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ABSTRACT 

The phenomenon of linearisation instability is identified in models of quantum cos- 

mology that are perturbations of mini-superspace models. In particular, constraints that 

are second order in the perturbations must be imposed on wave functions calculated in 

such models. It is shown explicitly that in the case of a model which is a perturbation of 

the.mini-superspace which has S3 spatial sections these constraints imply that any wave 

functions calculated in this model must be SO(4) invariant. 
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1 Introduction 

The phenomenon of linearisation instability in classical general relativity is well under- 

stood [l- 31. It arises when approximations to solutions of the vacuum Einstein equations 

are sought by expanding the equations about a known solution which has compact Cauchy 

surfaces and non-trivial Killing vectors and solving the linearised equations for the pertur- 

bation. In this case, solving the linearised equations alone does not always yield a metric 

which is a good approximation to a solution of Einstein’s equations i.e. a solution to the 

linearised equations may not be tangent to a curve of exact solutions. 

The reason is that some of the constraints of general relativity are exactly zero to 

linearised order, in fact there is one such constraint for every Killing vector. Thus the first 

non-zero order is the second and there is one second order constraint for each Killing vector. 

Imposition of these second order constraints is what is needed to eliminate the spurious 

solutions. These complications can also be seen as a reflection of the structure of the space 

of solutions that are close to a solution with Killing vectors and compact Cauchy surfaces 

(4-61. This space is not a manifold, since the diffeomorphism group does not act freely but 

has a fixed point which is precisely the background metric with isometries. Rather, it has 

a stratified stucture and the background geometry is a singular point in the space. 

It has been pointed out that when one comes to quantise gravitational perturbations 

on backgrounds with compact Cauchy surfaces and Killing vectors, one must again take 

into consideration these second order constraints, now imposed as operators annihilating 

physical states. 171. The consequences of this have been worked out in detail for the case 

of DeSitter space 18). 

Although linearisation instability would not be expected to play a role in quantum 

cosmology in general since one integrates over all four-geometries, symmetries or not, it 

does turn out to be important in models of -quantum cosmology in which departures from 

mini-superspace are considered small in some sense. In these cases, the mini-superspace 

has closed (compact without boundary) spatial sections and spatial Killing vectors and the 

same considerations as before must be made. 

The purpose of the present paper is to demonstrate how linearisation instability arises 

in the quantum cosmology model of Halliwell and Hawking [9]. The paper proceeds as 

follows. In Section 2, we review classical linearisation instability. In Section 3 the model 

is described and we see explicitly how six of the linearised momentum constraints vanish 

identically. The expressions for the second order constraints are derived. Section 4 con- 

tains the calculation of the quantum second order constraints in a representation on wave 

functions that are functions of the scale factor and the mode coefficients of the harmonic 
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expansion of the perturbation. It is shown that these six constraints obey the algebra of 

SO(4). In section 5 it is shown In section 6 a scalar field is added the analysis repeated. 

Section 7 is a discussion. 

2 Linearisation Instability 

This brief discussion follows that of Monccief [7]. Let M be a compact three-manifold 

without boundary. In the hamiltonian formulation of general relativity, the dynamical 

variables ace (g,T), where g = g;j is a ciemannian metric and K = rij is its canonical 

momentum, a tensor density, on M. Due to diffeomocphism invariance, general relativity is 

a constrained theory. The constraint hypecsucface in phase space is defined by @(g, r) = 0, 

where Cp is the constraint map 

WJ,~) = (W!L4,W!J,~)) 1 (31) 

with 

BH(Ss T, z (&2)-l: (!7ikgjl + SilSjk - gij.9kl) 7fijmk’ - /dR(g) - 24, w-4 

‘H’(g,7r) GE -27f’j;j. (2.3) 

Here, ps = (detg)?, semi-colon denotes covaciant derivative with respect to g, and units 

have been chosen in which 16nG = 1. 

Let (go,ro) be a solution of the constraints. Suppose we ace looking for a solution 

of Einstein’s equations close to a background solution, 4go, for which (go, a~) is the initial 

data. The new solution will have initial data (g,n) = (go + h,so + w). One may expand 

out the constraints: 

@(go + h,Q +w) = @~;~,~&4 + q;;,&+J) -I-. . . (2.4) 

where a(‘) (@‘) etc.) is linear (quadratic etc.) in the perturbation (h,w). We will adopt 

similar notation from here on, so that a superscript (k) denotes a quantity that is lath order 

in (h,w). The usual linear constraints ace @l(go, a~) = 0. However, if 4go admits Killing 

vectors, imposing the linear constraints alone will not in general exclude nonintegrable 

perturbations. 

