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Abstract 

I study the quantum mechanics of a spin interacting with an “apparatus”. 
Although the evolution of the whole system is unitary, the spin evolution is 
not. The system is chosen so that the spin exhibits loss of quantum co- 
herence, or “wavefunction collapse”, of the sort usually associated with a 
quantum measurement. The system is analyzed from the point of view of 
the spin density matrix (or “Schmidt paths”), and also using the consistent 
histories approach. These two points of view are contrasted with each oth- 
er. Connections between the results and the form of the Hamiltonian are 
discussed in detail. 

1 Introduction 

A cosmologist must face the the issue of interpreting quantum mechanics 
without the benefit of an outside classical observer. By definition, there is 
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nothing “outside” the universe! .-The traditional role of an outside classical 
observer is to cause “wavefunction collapse”. This process causes a definite 
outcome of a quantum measurement to be realized, with the probability for 
a given outcome determined by the initial wavefunction of the system being 
measured. It is common to view this process as something the can not be 
described by a wavefunction evolving according to a Schrhdinger equation, 
but which instead must be implemented “by hand”. 

There is a growing understanding [l, 2, 3, 4, 5, 6, 7, 8, 9, lo] that the 
essential features of wavefunction collapse can be present in systems whose 
evolution is entirely unitary. The key is the inclusion of an “environment” or 
“apparatus” within the Hilbert space being studied. A subsystem can then 
exhibit the non-unitary aspects of wavefunction collapse even though the sys- 
tem as a whole evolves unitarily. The wavefunction can then divide up into a 
number of different terms, each of which reflect a different “outcome”. When 
there is negligible interference among the different terms during subsequent 
evolution, the “definiteness” of the outcome is realized in a restricted sense: 
Each term evolves as if the others were “not there”, so a subsystem state 
within a given term evolves with “certainty” that its corresponding outcome 
is the only one. None the less, the total wavefunction describes all possible 
outcomes, and one is never singled out. 

Some people object to all the “extra baggage” or “many worlds” [ll] which 
result from retaining all possible outcomes. However, this approach has 
the advantage of allowing quantum mechanics to operate in a much more 
fundamental way, and predict which subsystems can play the role of classical 
observers. Unless the predictions are falsified, this approach can never be 
shown to be wrong. 

In what follows I present a simple toy system which is designed to il- 
lustrate the essential features of a quantum measurement. A very primitive 
“apparatus” is coupled to a two state “spin”. The whole spin-apparatus 
system evolves unitarily and remains in a pure state, even as the two sub- 
systems exhibit the non-unitary evolution associated with the measurement. 
Both the “consistent histories” point of view, and a more conventional point 
of view (using reduced density matrices or “Schmidt paths”) are use to ana- 
lyze the same process. The connections between the two points of view are 
discussed. 

This paper is an expanded version of a talk presented at the “Workshop 
on time asymmetry” in Mazagon Spain 1121. The results are the same, but in 
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this paper I describe the Hamiltonian, and explore in detail the relationship 
between the results and my choice of Hamiltonian. The purpose is develop 
some intuition as to what attributes make a “good classical observer”. 

The organization of this paper is as follow: Section 2 presents some math- 
ematical tools. Section 3 introduces the toy model and illustrates what it has 
to do with a quantum measurement by analogy with the double slit exper- 
iment. Section 4 shows the behavior of the toy model in more quantitative 
detail. Section 5 introduces the “consistent histories” point of view, and 
section 6 applies this point of view to the toy model. Section 7 explains 
specifically how the form of the Hamiltonian allows the density matrix evo- 
lution described in section 4 to be achieved. Section 8 explains how the form 
of the Hamiltonian allows the consistent histories described in Section 6 to 
be achieved. Section 9 discusses the relationship between the Schmidt paths 
and consistent histories. Section 10 explores the fundamental role played by 
the statistical “arrow of time” in the processes under study. Conclusions are 
presented in Section 11, and a number of technical results are presented in 
the Appendices. Units in which h = 1 are used throughout. 

2 Tools 

The focus of this paper is the evolution of the spin and apparatus subsystems 
from pure into mixed states due to correlations being set up between the 
subsystems. The “Schmidt decomposition” provides a useful tool for dealing 
with these issues, and it will be used throughout this paper. 

If a closed system in a pure state I$) is divided into two subsystems, one 
might want to think about I$)‘s of the form 

IZL) = 14)1@ Mb (1) 

One could then say subsystem 1 is in the pure state I+),, and subsystem 2 
is in the pure state )$)s. However, this “direct product” form for I$) is far 
from general. A general 14) would look like: 

Iti) = C Qijli)l @ lj)Z (‘4 
113 

where {\;)I) and {lj),) span the two respect;ve subspaces. Then one can 
not talk about pure states for subsystems 1 and 2. However, one can say 
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something along these lines if 14) takes the special form: 

Iti) = c 4Ql @ lib 

for some orthonormal sets { b)r } and {Ji)s). This form is special because there 
is only one summation, and each state for system 1 is uniquely correlated 
with a specific state for system 2. The reduced density matrix of system 2 is 
then 

pa 3 ~1(1!4(111) = CQ;Qili)&l (4) 
t 

which is diagonal in the {Ii)*} basis. The result is that the probability 
assigned to any state 1~)s of the spin is 

(~lPZlz) = F*Tai l(zli)212 9 (5) 

which is an incoherent sum over the probabilities of each state Ii)?, weighted 
by the probability af~i assigned to that particular state. 

One can thus regard system 2 to be in state li)s with probability a;ai. 
Although quantum mechanics allows one to assign probabilities for the spin 
to be in any state, the basis in which ps is diagonal is special, because only 
in that basis does any matrix element of ps take the form of an incoherent 
sum as depicted in Eq (5) (with no interference terms like (z/+ r&(z)) . 

