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I. Overview

I.1 Introduction

Seemingly insuperable problems may sometimes be forced to yield their secrets if

one considers instead simpler problems which are appropriately chosen. Whether or

not such a strategy will succeed in a speci�c case depends in the �rst instance on the

proviso that the chosen, simpler problem be suÆciently closely related to the problem

of authentic interest. The discovery by Stephen Hawking that, when considered in the

semi{classical approximation, black holes may emit thermally{distributed radiation

has led to a number of problems which have so far proved too diÆcult to solve. The

supreme example is the problem posed by the possibility that black holes, in the

event that they \evaporate" absolutely and completely, may irrevocably obliterate

information in principle. If this is how Nature behaves then Quantum Mechanics

would seem to be unable to provide an adequate account, for it is a sine qua non

that the wave function must display a well{de�ned unitary time development [1]. It

is clearly premature to abandon quantum mechanics before giving its principles a fair

chance, and it is unlikely that this will have been achieved by relying solely on the

semi{classical approximation. The discovery of black hole radiation was originally

presented with the understanding that one was considering solutions to Einstein's

equations in four dimensions, and it is in this context that it has so far proved too

diÆcult to go beyond the semi{classical approximation.

Recently a great deal of attention has been focussed on interesting related devel-

opments in string theory. Black hole solutions have been discovered to the still{

unwritten equations of motion in string theory. One may say that these solutions are

\unsatisfactory" in di�ering amounts and in various ways: They are available only

at the level of the Born approximation in string theory; some of them are further ap-

proximate in that higher{order contributions to the sigma model on the sphere have

been neglected in their derivation; some of them are actually solutions to a \string{

inspired" theory and not to string theory; some of them are de�ned in a mythical

two{dimensional universe. Nevertheless, and with speci�c regard to the last point, it

is precisely because of the relative simplicity which may be found in two{dimensional

solutions that it is hoped that their study may assist in the resolution of outstanding

problems of four{dimensional black holes.

The deep puzzles of black hole physics which one would like to solve are in large part

inherently quantum mechanical. In the case of four{dimensional black holes one is at

present able to say much more about the classical mechanical behavior than about
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the quantum mechanical behavior. It is hoped in particular that one may study

the quantum mechanical aspects of two{dimensional black holes (for which purpose

their origins in string theory are probably immaterial) and draw inferences therefrom

which may be successfully applied to the quantum mechanics of four{dimensional

black holes. As always, the correspondence principle must serve as our guide in mov-

ing between quantum mechanics and classical mechanics. In considering the possibly

simpler quantum mechanics of two{dimensional black holes to aid in the understand-

ing of four{dimensional black holes, it is natural to require that the correspondence

limit of the substitute, 2d con�guration behave in a reasonably similar way to that of

the 4d con�guration of authentic interest. In this paper we perform the �rst compre-

hensive analysis of the small 
uctuations of speci�c two{dimensional string{theoretic

and string{inspired black holes which have been the focus of recent research.3 We

demonstrate that these two{dimensional black holes display classical behavior which

di�ers radically from that of all known four{dimensional black holes. We �nd this to

be the case for the SL(2; R)=U(1) black hole [2] as well as for two{dimensional black

holes coupled to a massive dilaton. In the cases of the Witten black hole and the

black hole coupled to a massive dilaton with constant �eld strength we �nd that the

linearized equations of motion admit a continuous in�nity of solutions which are such

that it is in principle impossible to ascertain the classical linear response, while we

�nd that the black hole coupled to a massive linear dilaton admits no small 
uctu-

ations at all. We may say therefore that the physics of these two{dimensional black

holes is an \all or nothing" proposition.

It is an element of geometry that the Einstein{Hilbert lagrange density in a two{

dimensional theory of gravitation is a total divergence. It is furthermore the case

that two{dimensional dilaton gravity is characterized by the absence of propagating

degrees of freedom. We note that it is highly unlikely that the unusual behavior

displayed by the various two{dimensional black holes studied in this paper is a con-

sequence of this fact. We see very di�erent types of linear response behavior for the

various black hole examples we study, although they share the absence of propagating

degrees of freedom. While the extremely unusual classical behavior found for speci�c

two{dimensional black holes is not fully understood as to its origin, we may spec-

ulate on the possible implications of these results for other two{dimensional black

holes. In particular, we discuss the so{called CGHS black hole [3], which is closely

related to the Witten black hole, and which is being studied in an attempt to secure

a better understanding of the physics of four{dimensional black holes. Based on the

results of our analysis of di�erent types of two{dimensional black holes, it would not

3See Note 1 below which follows the conclusion section of this article.
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be surprising to discover that the CGHS black hole too displays radically di�erent

classical linear response behavior from the known black holes in four dimensions. It

is essential to repeat the calculation of the present paper for this con�guration in

order to determine if it is reasonable to expect that correct inferences applicable to

four{dimensional black holes can be drawn from its study.

This report is organized as follows. The remainder of the Section I is devoted to

a review of the recent work that has been done on two{dimensional black holes in

Section I.2, after which we provide a pr�ecis of the group{theoretic derivation of the

SL(2; R)=U(1) black hole in Section I.3. In Section II we perform the analysis of the

small 
uctuations of black holes: in Section II.1 we provide a general description of

the technique for black holes in arbitrary dimensions which will be useful to those

who are not familiar with this subject; in Section II.2 we specialize the analysis to the

case of two dimensions by �rst providing an account of the general formulae relevant

to two{dimensional theories of gravitation in Section II.2.a, after which we consider

comprehensively in turn the SL(2; R)=U(1) black hole in Section II.2.b, the black

hole coupled to a massive dilaton with constant �eld strength in Section II.2.c.i and

the black hole coupled to a massive linear dilaton in Section II.2.c.ii. We present our

conclusions in Section III, which is followed by a section of Notes detailing certain

technical points, Tables of numerical results and an Appendix.