To see this, let C be any function and Y = Y’ be any vector field on M. Define the 

projection, P(c,y) (a), of @ along (C, Y) by 

%.Y) (@P) = J d3z NC, n %L T)) M 
= J cl31 [CW, r) + y’w!A 41 , M 
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where l-ii = gij’?ij. For any (C,Y) 

P(W) (%A~)) = P;&) (@P(g,*)) + P($& (@(g,r)) + . = 0. (2.6) 

where 

*k?y)~m) =jf,((c,~),rn~~d,~.~(~,w)), k=1,2.... (2.7) 

It can be shown that P:& ( (g )) @ ,r vanishes if and only if C and Y ace the normal 

and tangential projections on the initial surface of a Killing vector of 4ga. In that case, 

the lowest non-trivial order for the constraint projected along the Killing direction is the 

second. Thus, in order to treat the constraints consistently, one must impose 

@1(90,ao) = 0, (24) 

the usual linear constraints and, in addition, 

p&) (@(!?o + h, To + w)) = 0 WJ) 

for each Killing vector (C,Y) of the background. 

On quantisation of the perturbations on the background 4go, (2.8) and (2.9) can be 

implemented as operator constraints on physical states. . . 

3 Perturbed Mini-Superspace 

In general, one would not expect the phenomenon of lineacisation instability to arise in 

quantum gravity since, roughly, one integrates over all four-geometcies, with no restriction 

on symmetry properties. However, in quantum cosmology, motivated by the approximate 

homogeneity of the observed universe,.models have been studied in which one imposes 

severe symmetries on the four geometries included in the path integral. Going beyond these 

“mini-superspace” models, attempts have been made to treat departures from homogeneity 

pectucbatively. When the homogeneous “background” space is a three-sphere, lineacisation 

instability emerges as expected. In this section we describe just such a model [9]. The 

three-metric, gij has the form 

9ij = a’(t) (qij + hij) (3.1) 

where 4ii is the round metric on S3, nocmalised so that s J;id3z = 16a2 (note that 

qij = 4Qij where nij is the metric induced-by the embedding of S3 in R4). hij is a 

perturbation and to be considered as small. 
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There ace six Killing vectors of the homogeneous background: the three left invariant 

plus the three right invariant vector fields on S3, {ebb : A = 1,2,3} and {CA’}, respectively. 

They satisfy 

[CA, eB] = --EAB~~c~ [ZA, CB] = eABCk> 
hABeAieBi = JAB- i eA eBj = qij. (3.2) 

They ace, in fact, the lowest order vector harmonics on S3 (Lifschitz harmonics (S::,)’ 

[lo]). We introduce an alternative, “spherical”, basis for the Killing vectors, {e,’ : a = 

&l.O} defined by 

e+l = *-j$e~ + iez), 

eo = -ie3, (3-3) 

and the dual basis of one forms, {eO;> such that eaiebi = Pt,. {&,‘} and {E”i} ace defined 

similarly. 

Let us rename the projected constraints, Pee,,,,(@) as P, and Pc~,E~J(Q) as pa and 

expand them out in the perturbation. First consider P,. 

Pa = -2 J d3x?rij,jeakgik 

= -2a2 J d3Xai’;ie,“(qik + hik). 
The zecoth order constraint is zero since that relates to the background which is homoge- 

neous: (?j;j)(‘) = 0. The first order constraint is 

(Tij,j)(l) ,T(l)ii,j + ?r(0)kjr(l)& 

=T(l)ij,j + a(0)kjhik,j _ +$Wj~kk,j (3.5) 

where vertical bar denotes covaciant derivative with respect to qij, all tensor indices ace 

(now and henceforth) raised and lowered with q and I’:, is the Chcistoffel symbol of the 

metric gij. 