It turn out that the “special form” of Eq (3) can always be realized. It 
is called “Schmidt” form, and follows directly from the fact that any density 
matrix can be diagonalized. The Schmidt bases, {Ii);} and {Ii):}, are the 
eigenstates of the reduced density matrices pr and ps, and oi = fi, where 
pi are the eigenvaiues (pr and ps have the same eigenvalues, and the larger 
one has additional zero eigenvalues). For more discussion of the Schmidt 
decomposition see [13, 14, 1, 15, 16, 17, 18). Ref [13] contains the original 
mathematical result, and a brief proof is offered in [18]. 

The Schmidt decomposition allows one to expose precisely which corre- 
lations are present between two subsystems. The special form of Eq 3 shows 
that state /l)r is uniquely correlated with state 11)s and so on. It also allows 
one to make the clearest possible statement of the “state of a subsystem”, 
by providing the eigenstates and eigenvalues of the relevant reduced density 
matrix. 
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3 The toy model 

3.1 Defining the model 

The toy model discussed here is two state .“spin”(system 2) coupled to a 
modest sized “apparatus” (system 1). The Hamiltonian is the same one used 
in [18], which takes the form 

H = H, @ I, -I- I, 8 Hz + HI (6) 

Where II, represents the unit operator in the space of subsystem k. The first 
two terms give self Hamiltonians of the apparatus and spin respectively, and 
the last term gives the interaction between spin and apparatus. 

For this article I have chosen the parameters so that the interaction Hamil- 
tonian dominates over the self-Hamiltonians of the two subsystems. (Specif- 
ically Er = Ez = 0.1 and Er = 10 in the notation of (181.) The size of the 
system 1 is nr = 25 here, as opposed to nr = 12 in [18]. 

The interaction Hamiltonian is: 

Hi = Er (IT) (TI @ H: + 11) (II 8 Hf) (7) 

where Hi and H,’ are two diflerent random Hermitian matrices in the system 
1 subspace. (Each independent real and imaginary part of each element of 
H: and H: is chosen randomly on the interval [-0.5,0.5).) The random 
matrices are chosen once and for all at the start of the calculation, so HI 
is time independent. For our purposes, the role of the self-Hamiltonians for 
the subsystems can be described by the statement “the deviation of the total 
Hamiltonian from Hr is very small”. For more details see [IS]. 

The idea behind the form of HI is very simple: If the spin is up the 
apparatus is pushed in one direction by Hi and if the spin is down, the 
apparatus is pushed in a very different direction by H:. The goal is to 
correlate different states in the apparatus with the ]r) and 11) states for the 
spin. 

3.2 The purpose of the model 

The toy mode1 is designed to perform a very specific function: The model 
should take an initial state of the form 

Iv4 = (0 If), + b II),) i I-0 (8) 
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and evolve it into the state: 

Itif) = = IT), @ IO + b II), @ 141 (9) 
Where (Y 12) = 0. Actual numerical results showing this evolution sre p- 
resented in Section 4, and a detailed analysis of why this model is able to 
achieve these results appears in Sections 7. 

Both Eqs (8) and (9) are in Schmidt form. Thus one can see that initially 
the spin (and the apparatus) is in a “pure” state. Later, ps develops two 
non-zero eigenvalues, so the spin is in a mixed state. The eigenstates of the 
final spin density matrix are 11) and Ii). Th us, at the end the spin is clearly 
no longer in the o Is), + b II), state, but it may be said to be in an incoherent 
superposition of IT) and 11). An important feature is that the probabilities 
assigned to 17) and IT) at the end (a’a and b’b respectively) are the same 
as those assigned initially. The only difference is that the initial state is a 
coherent superposition of It) and 11). The choice of If) and 11) as the final 
eigenstates of the density matrix was built into the dynamics (and the choice 
of initial state). Although the evolution of the spin is non-unitary (since the 
eigenvalues of its density matrix change), the evolution of the total spin plus 
apparatus system is chosen to be completely unitary. 

3.3 Analogy with the double slit 

What does this have to do with wavefunction collapse? One might expect 
a parallel description of the standard double slit experiment: After passing 
through a double slit, an electron wave packet becomes spread out into a 
distinctive double slit diffraction pattern. At this point the electron is still 
in a pure state, and it is at this point that I wish to make the analogy with 
Eq 8, the initial state for the toy system. After interacting with a screen, the 
electron is certainly not in a pure state, but the electron may be expressed as 
an incoherent superposition of localized packets. The probability assigned to 
each packet is the same probability assigned to that location by the original 
pure electron state. (Extremely low probabilities are assigned at nodes of the 
double slit pattern, for example.) The loss of coherence of the initial state 
is due to the setting up of correlations between the electron and the screen. 
The screen plays the role of system 1 in equation (9) (of course there would 
be more than two terms in the Schmidt expansion of the electron-screen 
system). 
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For each localized packet the screen is in a different orthogonal state. The 
extent to which the electron density matrix eigenstates tend to be locaiized 
packets rather than some other types of states is determined by the nature of 
the interaction, and the initial state of the screen. It is natural to expect the 
eigenstates to be localized, due to the local nature of interactions. Because 
of the correlation between the screen and the electron, one can determine 
the state of the electron by measuring the state of the screen. In fact, one 
normally does look at the screen, not at the electron. 

There are three key feature of the double slit experiment which are present 
in the toy system. First, the density matrix eigenstates (or Schmidt states) 
take a particular form after the measurement which is determined by the 
interactions. This “pointer basis” ([3]) is {It), 11)) in the toy model, and 
fairly localized wave packet states for the electron in the double slit example. 

