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ABSTRACT 

The process pp -+ WH+X + PvyyfX is calculated to order oa. Results are 

given for differential cross sections at SSC energies. The order a9 corrections are 

found to be 0(10%) over most of the relevant kinematic region and are insensitive 

to cuts on the final state particles. 
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I. INTRODUCTION 

A Standard Model Higgs boson with mass in the intermediate range M, 5 

MH 5 Zn/i, is difficult to detect at a hadron collider. The production of a Higgs 

boson in association with a W-boson [I], followed by H + yy and W + .!v, 

provides a nearly background free signal although the expected number of events 

is small [2-8]. Thus it is important to calculate the cross section as accurately 

as possible. For example, a large ‘K-factor’ from higher order QCD corrections 

would have important implications on the collision energy and luminosity required 

for discovering the Higgs boson in this channel. In addition, calculating the cross 

section to next-to-leading-order in QCD reduces the uncertainty associated with the 

choice of factorization scale in the parton distribution functions. The uncertainties 

in the parton distribution functions themselves will be further reduced when data 

from HERA become available. 

The total cross sections for pp -+ VH +X (V = W* or 2) to order Q, were first 

calculated by Han and Willenbrock in Ref. [9] where the total cross sections depen- 

dence on the choice of factorization scale and parton distributions was discussed in 

detail. In this paper we calculate to order cr. the cross section for VH production 

with subsequent decays t’ -+ e,ps and H -+ yy in a completely differential form so 

that differential distributions can be presented and acceptance cuts can be imposed 

on the decay products. 

The next-to-leading-order (NLO) calculation presented here makes use of a com- 

bination of analytic and Monte Carlo integration methods. The same methods were 

used in Refs. [lo-181 for the NLO calculations of ZZ, W-W+, W*Z, yy, W’y, and 

Zy production, direct photon production, photoproduction, symmetric di-hadron 

production, and single W production. In fact, most of the expressions for VH pro- 

duction can be obtained from the corresponding expressions for ZZ production by 
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simply replacing the ZZ Born cross section with the VH Born cross section. The 

only exception to this rule is the finite virtual correction, which must be calculated 

anew. Thus only the final expressions for the NLO VH calculation will be given in 

this paper. Details on the derivations of these expressions can be found in Ref. [lo]. 

The remainder of this paper is organized as follows. The formalism for the NLO 

calculation of VH production is described in Section II. Results are presented in 

Section III and summary remarks are given in Section IV. 

II. NEXT-TO-LEADING-ORDER FORMALISM 

The Monte Carlo formalism for NLO calculations has been described in detail 

in Refs. [lo-181 so the discussion here will be brief. The basic idea is to isolate 

the soft and collinear singularities associated with the real emission subprocesses 

by partitioning phase space into soft, collinear, and finite regions. This is done 

by introducing theoretical soft and collinear cut-off parameters, 6, and 8,. Using 

dimensional regularization [19], the soft and collinear singularities are exposed as 

poles in E (the number of space-time dimensions is N = 4 - 2~ with E a small 

number). The infrared singularities from the soft and virtual contributions are 

then explicitly canceled while the collinear singularities are factorized and absorbed 

into the definition of the parton distribution functions. The remaining contributions 

are finite and can be evaluated in four dimensions. The Monte Carlo program thus 

generates n-body (for the Born and virtual contributions) and (n + l)-body (for 

the real emission contributions) final state events. The n-body and (n + 1)-body 

contributions both depend on the cut-off parameters 6. and S,, however, when 

these contributions are added together to form a suitably inclusive observable, all 

dependence on the cut-off parameters cancels. 

For simplicity, the calculation is done for real H production. Since the Higgs 
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boson is a scalar, it is trivial to incorporate the decay H -+ yy into the calculation: 

simply multiply the cross section for real Higgs boson production by the branching 

ratio BR(H -+ 77) and generate the photon four-vectors isotropically in the rest 

frame of the Higgs bosom The branching ratio BR(H + yy) as a function of MH 

can be found for example in Ref. [6]. In this paper we present results only for 

MH = 100 GeV, for which BR(H + yy) = 1.52 x 10m3, assuming a heavy top 

quark. 