SO 

pp = -2a2 J d3x(aij,j)(1)e,kgik 

= -Q ~J [ d3r ’ ,(l)iilj + a(0)kjhik,j _ 2T (“)ijhkk,j e,‘qil. I 
5 

(3.6) 



Using ea(ib) = 0 and ,(o)ij K q’j, it can be shown that I’:” = 0 as expected and similarly 

P(l) = I). a 

Now let us consider the second order, 

P$’ = -za* (~~j;~)(*)e,~~~~ + (aii;j)(l)e,khik 1 
We have 

whence 

(~;j. .)C2) 
.3 

= #)ijij + Jl)kjr(l)ij + +T(0)kjr(2)i 
k> ' 

pi*’ = -2a* -$kj,iT(l)kje,i _ hikT(l)jkeailj 1 
(34 

4 The Algebra of the Second Order Constraints 

In this section we will expand hij and #j in spin-2 hyperspherical spinor harmonics 

on S3 (more details of which can be found in [11,12]), and calculate the second order 

constraints. 

hj(7tt) 'e"i(7)ebj(7) (i i y) C hFY(t)YZ!iL(7) 
LJ 

+ Pij(7) ~XY”(t)vJNM(7) $C$, 
J 

J- 

. . 

(4.1) 

?+(y, t) = 
LJ 

- u-2 F xPvG4(t,] 

+ ~a-*g”~C~*~M(t)vJNM(r) y&l 
J 

/- 

+ 5~-2d’@ai(7)ebj(‘Y) (;” ; ;) g v,;~(t)Y:f,&(y) (4.2) 

where(i i y) is a three-j symbol (with the spin-2 index m raised, see eq.(4.6)) and 

YziL(y) is a spin-2 h yperspherical spinorharmonic on S3, the point of S3 being written 

as an element, y, of SU(2). 
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Y,f,$h(-y) = Jiv~L~N.17) (;, ; ;) (4.3) 

where ‘D’.AJ~‘(-~) is a spin-l representation matrix of SU(2). From (4.3) we see there 

is a condition on L and J namely IL - JI 5 2. The harmonics with L = J correspond 

to the “scalar” traceless tensor harmonics of Lifschitz, PI:, those with’[L - .I[ = 1 to 

the “vector” traceless tensor harmonics, S$ and those with IL - .I[ = 2 to the tranverse 

traceless harmonics Gyj with n = L + J + 1 in each case. 

The harmonics are normalised so that 

s I , 
d3z& Y~~~Y~~,~, = ~LL~~JJ~C$N~C~M* (4.4) 

where 

CT?;,, = CLNN’ = (-1)L-N6~,-~, (4.5) 

is the spin-l metric with which all spin-l indices are lowered and raised according to 

UN = CNN~U N’ ad VN = VN,CNIN. (4.6) 

Repeated indices, one upstairs and one downstairs, are summed over. 

The expansion coefficients of #j are found using: 

= J 6& aeij(X) d3x6hij(z) &TM 
= J 

a.c 
T&if,f E v 

ah,Ny 

= J d3xTij(x) a!jij(x) 
ahfy ’ 

= J d3xnij(x) a!hlx), 

(4.7) 

(4.8) 

(4.9) 

Note that the harmonics 2, and-Y are complex and reality conditions on the expansion 

coefficients are needed to ensure that h;j and rrij are real. The conditions are that the 
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complex conjugate of any coefficient with both indices upstairs equals that coefficient with 

its indices lowered e.g. (hzy)’ = hijli. 

Substituting the expansions into (3.9) and using 

eailje*“e,j = i& (T k i) , (4.10) 

.DJ~MJ~~o~ = (-1)2JJJ(J+ 1)(2J + l)DJNN’ (4.11) 

and the angular momentum recoupling formula 

( 
jl I2 P3 

ml ~2 13 >( 

Pl j2 l3 

11 m2 ~3 >( 

(see e.g. Edmonds [13]) we obtain 
(4.12) 

Pi*’ =c f > J J(J + 1)(2J + 1) h;$%r;)$h 
LJ 

+c 
1M J 
a J M’ > 

JJ(J + 1)(2J+ 1) z$“%r~“;lrM. (4.13) 
J 

One way to deal with the constraints on quantisation is to take wave functions to 

be functions of the coefficients, Q E @(a, hfy,xyM ) and to enforce the constraints as 
conditions on physical states, representing T, by -i&. Here we make the approximation 

of representing 

We have 

7p;M a --t -i- axyM 
(l)L J a 

=h NM * -im. 