Second, the probability assigned to each density matrix eigenstate after 
the measurement corresponds to the same probability assigned to that state 
in the pre-interaction pure state. For the spin, this results because the coef- 
ficients “a” and “b” are the same in Eqns 8 and 9. For the double slit case, 
the diffraction pattern is represented in the distribution of density matrix 
eigenvalues after the interaction. (This is why, after many electrons strike 
the screen, the diffraction pattern is produced.) 

Third, it is very unlikely that the process will reverse itself. For the 
double slit, it is extremely unlikely that the screen will emit an electron in a 
double slit diffraction pattern. The reason why the toy model is unlikely to 
evolve from Eq 9 back to Eq 8 will be discussed in Section 7. 

One way the analogy does not work is in the details of the apparatus. The 
apparatus in the toy model is much less sophisticated than a realistic screen. 
Although the different “outcomes” of the measurement do get correlated with 
orthogonal states of the apparatus, the apparatus states do not represent a 
nice “pointer” or “mark on a screen” which clearly reflects the state of the 
quantity being measured. 

4 Results 

Figure 1 shows information about the spin as the whole system evolves. 
Initially, the state is given by Eq (8), with a = 0.7, b = 0.3. In the lower plot, 
the solid curve gives pr, the largest eigenvalue of ps. It starts out at unity, 
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as required by the “pure state” form of the initial conditions, and evolves 
to 0.7, where it holds steady. The dashed curve gives the entropy, S, of the 
spin (S s -tr[pslogs(ps)]), in units where the maximum possible entropy in 
unity. The entropy starts out zero and increases. This is always the case 
when a system evolves from a pure to a mixed state. (Note the the combined 
“spin @ apparatus” system remains in a pure state, so its entropy is zero) 

In the upper plot, the dashed curve gives the overall probability for the 
spin to be up, given by (tl ps IT). Th is q uantity is a “constant of the motion”. 
The solid curve gives l(T Il)‘Is, where ll)s is the eigenstate of ps (or “Schmidt 
state”) corresponding to the largest eigenvalue. 

Since ll)s belong to a two state Hilbert space, it is completely specified 
by J(T J1)sIz, up to an overall phase. One can see that as the eigenvalue (pi) 
approaches 0.7, the eigenvector becomes essentially If). Thus the behavior 
promised in the previous section (Eqs (8) and (9)) is realized to a good 
accuracy. 

Figure 2 is another representation of the way the eigenstates of ps evolve. 
The first row represents ll)‘, and the second row represents the other eigen- 
vector. The three columns correspond to three times. The histogram in each 
plot provides two numbers, p(f) E l(T 11)12 and p(J) s I(1 ll)[’ for the first 
row, and similarly for the second eigenvector in the second row. In this way 
one can visualize a “collapsing wavefunction” by following the eigenstates of 
ps as they ‘collapse” onto the {IT), 11)) basis. 

5 Consistent Histories 

I will now make contact with the “consistent histories” or “decoherence func- 
tional” approach to quantum mechanics of closed systems. Until now I have 
been using the wavefunction to assign instantaneous probabilities to different 
states over a range of times. By contrast, the consistent histories endeavors 
to assign probabilities to histories. Consider two projection operators: 

P, = ltxtl 6% I,; ii = 11x11 @II 00) 

where Ii is the identity operator in the apparatus subspace, and {IT), 11)) for- 
m an orthonormal “projection basis” which spans the spin subspace. These 
projection operators sum to unity: 

P,+Pi;=I. (11) 



One can take the formal expression for the time evolution: 

1$(t)) = e-‘“‘MW 02) 

and insert the unit operator (pt + fit) at will, resulting, for example, in the 
identity: 

I+(t)) = (P, + P,)e-'H(-)(Pf + ~~)e-'~"I~(O)) (13) 
= Pp- iHl(t-tt)ife-iHh 1$(o)) + jTe-W:-h)jlle-iHll 1$(o)) 

+P,e --iH(t-L~)~~~-iR:l~~(o)) + p,e-iH(t-tl)&e-iW” 1~(0))(14) 

= IIT, Tl) + In, 11) + IL tl) + Ill? 11). (15) 

The last line just defines (term by term) a shorthand notation for the previous 
line. Each term represents a particular choice of projection at each time, 
and in that sense corresponds to a particular “path”. In the path integral 
formulation of quantum mechanics the time between projections is taken 
arbitrarily small, and the time evolution is viewed aa a sum over microscopic 
paths. For present purposes, the time intervals can remain finite, representing 
a “coarse graining” in time. Each term in the above expression is called a 
=path projected state”, and the sum is a sum over coarse grained paths. 

One attempts to assign the probability “(Ii, j]][i, j])” to the path [i, j], but 
to make sense, the probabilities must obey certain sum rules. For example, 
one can define 

IiS, 4 = in, tl) + IIt, ll), (16) 

where the U.n signifies that no projection is made at tt. One would want the 
probability for the path [r,.] to be the sum of the probabilities of the two 
paths of which it is composed: 

(It, .IlIt, .I) = (it, tllltv Tl) + (It, IllIt, 11) (17) 

However, one can “square” Eq (16) to give the general result: 

UT> dl[t, 4 = ([T, TINT, tl) + (11, Illit, 11) + ([t, TIILT, 11) + UT, lll[t, Tl) (18) 

Only if the last two terms (the cross-terms) in Eq (18) are small is the sum 
rule (Eq (17)) obeyed. When the relevant sum rules are obeyed the paths 
are said to give ‘consistent” or “decohering” histories. Advocates of this 
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Table la ..Table lb 

Table 1: Testing the probability sum rule (Eq (15)) for different paths. For 
la the sum rules are obeyed for any choice of tl and t. For lb, tl = .035 and 
t = 0:06 

point of view argue that the only objects in quantum mechanics which make 
physical sense are sets of consistent histories. For a discussion of how this 
simple example links up with the (much more general) original work on this 
subject ( [19, 20, 21, 22,231) see [IS]. Other work on the consistent histories 
approach includes (24, 25, 26, 27, 28). 