A. Born process 

The Feynman diagram for the Born process 

ql(Pl) + G(Pz) ---t VH --+ 4(p,) + &(p4) + H(~~), (1) 

where V = W* or 2, is shown in Fig. 1. The squared matrix element, summed 

over final state polarizations and initial state spins, is 

IMBorn12 = NC e4gfrH /D(sI~)/* /D(s34)1* b-e M-- + G-+ M-+] , (2) 

where NC is the number of colors, e is the electromagnetic coupling constant (2 = 

4?r(u), gVH is the weak-boson-to-Higgs-boson coupling, 

Mwe 
gWH=xe SZH = 

M,e 
w sin L?, cos & ’ 

(3) 

and the function D(r) is the weak boson propagator, 

D(x) = 
1 

z-M$+irvM,, ’ (4) 

The variables G-- and G-+ are combinations of weak-boson-to-fermion couplings, 

Gem = Igp’bI I* /g(lv(’ I* + Ig$+lL I* Igf;v” I* , (5) 

G-+ = lgp”O’ I* Ig$vh I* + Ig$2vqL I* lg(lvb I* , (6) 
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and the quantities M-- and Me+ are combinations of kinematic invariants, 

M-- = 4 t,4 t23 , M-+ = 4 t,s 624 . (7) 

The left- and right-handed weak-boson-to-fermion couplings are denoted by &vfi, 

gfiwfi = gyfl = g:‘w’2 = 0, 

(8) 
g’-zf = T,’ 

sin Bw cos 0, 
- Qf tan&,, g!“’ = -Qf tan&-r 

where Qf and T. denote the electric charge (in units of the proton charge e) and 

the third component of weak isospin of fermion f, 6’, is the weak mixing angle, and 

Uf2f, is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. The parton 

level kinematic invariants s;j and tij are defined by 

aij = (pi + pi)* , tij = (pi - pj)’ . (9) 

The Born subprocess cross section is 

&BOWl (q1q2 + VH -+ &&H) = (10) 

where the factors $ and 5 are the spin average and color average, respectively, 

and da, is n-body phase space (n = 3 here). The Born cross section is obtained 

by convoluting the Born subprocess cross section with the parton densities and 

summing over the contributing partons, 

oBorn(pp + VH + t?,p2H) = c /d&Born(q,qz -+ VH + e&H) 
a,@2 

(11) 

x 1 G,,,p(llrM2)G~~/p(~~,M2) + 21 * 22 &da. 1 
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B. Next-to-Leading-Order Cross Section 

When working to order cx., one has to include the interference between the Born 

graphs of Fig. 1 and the virtual graphs shown in Fig. 2. In addition, one has to also 

include the real emission subprocess 

ql(Pd + h2(~2) --t VHg --t &(ps) + Z2(p.,) + ~(~5) + g(ps) , (12) 

(see Fig. 3). The NLO cross section, which consists of n-body and (n + 1)-body 

contributions, can now be assembled from the pieces described in Ref. [lo]. The 

n-body contribution is 

a,NLo(pp + VH + el&H) = csHC + c jWx2 
Sl,h 

(13) 

x [ Gq,/p(z~,M*) G~,lp(12,M2)d~nNL0(q*~2 --t VH -+ e&H) + (11 +-+ ~2) 1 , 
where the sum is over all contributing quark flavors and 

d#Lo 
n (q,q2 + VH -i t,f2H) = dSBorn 1+ C.-z{ ix2 - 8 + 4ln(6.)’ 