1M J 
a J M’ > 

JJ(J + 1)(25 + 1) = 4 (ji)M, M 

(4.14) 

(4.15) 

where (ji) are the matrix generators of the spin-J representation of SU(2). Thus. imposing 

the second order constraint, (4.13), gives us finally 

- ~(h”@h:‘~‘& +~(j,‘)M,“6N’Nx~‘M’&] @ = 0, (4.16) 
J 
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Similarly we can show that 

\~J(J + 1)(2J + i)~y’~@j:~ (4.17) 

and thus the full set of second order quantum constraints consists of (4.16) together with 

[ 
C(~,Lh’NQwY~ & + ~(j,J)N“%p~xp $1 qj = 0. (4.18) 

(4.16) and (4.18) imply that Q is SO(4) invariant since it is easy to see that 

(4.19) 

(4.20) 

(4.21) 

where hats denote quantum operators. Thus the constraints generate the algebra of 

SO(4) s SU(2) x SU(2)/Zz. 

Another way to see that (4.16) and (4.18) mean that Q is SO(4) invariant is to note 
that under a rotation y -+ E-yq-l, with [, 7 E W(2), the coefficients xy” and h!J” 

transform as 

hfy -+ h’:” = h~‘~‘~LN,N(5-‘)~JM,M(11-‘) 

NM 
IJ +xJ 

/NM _ N’M’,JN,N(~-‘)vJ~,~~~-l) 
- xJ 

If < and 17 are infinitesimal we have 

(4.22) 

6h,Ny = -i ((A(j;)N’N6&f!M + ~A(j&,&N,N) h;‘,M’ (4.23) 

6x$-M = -i ((A(j;)N’N6&.fM’M f~A(j;)/6N’N) Xy’“’ (4.24) 

where {CA} and {vA} are two sets of three real parameters. Q(z, h) is invariant under all 

rotations iff 

(4.25) 



which conditions are exactly (4.16) and (4.18). 

We note that Q! s Q(h2,~2), where h2 = hzyhi& and x2 = xy”xiM: is SO(4) 

invariant. More generally, a wave function is invariant if all the “left” indices (i.e. indices 

that transform under 0 are contracted together with metrics and/or three-j symbols and 

similarly for all the .‘right” indices (that transform under 7). 

5 The Physical Degrees of Freedom 

We are used to identifying the transverse traceless modes of the perturbation of the 

gravitational field as the physical degrees of freedom. In this section we will see that the 

second order constraints can be reduced to a form that reflects this. 

We can write the constraint (4.13) as a sum of “scalar”, “vector” and “tensor” (tranc 

verse traceless) parts 

Pp = “Pa + “Pa + tP, (5.1) 

where 

“Pa = cJJ(J+ 1)(2J+ 1) ; y ;, NM’ (1)J 
“J rz 

NM’ (1)J J 
NMfhJJ =h NM (5.2) 

J 

UP, = C JJ(J + 1)(2J + 1) 
J 

(; ; ;,) (h~-,$r;);-lJ + h~+&r;);+‘~) 

(5.3) 

‘P, = F JJ(J + 1)(2J + 1) (; y ;,) (h;y_,r’~~);-~~ + hy+2$r;);+zL) 

(5.4) 
One can calculate the linearised momentum constraints and they are 

X’f” +fJlh:y + 6a Tz J 1 (n2 - 1) (I)NM + fJIO (1)NM _ ,J 
;=h JJ - (5.5) 

7rp 
-hN M+ 4gr2 J*lJ %ryy*1 y = 0 

a 

where fJ = +(-l)zJ+l~(nz - 4)(n* - 1)/30 and n = 2J+ 1. 

We also have the zeroth order and linear hamiltonian constraints 

(5.6) 

(5.7) 



If (5.5)-(5.8)hold then it can be shown that 

n, “P, = n, “Pa = 0. (54 

This uses the fact that (i L i,) CNN, is antisymmetric under interchange of (M, N) 

with (M’,N’). 

On quantisation, the constraints become operators that annihilate the wave function 

*. If a factor ordering is chosen as in (5,5)-(5.8) (i.e. just put hats on everything as it 

stands) then 

?Yir, *FaaJ = ;r, “+aQ = 0 (5.10) 

so 
ir, P(2)* = ir, ‘P&Q?,. a (5.11) 

Since ir,@ # 0 and ir, commutes with PC21 and tp this implies that 

k;2’@ = ‘Pa*, (5.12) 