6 Testing for consistent histories 

Table la checks the probability sum rule (Eq (17)) for the toy model whose 
evolution is depicted in Fig 1. The projection times are tl = .15,t = .2, and 
the projection basis is {It) , II)}. Th e sum rule is obeyed to the accuracy 
shown. In fact, using the {It) ,]I)} projection basis, the sum rule is obeyed no 
matter which projection times are chosen and how frequently the projections 
are made. 

This result came as a surprise to me. After all the interesting dynamics 
described in Figs 1 and 2, the consistent histories approach offers a complete- 
ly static perspective. The constant “T” and “1” paths are consistent right 
through the period when the correlations are being set up. 

One of the very interesting features of the consistent histories point of 
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view is that typically there are many different sets of consistent histories. It 
turns out that for this particular example some sets of consistent histories 
reflect the “quantum measurement” more directly. 

Consider for a moment a static (Hamiltonian = 0) spin, not coupled to any 
apparatus. It turns out that as long as the same projection basis is chosen at 
t and tr, one always gets consistent histories. This is true for any projection 
basis. One could choose {IT), II)} or one could choose the projection basis 
{]I), ] I)}, where IT) is the initial state of the spin (a ]T)s + 6 ]I),), and 
) I) is the state orthogonal to it. A static spin would naturally result in 
unit probability for the [I,11 path, and zero probability for all other paths. 
Table lb shows the results for the fully interacting spin, using the {IT), / I)} 
projection basis, but otherwise the same as Table la. Clearly the sum rules 
are not obeyed in this case. 

When {It), ]I)} was used as a projection basis, there was no difference, 
from the consistent histories point of view, whether the interactions between 
spin and apparatus were present or not. Consistent histories resulted in 
either case. When the {II), 1 I)} projection basis was used, the effects of 
the interactions were evident: Only in the absence of interactions were those 
histories consistent. 

Cell-Mann and Hurtle [23, 26) have emphasized the important role that 
%ecords” or correlations among subsystems can have in producing consistent 
histories. In 118) I noted that since the Schmidt decomposition gives an exact 
account of whatever correlations are present, the Schmidt states (eigenstates 
of the reduced density matrix) often make a very good choice of projection 
basis. 

Indeed, I have found the following types of histories are always consistent 
for this toy system: For the first projection time one chooses the eigenstates 
of pz (the Schmidt states) as the projection basis. At the second projection 
time one chooses the {IT) , II)} projection basis. These paths are consistent 
for any choices of the two projection times. These paths certainly reflect the 
measurement process, since (as shown in Figs 1 and 2) this process shows 
up quite explicitly in the behavior of the Schmidt states. One can expand 
on this set of paths by including additional projections on the {IT) , IL)} 
basis. However, one will not get consistent histories if one makes additional 
projections on the Schmidt basis (until after it-coincides with the {It), II)} 
basis). Thus the actual picture presented by any of these sets of paths is 
quite different from the Schmidt paths depicted in Fig 1. 
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7 Time evolution and the density matrix 

This section, and the one which follows, are devoted to describing how the 
Hamiltonian which governs the toy system is related to the results presented 
above. 

To explore the effect of HI, note that the initial state (Eq 8) can be 
written: 

Wi) = a IT) @ IX)1 + JJll) @ Pa. (19) 
Under time evolution according to HI, this state maintains a similar form: 

Mt)) = a IT) @ IXr(G + bll) 8 Ix,(%. (20) 

Where IX,(r)), and IX,(r)), are the initial apparatus state IX) evolved for- 
ward in time according to Hi and H,’ respectively. Because H: and Hf 
are different randomly chosen operators, on average the states IX,(t)), and 
IX,(t)), have no more overlap than two randomly chosen vectors in the ap- 
paratus subspace. For sufficiently large apparatus subspaces, the overlap will 
be extremely small. 

From this point of view the initial conditions, where (Xr(O)JX1(0)) = 1, 
are very special. As time evolves the value of (Xr(O)lXt(O)) decreases to 
its more natural small value. If (Xr(O)lX,(O)) were to become close to unity 
later in time, this would correspond to the apparatus “forgetting” its records, 
analogous to the screen re-emitting an electron in a diffraction pattern state. 
In the toy model, this happens very rarely (for large apparatus) because two 
vectors evolving randomly in a large space rarely overlap. (This effect has 
been discussed at length in this context by Zurek 131.) 

Much of the earlier discussion has focused on the eigenstates of the re- 
duced density matrix for the spin (ps), or Schmidt states. These states, along 
with the eigenvalues, provide’the most concise description of the state of the 
spin, and they describe the correlations with the apparatus as well. The 
Schmidt states start out being very different from the the {IT) , 11)) basis, 
but approach very close as the measurement is completed. The Schmidt s- 
tates then stabilize close to the {IT), 11)) states and do not change much 
after the measurement. 

The degree to which the Schmidt states are { 11) , II)} can be studied by 
examining the off diagonal matrix element of ps in the {IT) , ii)} basis: 

(TI P2(t) II) = ab’(X’1(~)I.~,(~)) (21) 
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Equation 21 shows that to the extent that the overlap of X,(t)), with IX,(t)), 
is small, {IT) , 11)) are the eigenstates of pi. As discussed in Appendix A, 
the typical overlap goes down as the size of the apparatus is increased, so 
even in this simple example one can see that large size is an advantage when 
building an apparatus. 

7.1 A Catch 

The case where a and b are nearly equal deserves special attention. In this 
case the eigenvalues of pz become nearly degenerate at late times, and the 
form of the eigenstates of ps becomes a delicate matter. 