+[3+4ln(&)]ln(s)}] . (14) 

The quantity gHC is the contribution from the hard collinear remnants. The real 

emission processes have hard collinear singularities when t16 + 0 or tls -+ 0. These 

singularities must be factorized and absorbed into the initial state Farton distri- 

bution functions. After the factorization is performed, the contribution from the 

remnants of the hard collinear singularities has the form 

oHC =q& / gdbBorn(q,q2 -+ VH + P,i!2H) dz, dx2 
>- 

(15) 

l-6. 
x Ga/p(z~r M*) J c Go,~(:: M*) I’,&, 12 
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+ %,/,(+I,M*) 
’ dz J y- %,A:, M*) &&, 

‘2 

+ G&Q, M*) 

l-6. dr 

J ; %,,d~~ M*) ~wb, =1 
+ %,A% M*) j $ G&r M*) P-&z)] , =I 

where 

(16) 

The Altarelli-Parisi splitting functions in N = 4 dimensions for 0 < z < 1 are 

p,(%)=cF g ) ( 1 p,(z) = ; 
( 

2 +(l - 2)’ , 
) 

(17) 

and the P,\(z) functions are 

p&(Z) = -cF (1 - %) , P&(z) = z(1 - 2). 08) 

The parameter MZ is the factorization scale which must be specified in the process 

of factorizing the collinear singularity. Basically, it determines how much of the 

collinear term is absorbed into the various parton distributions. 

Notice that all the singularities have been canceled or factorized, thus the ex- 

pressions appearing here are finite and can be evaluated in four dimensions. Note 

also that Eqs. (14) and (16) are given in the MS scheme [20]. Details on how to 

modify these equations for the Deep Inelastic Scattering (DIS) scheme can be found 

in Ref. [lo]. 

The (n + I)-body contribution to the cross section is 

un+,(pp-+ VH + e&H + x) = C /d&,+,(ab --t VHc -+ e,&Hc) (19) 
a,b,c 

x I G/~(xI,M*) G/p(~2, M*) + (11 ++ +h dl2 , 
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where the sum is over all partons contributing to the three subprocesses q,& + 

VHg + e,f2g, qlg -+ VHq2 -+ e,p2q2, and g& -+ VHql -+ e&&. The cross section 

for the real emission subprocess is 

1 
dh+,(qte + VHg --+ &e,g) = z AC ZI;;; ’ IPall da”+, , (20) 

where the factors i and AC are the spin and color average, respectively. The squared 

matrix element, summed over final state polarizations and initial state spins, is 

preal~ = (N”.; 1) s.2 e4&, ID(p lD(a4)1* k-- M++ + G-+ Me,] , (21) 

where g. is the strong running coupling (g,2 = 4zro.), p = p, + p2 - ps, and 

M-e = (22) 

23 - t14t13 + t23~‘is 
) t",( 

+ - t,.& + 1,4& - t23t24 
>> 

M-+= Mw(3u4). (23) 

The squared amplitudes for the subprocesses qlg + VHqz -+ lliT2q2 and gqs + 

VHql -t eiF2qr can be obtained from the qlq2 -+ VHg + [i&g squared amplitude 

by crossing p2 t-t -ps and pl ++ -ps, respectively. Furthermore, one has to correct 

for an overall minus sign and change the color average from $ x $ to i x a. 

The integrations over (n+l)-body phase space and dx, dr2 are done numerically 

by standard Monte Carlo techniques. The kinematic invariants sii and t, are first 

tested for soft and collinear singularities. If an invariant for a subprocess falls in a 

soft or collinear region of phase space, the contribution from that subprocess is not 

included in the cross section. 
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III. RESULTS 

The numerical results presented in this section have been obtained using the 

two-loop expression for a.. The QCD scale hqco is specified for four flavors of 

quarks by the choice of parton distribution functions and is adjusted whenever a 

heavy quark threshold is crossed so that CY, is a continuous function of Q2. The 

heavy quark masses were taken to be mb = 5 GeV and mt = 150 GeV. The stan- 

dard model parameters were taken to be Mz = 91.173 GeV, A4w = SO.22 GeV, 

a(~&) = l/128, and sin* & = 1 - (Mw/A4z)2. The soft and collinear cut-off pa- 

rameters were taken to be 6. = IO-* and 6, = 10e3. The parton subprocesses have 

been summed over u,d,c, and s quarks and the Cabibbo mixing angle has been 

chosen such that cos’ f3c = 0.95. The narrow width approximation was used for the 

leptonically decaying weak boson and l?w = 2.12 GeV and rz = 2.487 GeV were 

used for the widths of the W- and Z-b osons. Except where otherwise stated, a sin- 

gle scale Q* = M$“, where Ax&$~ is the invariant mass of the VH system, has been 

used for the renormalization scale p* and the factorization scale M*. The MRS set 
- 

SO distributions [21], which have been fit to next-to-leading order in the MS scheme 

with A4 = 21~5 MeV, were used for the parton distribution functions. For conve- 

nience, these distributions were also used for the leading-order (LO) calculations, 

although strictly speaking, one should use a leading order parameterization of the 

parton distributions for LO calculations. 