Thus the second order constraints on the wave function may be reduced to the condi- 

tion that its dependence on the transverse traceless modes be SO(4) invariant, 

6 A Scalar Field 

So far we’ve dealt only with vacuum cosmologies. The treatment of classical linearisa- 

tion instability was originally confined to the vacuum case. Results in the non-vacuum case 

vary according to the problem being considered. K&or and Traschen 114) investigate the 

case where the perturbations in the energy-momentum of the matter are prescribed at some 

initial time, either directly or by specifying how the constituent fields vary. This leads, in 

the case where the background spacetime has “Integral Constraint Vectors”, to constraints 

on the possible metric variations allowed. Arms [15] investigates the linearisation stability 

of the Einstein-Maxwell equations without specifying the matter perturbations. She finds 

that linearisation instability will occur if the (spatially compact) background space-time 

has Killing vectors which generate diffeomorphisms under which the U(1) connection is 

invariant. A similar calculation is done for Einstein-Yang-Mills [16]. 
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With this in mind, suppose we want to add a massive minimally coupled scalar field, 

CJ, to the model, where @ has a background homogeneous part and an inhomogeneous per- 

turbation. Now, the spatial Killing vectors generate rotations which leave the background 

scalar field invariant. Thus we expect linearisation instability to occur. Indeed, the matter 

part of the momentum constraint is given by 

‘H:, = g’$*. 

It is easy to see that smearing this with a Killing vector and calculating the first order 

part will give identically zero since ~5,~ Q(O) = Le. ,f) = 0. 

We expand @J and ~,r. in scalar hyperspherical harmonics. which are the SU(2) repre- 

sentation matrices, 

WY, t) = 4(t) + c fJN”(WJNM(7) pg? 

w(7, t) = &4%(t) + AC “fY”(7)@ NMi7)/T (f-3.2) 

where 4(t) and z+ are “background quantities” and the rest is the perturbation. Then, we 

see that 82’: = 0 and 

(P&*) = 2 J d3zqjj7f:)ie,j = 0. (6.3) 

The second order of the matter part of the constraint is 

(Pm):“) = a2 Jd3r (qijacji + hijxg)‘) eaj 

which can be calculated to be 

(Pm)i2’ = & (; 7 &$) JJCJ + 1)P.J + 1) P’+%M 

and similarly 

(Pm,?’ = - JFM (; 7 ;,) JJ(J + 1)(25 + l)fJN’“7r$iljGM. 

(6.4) 

(6.5) 

(6-5) 

Thus, the SO(4) invariance extends to the matter,dependence of the.wave function, 
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7 Discussion 

We have seen how linearisation instability arises in a model of quantum cosmology in 

which departures from homogeneity are treated perturbatively. It gives rise to second order 

constraints on the wave function which imply that the wave function is SO(4) invariant. 

This is as it should be of course since a field configuration on the three-sphere and a 

rotated configuration are the same as far as quantum cosmology is concerned. Similar 

considerations would arise in any model of perturbations around a mini-superspace with 

closed spatial sections. 

We saw how linearisation instability manifested itself in a non-vacuum model in which 

the background matter field was invariant under the transformation generated by the 

Killing fields. It might be possible to prove a general result along these lines. 

In Section 5, we used the zeroth order hamiltonian constraint to show that the vector 

and scalar parts of the second order constraints were redundant once the lower order 

constraints were imposed. In ref.[9] t i is not the zeroth order hamiltonian constraint 

that is imposed on the wavefunction but the homogeneous projection of the hamiltonian 

constraint. This is (5.7) plus a part which is quadratic in the perturbation. Note that while 

it is not clear how this is justified in the perturbative approach, using this homogeneous 

hamiltonian constraint or the zeroth order hamiltonian constraint does not affect our result 

since the difference will be a higher order than that to which we are working. 

Finally, this calculation shows how neatly the hyperspherical spinor harmonics exploit 

the group structure of S3. One could use them to calculate explicitly the action of the 

DeSitter group on wave functions of gravitational perturbations on a DeSitter background. 

Six of the ten second order constraints are those calculated in section 4. The remaining 

four correspond to the boost Killing vectors, B,. fi In the coordinate system in which the 

metric is ds2 = -dt’ + i cash’ t qijdz’dd, 

BE = (Q,,4a-‘hQk) 

where Qa, a = 1,. .4, are the four lowest inhomogeneous scalar harmonics on S3 i.e. 

‘D?,” (Qn=z Lifschitz), a = cosht, and the index i is raised using q’j. Thus, the relevant 

constraint arises from the second order term in 

QLL7i + tanh t gijQlr’~i (7.2) 
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