Consider first the case of strict equality: 

a=b= 112 (22) 

In this limit (Tl n(t) IT) = (II dt) II) = l/2, and the form of the eigenstates 
is completely determined by (TI p.~(t) 11). In this special case the eigenstates 
are either 

(23) 

if (TI~z(t)ll) isnon-zero(nomatterhow small!),orundeterminedif (TI~2(t)\l) 
is ezactly zero. (See Appendix A for the definition of the phase 0 and further 
details.) 

A physicist need never worry about the “measure zero” case where Eq 22 
is exactly obeyed, but there is a more general point to be made: As a and 
b get close to one another, even very small values of (Tl p*(t) 11) can be “too 
large” and cause the eigenstates of p2 to deviate greatly from the desired IT) 
and 11) states. 

In the toy system, the mean magnitude of (71 pz(t) 11) is never zero, al- 
though it can be made arbitrarily small by increasing the size of the appara- 
tus. Thus for every apparatus size there exists a limit to how close a and b 
can get without causing the Schmidt states to exhibit large deviations from 
the desired behavior. On the other hand, given any arbitrarily close values 
of a and b, there exists a sufficiently large choice of nl so that the desired 
behavior is achieved, In Appendix A I show that the minimum value of 
la - 61 scales as l/A. (Note that the “n ,” of a real macroscopic apparatus 
is huge!) 
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1 also argue in Appendix A that if one accepts the departure of (71 p*(t) 11) 
from zero as an indication of the precision of the apparatus, then there is 
nothing particularly wrong with the apparatus in the a + b limit. The 
apparatus is just unable to precisely resolve the value of a - b. One could 
even argue that the sensitivity of the Schmidt basis to the precise value of 
(I] ps(t) 11) in this limit makes the Schmdit basis misleading when )(I - bl falls 
below the “experimental resolution”. (This amounts to a major concession 
to W. Zurek, with whom I have been having ongoing informal debates about 
the value of the Schmidt decomposition!) 

7.2 Some Red Herrings 

I came up against the special behavior discussed in Section 7.1 early in the 
course of this work. Although I appreciated the overall delicacy of the de- 
generate eigenvalue case, my efforts to preserve the desired behavior in that 
limit were not always to the point. In this subsection I critique some remarks 
on this subject in previous papers of mine. 

The eigenstates of HI (from Eq 7) have the form of either: 

IhI = IT) 8 1%) (24) 

PI) = 11) @J IX,) (25) 

where the 1x1) and IX,) are the eigenstates of Hi and Hi respectively. The 
addition of sub-dominant “self-Hamiltonian?’ for the two subsystems does 
not have a large overall effect. However, frequently a handful of energy 
eigenstates deviate greatly from Eqs 24 and 25. (The reason is that among 
the random set of energy eigenvalues there are always a few which are quite 
close together. Under such circumstances small perturbations can greatly 
affect the form of the eigenstates, as was already discussed regarding ps.) 

Some of my previous efforts to produce a “good measurement” in the 
a + b limit focused on avoiding the bad energy eigenstates, which are not 
close to Eqs 24 and 25. In [lg] (section 6.1) I further reduced the coefficients 
of the self-Hamiltonians, and in (121 I specially chose the initial conditions 
to avoid the bad energy eigenstates. In fact none of these efforts were useful. 
because they did not reduce the overlap of IX,(t)), with jX,(t))~. This 
overlap is present even when the energy eigenstates are exactly given b? 
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Eqs 24 and 25, and the form of the eigenstates was not the problem which 
needed addressing. The overlap is most easily reduced in the toy system by 
increasing the the size (nr) of the apparatus. 

8 Consistent histories and the Hamiltonian 

The states it) and 11) for the spin are absolutely stable under the action of 
HI. Once one projects with >t the projected state will remain of the form 
11) @ Jsomething}r from then on. Projecting with Pr and Pi at different times 
is certain to give zero. If { 11) , II)} is the projection basis, then the only path 
projected states with non-zero amplitude have all the projections either u- 
niformly up or uniformly down (regardless of the values and frequency of 
the projection times). The only cross-term in Eq 18 which could potentially 
cause sum rule violation is the dot product between the uniformly up and 
uniformly down path projected states. This cross-term is also zero because 
(Tl 1) = 0. Thus using the {IT), 11)) P ro’ec ion J t basis is sure to give con- 
sistent histories for this model, no matter what the initial state. Although 
these histories do not explicitly exhibit dynamics associated with the evolving 
correlations, their consistency is closely linked with these dynamics via the 
special stability of the {IT), II)} basis. In Zurek’s [3] language, the {IT) , II)} 
basis is a “pointer basis”, which does not loose quantum coherence via the 
interactions. 

The { 17) , 11)) basis is special because of the form of HI (Eq 7). The 
basis {II), ( 1)) is nothing special from the point of view of the Hamiltonian, 
and it is not surprising that consistent histories were not found using that 
projection basis. 

The other sets of consistent histories discussed in Section 9 involved pro- 
jecting first on the Schmidt states and then on the {(T) , 11)) basis. After the 
first projection, the two resulting path projected states are just the two terms 
(fill):@ 11); and ,&12):@(2):) of the Schmidt decomposition of the total 
wavefunction at tr. The subsequent evolution of each path projected state 
may be treated as in Eq 20: 

l[l](i)) = e-~(+tlwI (~‘371,; @ 11);) = IT) (vS(Tl~):) @ Ilr(t)h 
+ 11) (v’E(ll1)~) @ ll~(t)XW 
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where Ilr(t))i and Ilr(t))i are 11); evolved under H! and H: respectively. 
Likewise: 

~pl(t)) = e-iP-h)HI (,/W; @ 14;) = IT) (dFz(Tl2,;) 8 1‘4(4)1 
+ 11) (6 (II 2,;) @ l‘Jl(tNm 

Given the form of Eqs 26 and 27 it is easy to see the effect of later projecting 
on the {IT) ,/I)} basis. The resulting four path projected states are just the 
two terms from Eq 26 and the two terms from 27. The relevant cross-terms, 
which must be zero to give consistent histories are: 

(It, 1llIT,‘4) 0: (lrWt(~)) r‘w 

and 
(IL 1lll1~21) a (11(Wd~)) (29) 

The quantity in Eq 28 is exactly zero because Ilr(t)) and /2~(t)) started 
orthogonal, and were unitarily evolved by the same Hamiltonian, so they 
must remain orthogonal. Likewise for Eq 29. 