To study the effect of the order LY. corrections on the leading order processes 

we first consider the cross section without any cuts on the final state particles. 

The relative size of the cross section is relatively insensitive to the overall centre- 

of-mass energy fi and to the Higgs mass (in the intermediate mass range) and so 

for simplicity we present only results for SSC energies and MH = 100 GeV, unless 

otherwise stated. 
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Figure 4 shows the p,(H) and J+(Y) distributions for pp -+ WH +X for MH = 

100 GeV and fi = 40 TeV at leading order (dashed line) and with the order o, 

corrections included (solid line). Here and elsewhere, we have summed over W+ 

and W- and have included W -+ w and W + pv decays. (Both photons have 

been histogrammed in the p=(y) distribution.) We see from Fig. 4 that the overall 

correction is small and increases slowly with increasing pT. This is illustrated more 

clearly in Fig. S(a), which shows the ratio of the NLO to LO cross sections. At 

small p*(y) values [p=(y) x 50 GeV], where the differential distribution peaks, 

the correction is of order 10% or less. At higher pi values [p=(y) > 100 GeV] 

the correction rises to between 20% - 40%. The effect of the NLO correction on 

the integrated cross section, c(p=(r) > ~$9)~ is shown in Fig. 5(b). Since the 

experimental threshold for isolated photon detection is likely to be somewhere in 

the 0 - 50 GeV range, we see that the NLO correction increases the overall rate 

by approximately 10%. Note that the value of the NLO/LO ratio at p$“’ = 0 GeV 

is simply the correction to the total WH cross section and our result there is in 

agreement with the total cross section calculation of Ref. [9]. Further evidence 

of the uniform effect of the NLO correction on the cross section is provided by 

Fig. 6, which shows the photon rapidity distribution at LO (dashed curve) and at 

NLO (solid curve) with no ~~(7) cut. Th e correction is approximately 10% over all 

the experimentally relevant rapidity range. The rapidity distributions of the Higgs 

boson and of the lepton from the W decay show very similar behaviour., 

We next study the effect of the NLO correction on the cross section in the 

presence of cuts on the final state particles. In the present context, where our 

primary interest is in the relative size of the NLO correction, it is sufficient to 

choose cuts which approximately match the likely experimental situation. Thus, the 

following ‘representative’ acceptance cuts have been applied to the cross sections 
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calculated below: 

p=(r) > 20 GeV, p,(t) > 20 GeV , +,>20GeV, 

(24) 

1~47) I < 2.5 , IYW < 2.5 . 

The symbol & denotes the missing transverse momentum carried off by the neu- 

trino. 

Figure 7 shows the pT(H) and p=(y) distributions with the above cuts imposed. 

The NLO (solid) and LO (dashed) curves exhibit behaviour similar to the no-cut 

distributions discussed earlier, i.e., the correction is small at small p, and increases 

with pT as the cross section falls rapidly to zero. 

The final quantity which we study is the energy asymmetry of the photons 

from the Higgs decay. The energy asymmetry is conveniently parametrized by the 

variable 

IEm - EmI 
+E= E7,+Em ’ (25) 

Figure 8 shows do/dzE at leading (dashed curve) and next-to-leading (solid curve) 

order. The correction is again uniform over the whole range. Note that the distribu- 

tions peak at small zE, indicating a preference for the photons to share the energy 

of the parent Higgs. It is interesting to contrast this behaviour with that of the 

principal irreducible background, pp + Wyy +X, where for a fixed M,,, there is a 

preference for one of the photons to be soft, reflecting the presence of infrared sin- 

gularities in the matrix element. Thus Fig. 8 also shows the zE distribution for the 

Wyy background, calculated with the same cuts as for the signal and selecting the 

range M,., = M,~J f 10 GeV. In the absence of any cuts the background distribution 

would be singular as zE + 1, but this is regulated by the pT cut on the photons. 
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Unfortunately, after imposing cuts, the signal and background distributions end up 

looking rather similar, with only a slight preference for the signal to be more peaked 

at small zn. 

