matched to the free particle metric 
(3.14) to leading order in large I, and to leading and next-teleading order in small 
p’z. This is sufficient to give the leading order behavior of c(r) for small P: 

c(r) = $ (1 + c,r + c2r2 + .) . 

Actually, the evaluation of (4.11) requires knowledge of the corrections cr and cs. 
While these can be computed in principle via perturbation theory, we have not done 
so. Regardless, the leading order behavior is enough to see that (4.11) reproduces the 
correct form for the bound state spectrum of the l-d hydrogen atom: 

We consider this a nontrivial success of equivariant localization techniques applied 
to physically relevant path integrals. While we are still operating at a rather primitive 
level compared to standard WKBJ, we believe that the potential for obtaining new 
results via these more general methods of equivariant localization is much greater. 
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