Unlike the first set of consistent histories discussed, these histories are 
consistent because of orthogonality of the path projected states in the ap- 
paratus subspace. One can say that records of the spin at ti are present in 
the apparatus. The Schmidt decomposition (at ti) was use to resolve these 
records. (If any other projection basis had been used at ti, the counterparts 
of llr(t)) and (2,(t)) would not have started out orthogonal, and the cross- 
terms would not have come out zero.) The choice of second projection was 
also crucial. By choosing the stable {IT) ,[I)} basis, one avoided loosing track 
of the records between ti and ts, when the second projections were made. 

9 Comparing consistent histories with instan- 
taneous probabilities 

The consistent histories approach is all about assigning probabilities to his- 
tories. In contrast, the wavefunction at a particular time can be used to 

assign a probability to any state (possibly a state specified only for a sub- 
system). One just projects onto the state in question and squares to get 
the probability. This procedure can be repeated at different times (always 
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evolving the whole unprojected wavefunction). The Schmidt paths just give 
a way of following the probabilities assigned to a particular set of states. 
Often these Schmidt states are very interesting because they exactly reflect 
the correlations which are present. 

The consistent histories and the instantaneous probabilities are in general 
very different from one another. However, the the two points of view can 
be quite similar in the particular case where good measurements are made 
within the closed system being treated. In that case projecting on a particular 
apparatus state should be completely equivalent to projecting (at an ear&r 
time) on the corresponding state of the system being measured, as long as 
the projection is made at a time after the measurement has been completed 
(see for example refs [ZS, 241 ). Since the Schmidt decomposition can be 
applied to expose the correlations among all the relevant apparatuses and 
systems, one might expect that the paths traced out by the Schmidt states 
after a measurement should bear a lot of resemblance to one set of consistent 
histories. However, based on the work in this paper, it does not seem that 
the consistent histories and the Schmidt paths bear much resemblance during 
the measurement process, when the correlations are actually being set up. 

Much of this paper follows in the tradition of Zeh and Zurek, by analyzing 
the measurement process from the instantaneous probabilities point of view. 
It has rightly been pointed out [24, 23, 27, 291 that the information provided 
by a wavefunction at a single moment in time is of limited use in investigating 
many important issues in quantum mechanics. None the less, by following 
the time development of the instantaneous probabilites Zeh and Zurek have 
been able to provide some useful insights into the nature of the quantum 
measurement. ( The whole notion of Zurek’s “pointer basis”[3] or Zeh’s 
“stability of the Schmidt states”[l] is connected with time evolution, as is the 
issue of “permanence” of the record, which both these authors address. Their 
analysis, which involves the time development of instantaneous probabilities, 
is very different from just looking at a wavefunction at a single moment in 
time.) 

Like Zeh and Zurek, I have found the time development of the reduced 
density matrix to offer a convenient perspective on the measurement process. 
One can answer questions such as “how long does the measurement take?“[6], 
and “what is the state of the system half-way through the measurement?“(Fig 
2). In turn these insights can help one deduce the features which make a good 
measurement apparatus. 
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In this particular applicati.on I have not found the consistent histories 
approach particularly illuminating. No single set of consistent histories ap- 
peared to be following the correlations in any continuous way, and no set 
of consistent histories indicated the duration of the measurement process. I 
have no doubt that by considering a large number of diferent sets of consis- 
tent histories one could generate this information, but not in a particularly 
direct way. In short, the time development of the reduced denstiy matrix 
seems to allow one to focus more directly on the measurement process, as 
compared with the consistent histories point of view. 

It is not at all clear that the different focus offered by the consistent 
histories is “bad”. After all, in many realistic situations one does not want 
to focus on the details of the measurement process. However, I have felt some 
informal (unpublished) pressure from a few consistent histories enthusiasts to 
completely abandon the reduced density matrix point of view. Anyone who 
wishes to take such a position ought to expain how the consistent histories 
give a superior perspective on the measurement process discussed here. 

10 The arrow of time 

As has been noted, for example by Zurek [3] and Zeh 130, 16, 311, there is 
an arrow of time built into the dynamics discussed here. This is dramatized 
in Fig 3, which is identical to Fig 1, but with the time axis extended to the 
interval (-2,2]. One can seen that the pure “initial” (t = 0) state (which 
has zero entropy for the spin), is a very special state and the “collapse of 
the wavefunction” proceeds in the direction of increasing spin entropy. The 
1 < 0 part of Fig 3 illustrates an “un-collapsing” wavefunction, where the 
correlations present between spin and apparatus at early times are lost, and 
the pure state emerges at 2 = 0. Then, for positive values oft correlations are 
established again. The stability of these correlations (and thus the goodness 
of the measurement) depend on another such “entropy dip” not occurring for 
1 > 0. In the language of Section 7, one is depending on the random evolution 
of IX,(l)), and /.X,(t)), not to cause these two states to overlap appreciably 
at later times. (This issue has been discussed at length in [3].) Even the 
simple system discussed here is complex enough for such large entropy dips to 
occur very rarely. Still, with such a small apparatus, noticeable fluctuations 
are present. (Note that the portion of Fig. 3 which is shown in Fig 1 is 
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uncharacteristically well behaved. See Appendix C for further discussion.) 
Aside from questions of stability, how fundamentally is the arrow of time 

linked to quantum measurement? The initial state, l$i) has zero entropy for 
the spin, so it is not surprising that just about anything will cause the entropy 
to increase. What about starting with a more general initial state? Schmidt 
tells us that (in a suitable basis) the most general state can be written 