IV. SUMMARY 

We have studied the order (Y. perturbative QCD corrections to the fully differ- 

ential Higgs boson production process pp -+ V(-+ e,&)H(+ yy) + X. This allows 

for the first time a proper calculation of the effect of the QCD correction in the 

presence of cuts on the final state particles, as needed to simulate this process in 

a detector situation. When the final state particles are integrated over all of phase 

space, we confirm the result of Ref. [9] that the total cross section correction at 

LHC and SSC energies for the intermediate mass Higgs boson is of order +lO%. 

We find that this correction is approximately uniform over the phase space of the fi- 

nal state particles. Only for large values of the Higgs boson (and photon) transverse 

momentum does the correction increase to nearly SO%, but of course in this region 

there are very few events. The conclusion is that the leading order cross section 

with an overall resealing is a reasonable approximation to the fully-corrected cross 

section. Put another way, the order cr, correction has no dramatic structure with 

respect to the final state momenta which would have enabled the acceptance cuts 

to be optimized to further improve the signal to background ratio. 

We have concentrated on the WH signal, although the formalism for computing 

the order (Y# correction applies equally well to ZH production. When the leptonic 

and photo& decay branching ratios are included, this latter process unfortunately 

gives too few events to be experimentally relevant, except perhaps if very high 

luminosities can be achieved [22]. (The ZH total cross section with branching 

fractions is a factor 5 smaller than the corresponding WH cross sections discussed 
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here.) Our modest perturbative correction has not improved this situation. 
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FIGURES 

FIG. 1. Feynmaa diagrams for the Born subprocess ql& + VH --t t,&H. The 

straight, wavy, curly, and dashed lines denote fermions, electroweak bosom, gluons, and 

Higgs bosom, respectively. 

FIG. 2. Feynman dia~grams for the virtual subprocess q,cjz + VH + tli$H. 

FIG. 3. Feynman diagrams for the real emission subprocess qlcjz + VHg + l,&Hg. 

FIG. 4. Transverse momentum distribution of the Higgs boson (a) and the decay 

photons (b) at leading order (dashed curve) and at next-to-leading order (solid curve) 

for pp -+ WR + X at fi = 40 TeV and M H = 100 GeV. Decay branching fractions 

B(W -+ ev, pv) and B( H -+ yy) are included. 

FIG. 5. The ratio of leading to next-to-leading transverse momentum distributions: 

(a) [~~NLol~~~(r)ll[~~LO/dpy(y)l and @I ~NLo(~r(r) > ~$“““)lo~%~(r) > pFt) as a 

function of p=(y) and pyt, respectively. 

FIG. 6. Photon rapidity distribution (in the laboratory frame) at leading order (dashed 

curve) and at next-to-leading order (solid curve) for pp + WH + X at fi = 40 TeV and 

MH = 100 GeV. Decay branching fractions B(W + ev,~v) and B(H + y-y) are included. 
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FIG. 7. Transverse momentum distribution of the Higgs boson (a) and the decay 

photons (b) at leading order (dashed curve) and at next-to-leading order (solid curve) for 

pp -+ WH + X at ,/X = 40 TeV, M H = 100 GeV, and final state cuts as described in 

Eq. (24). Decay branching fractions B(W --t ev, pv) and B( H + y-y) are included. 

FIG. 8. Distribution in the photon energy asymmetry variable zE defined in Eq. (25), 

for the WH signal at LO (dashed curve) and NLO (solid curve) and for the Wyy background 

(dotted curve) calculated with MT7 = M,y 3~ 10 GeV for MH = 100 GeV, 6 = 40 TeV, 

and final state cuts as described in Eq. (24). 
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