144 = fill)2 @ 1% + km42 @ Ph. (30) 

I show in Appendix B that if one requires evolution which generalizes Eq (9) 
to give 

I&) + I&) 
= fi((T 1% IT) @ 141 + (1 11)~ 11) @ 1%) 

+fi((T 1% IT) @ IO + (1 1% 11) 8 1%) (31) 

then one must have increasing (or constant) entropy of the spin (-tr[ps ln(ps)]) 
as 14;) + 14,). Thus “good measurement” appears to be closely linked with 
increasing entropy, even for high entropy initial states. (Note that I have 
chosen all four apparatus states, !A)l, ]B)i, ]C)r, and ]D)r to be mutually 
orthogonal. This means that in I+,) the apparatus has a record of whether 
the spin is up or down, and which term of Eq (30) has been “measured”.) 

11 Conclusions 

The ideas put forward by Zeh [I], Zurek [3), Joos and Zeh [32], and Unruh 
and Zurek [7], have sufficiently de-mystified the notion of wavefunction col- 
lapse that one can actually unitarily follow the evolution of a system right 
through the collapse process. I have investigated a simple system which ex- 
hibits “wavefunction collapse”. I find Zeh’s idea of watching the evolution of 
the eigenstates of the reduced density matrix (Schmidt paths) particularly 
appealing. This approach allows one to follow exactly the evolution of the 
correlations among subsystems. It also allows one to visualize the collapse 
process quite explicitly, as illustrated in Fig 2. However, when eigenvalues 
of the reduced density matrix are nearly degenerate, the eigenstates become 
very sensitive to “noise”, and can give a misleadingly unstable picture of 
what is going on. 
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I also applied the “consistent histories” analysis (of Griffiths 1191, Omnes 
(20, 21, 221 and G&Mann and Hartle [23]) to the same system. This ap- 
proach allows one to consider many different sets of histories for the system. 
In the example studied here, many different sets passed the consistency test. 
It is intriguing that one set of consistent histories for the spin did not reflect 
the interesting evolution of the correlations between the spin and the appa- 
ratus. Instead, it was more a reflection of the stability properties of the spin. 
That set of histories would look the same for a static spin, decoupled from 
the apparatus. Other consistent histories exhibited more direct links to the 
“quantum measurement” process underway. However, there was very little 
resemblance between any given set of consistent histories and the Schmidt 
paths for the system. I argued that the reduced density matrix offered a more 
convenient point of view from which to analyze the measurement process. 

I have employed a perspective on wavefunction collapse which explicit- 
ly does not make a choice among the possible outcomes at the end of the 
measurement process. This results in Everett’s “many worlds”. An advan- 
tage of this perspective is that the question of what makes a good apparatus 
can be addressed quite directly. To this end, I have discussed in detail the 
Hamiltonian used to evolve the system, and the features necessary to ac- 
complish the desired evolution. Even in this primitive example, the quality 
of the apparatus is very clearly linked with its size, and with the statistical 
“irreversibility” associated with the thermodynamic arrow of time. 
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A Nearly degenerate density matrices 

A. 1 Mathematics 

Consider the matrix: 

( 

l/2 + 6 w* 
w > I/2-6 . 

Its (un-normalized) eigenstates are: 

11 

s-tl3GG ) 1 

6+&%X 
w iI 71 . 

(32) 

(33) 

If one takes the limit w -+ 0 while keeping 6 fixed the eigenstates become 
proportional to (0,l) and (1,O). This is what the toy model is trying to 
accomplish for ps at late times, by making the off-diagonal terms (here W) 
small. However, if one takes 6 + 0 while keeping w fixed the eigenstates 
become proportional to (ztv, 1). (S’ mce w corresponds to (Tl ps II), 6 in Eq 
23 is just the phase of ab’(Xi(t){Xr(t)).) 

If one wants to require the eigenstates to be close to (0,l) and (l,O), one 
can require: 

6-JKX<e 
w (34) 

for some small epsilon. For small values of Iwl/lSl Eq 34 becomes 

This paper involves the case where w is the overlap of two random vectors 
in a space of size nr. The magnitude of such a quantity is the net distance 
traversed by an nr-step random walk with average step size proportional 
to J;i;, so w cc l/A. Combining this with Eq 35, on can see that the 
minimum allowed value of 6 goes as I/&. 

A.2 Physics 

The goal of the interactions was to get the wave function into the form given 
by Eq 9: 

I+/) = a IT), @ P’h + b II), 6~ I-& (36) 
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with 
(YIZ) = 0. (37) 

When a -) b the Schmidt decomposition tells us that if one insists on Eq 37 
holding exactly (which is what Schmidt does), then the Schmidt expansion 
can look very different than Eq 36. This is because even small non-zero values 
of (X,(0)1X,(O)) (s w in Eq 32) can have a large impact on the eigenstates 
in this limit. However, how badly does the wavefunction deviate from Eq 36 
when I(Xr(O)IXr(O))I >> IQ - bl (that is, when 1 >> w >> 6 in Eq 32)? 
One check is to look at the “overlap” between actual reduced density matrix 
for the spin (ps given by Eq 32, for example) and the ideal result 

PI = ( 1/2+6 0 
0 ) l/2 -6 . (38) 

The quantity trm is a good measure of the overlap which can be under- 
stood by writing each p in terms of its eigenstatest. The value of trm is 
unity when ps = pi, and is zero when no eigenstates (with non-zero eigen- 
values) overlap. Taking pz from Eq 32 and pr from Eq 38, and expanding for 
small w (keeping 6 fixed) one gets 

tr& = 1+ O(wZ). (39) 

At least according to this measure, p2 and pr are very close when w is small, 
even when their eigenstates are very different. 

One can further explore the suitability of the system as a “measurement 
apparatus” in the (I -+ b limit by considering the interaction of a third system 
with the apparatus. One feature of a good apparatus is a “pointer”, which 
clearly exhibits the outcome of the measurement, and which can subsequent- 
ly be measured by other systems to determine the outcome of the original 
measurement. (Zurek [3] emphasizes this point by clearly partitioning out 
the pointer from the rest of the apparatus). As discussed earlier, this feature 
is absent from the toy model. 

For the sake of discussion I will force the issue by assuming there is a 
third system which has detailed information about IX,(r)). It can use this 
information to suitably measure the apparatus. If the apparatus is found 

‘The square root of the operator pzp, is defined in the usual way. The operator is 
expressed in its eigenbasis and the square root of its eigenvalues are taken. 
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in IX,(t)) the third system will conclude that the spin is up. The issue 
is being “forced” only in the sense that one is asking the third system to 
know something very complicated (namely IX,(t)), a complete “microscopic” 
state with messy time evolution) in order to use the apparatus. In a good 
apparatus some simple feature (such as a blip on a screen) should indicate 
the outcome. 

So how much of a mistake does the third system make by using this 
procedure? The errors come because the overlap of /$I) with IX,(t)) receives 
contributions not just from the first term in Eq 20, which is indeed correlated 
with IT), but also from the second term (correlated with 11)) due to the non- 
zero value of (Xl(t)lX~(t)). To the extent that (.Yl(t)lXt(t)) is small, the 
errors are small even in the a + b limit. The size of (Xl(t)lXr(t)) simply 
represents the precision of the apparatus. 

Repeated measurements by the third system of identically prepared spin- 
apparatus systems should yield inferences of the values of a and b. These 
inferences should be increasingly good as the number of repetitions increases. 
The one ‘problem” encountered as a * b is that the actual value of e - b 
falls below the precision of the apparatus. In this case the third system could 
only conclude that a c b within the experimental uncertainties. As long as 
the precision of the apparatus is acceptable, there is no problem with the 
apparatus in the D -t b limit. 

However, by choosing to look at the Schmidt decomposition, one is look- 
ing at something which can be very sensitive to a - b, as illustrated at the 
beginning of this appendix. In the case where the magnitude of a - b fall- 
s below the acceptable resolution of the apparatus, one could argue that 
the Schmidt decomposition can be very misleading. For example, the spin- 
apparatus system could be in a state sufficiently close to Eq 9 for practical 
purposes, but the Schmidt decomposition could yield something that looks 
completely different. 

This more wary attitude toward the Schmidt decomposition represents a 
step back from the enthusiasm I have expressed on other occasions (see [18] 
at the very end of section 2.2, for example). 
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B Generalized measurements and the arrow 
of time 

The point of this Appendix is to show that the final state in Eq 31 has higher 
entropy (relative to the spin-apparatus partition) than the generalized initial 
state given by Eq 30. 

Equation 30 is manifestly in Schmidt form, and Eq 31 can be put in 
Schmidt form by collecting even and odd terms together. For the initial 
state, the eigenvalues of the density matrix are p1 and ~2. For the final state, 
the eigenvalues are 

pt = PII(T 11b12 + pzl(T PM2 (40) 

PI = 1 -pt. (41) 

The fact the &l(C)r =t (B(D)* = 0 is important for obtaining Eq 40. 
Since the entropy is monotonically decreasing in Ip1 - ~21, it will suffice 

to show that Ip, - p,( 5 Jp1 - pzl. Without loss of generality I take Pt > p, ad PI > ~2. 

PT - PI = 2Pr - 1 = 2 (Pm 11)212 + pzl(‘l 14212) - 1. (42) 

Now define: A m p1 -pz. Using this definition and p1 +pz = 1 on can rewrite 
Eq 42 as: 

Pt -PI = 2 ( 
l+A 
-+t 11)212 + yl(T 12)212) - 1 (43) 

= A (NT D)212 - I(? M2l’) (44) 

= A (Wt P)212 - 1) (45) 

where the normalization condition (1 I 1) = l(T (1)212 + [(t 12)z12 = 1 was 
used in the final step. Since (2((f 11)sj2 - 1) IS manifestly bounded above by 
unity, the desired result, (p, - ~11 < JPr - pz(, is obtained. 

C Search technique 

Figure 1 is a “blow up” of a small portion of Fig 3. The reader might 
have noticed that the portion shown in Fig 1 is much closer to the “desired 
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behavior” than any other portion of Fig 3. This is due to the fact that 
I did a fair amount of fiddling around, trying to choose parameters which 
would make a good quantum measurement. The time range I looked at while 
searching parameter space was the same range used in Fig 1. Given this 
search “technique”, it is not surprising that my search ended on an atypical 
case. I stopped when I had found what I wanted (within the window of Fig 
1). On could say that Fig 1 is slightly misleading. On the other hand, one 
could just as well say that I understand the apparatus: I am able to prepare 
it in a suitable manner so that a good measurement is performed, and the 
record is kept for a specified period (in this case, .2 units of time). Just about 
any apparatus must be dealt with in this way. 
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Figure Captions 

Figure 1: a: Thesolid curveis I(T ~1)s~2, and the dashed curve gives (71 pz IT). 
b: The solid curve is the largest eigenvalue of ~2, the dashed curve is the 
entropy of the spin. 

Figure 2: “A collapsing wavefunction.” Each plot depicts an eigenstate of 
pz in terms of p(T) z l(r li)j* and p(J) z I(1 li)l’. The columns correspond 
to three different times. The two rows correspond to the two eigenstates. 
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Figure 3: The same plots as Fig 1 extended over a wider time range. 
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