I.2 Review of Related Work

In this section we present a brief survey of the recent research e�orts devoted to

two{dimensional black holes, and in the next section we review the group{theoretic

derivation of the SL(2; R)=U(1) black hole, both of which will be useful to those who

are not familiar with this subject. Experts may proceed directly to the analysis of the

linearized equations of motion in Section II. For the particular case of two{dimensional

black holes, a great deal of research has followed the observation byWitten [2] that the

conformal �eld theory based on the non{compact coset model SL(2; R)=U(1), which

had been developed by Bars and Nemeschansky [4], Rocek,et. al. [5], and others,

consists of a two{dimensional black hole coupled to the dilaton. More importantly,

the asymptotic form of the metric is just the linear dilaton vacuum which is studied in

the c = 1 matrix model. Furthermore, the endpoint of the Hawking radiation process,

i.e., the M ! 0 limit, where M is the mass of the black hole, also approaches the

linear dilaton vacuum.

Using the algebraic structures inherent in the G=H construction of this model, a

number of groups, including Dijkgraaf et. al. [6], Distler and Nelson [7], and Chaud-
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huri and Lykken [8], have considered the spectrum of states and their correlation

functions. In particular, Chaudhuri and Lykken [8] emphasize the W1{like structure

of the model's marginal operators, to which point we shall return in a later section.

Among other developments, Bars [9], and Ginsparg and Quevedo [10] have classi�ed

all G=H models which give rise to spacetimes with only a single time{like coordinate,

in any number of dimensions. In addition to the obvious physical importance of having

only a single time{like coordinate, it is argued by Bars [9] that models with more than

one time-like coordinate are likely to be ill{behaved, since the Virasoro conditions (or

equivalently, light{cone gauge) are generally suÆcient to remove the negative norm

states generated by only a single time{like coordinate. A Hamiltonian formalism is

developed, in which the target space metric, antisymmetric tensor and dilaton are

determined to all orders in �0. Ginsparg and Quevedo [10] have stressed the connec-

tion between target space singularities and �xed points of the gauge transformation

generated by H. Gibbons and Perry [11] have discussed the thermodynamics of the

SL(2; R)=U(1) solution and related heterotic solutions.

Another model which has recently attracted great interest is the dilaton gravity model

of Callan, Giddings, Harvey and Strominger (CGHS) [3]. The study of the model be-

gins with the so{called \string{inspired" action, to which a set of minimally{coupled

free scalar �elds is added. In the initial model, they found that any scalar wave im-

pinging on the linear dilaton vacuum creates a black hole. Calculating the Hawking

radiation via its relation in two dimensions to the trace anomaly, one �nds a diver-

gent integrated 
ux. The resolution to this apparent dilemma lies in the neglect of

backreaction on the metric. Therefore, CGHS modi�ed their action to include the

one{loop e�ects of the scalar �elds.

While the initial hopes that the Hawking radiation could then be treated well within

the semi{classical regime were later proven false [12], a number of groups continue

to investigate the detailed behavior of the model. DeAlwis [13], as well as Bilal

and Callan [14], have attempted to quantize the system by a Distler{David{Kawai

approach (see also Hamada [15]). That is to say, they try to form a non{linear sigma

model which solves the appropriate beta{function equations and reduces to the CGHS

model in the semi{classical limit. As pointed out by Giddings and Strominger [16],

such models generally do not have a well{de�ned ground state. They point out an

ambiguity in the regularization of the path integral of the theory, with the result that

essentially an in�nite number of counterterms must be speci�ed even though dilaton

gravity is renormalizable. In other work, Hawking and Stewart [17] claim numerical

evidence that the CGHS black hole will end in a \thunderbolt", i.e., a singularity

which propagates out to in�nity on a spacelike or null path. Russo, Susskind and

5



Thorlacius [18] discuss models in which a naked singularity forms, but claim that

appropriate boundary conditions can be imposed which will prevent the loss of any

quantum mechanical information.

Variations of these models have been treated recently by a number of authors. One

variation with which we will be concerned here are models with a nonvanishing dilaton

potential, considered recently by Gregory and Harvey [19], and by Horne and Horowitz

[20] (the latter in four dimensions only). Others include charged and supersymmetric

black holes [21].

In spite of all these e�orts, many of the central questions concerning both black hole

physics and nonperturbative string backgrounds remain essentially unanswered. The

proper quantization of the CGHS model is needed in order to probe the problems

of information loss and the endpoint of Hawking radiation, but even the full set of

classical solutions of the model are not known. Starting from the string{theoretic

SL(2; R)=U(1) model, one faces a similar problem, in that generally one is only able

to perform calculations in the semi-classical limit.

I.3 Review of Group{Theoretic Derivation of the SL(2; R)=U(1) Black Hole

The �rst black hole we will consider is the SL(2; R)=U(1) model, discovered in various

forms by Witten [2], Mandal et. al. [22], and Bars et. al. [4]. Here we brie
y review

its construction, generally following the notation of Witten [2].

We begin with the ungauged SL(2; R) Wess{Zumino{Witten (WZW) action

SWZW =
k

8�

Z
�

d2z
p
hhijTr(g�1@ig g

�1@jg) + ik�; (1)

where � is a Riemann surface with metric h, g is an SL(2; R)-valued �eld on �, and

k is real and positive. � is the Wess{Zumino term, which is usually represented as

� =
1

12�

Z
B

d3y Tr(g�1dg ^ g�1dg ^ g�1dg); (2)

where B is a three{dimensional manifold with boundary equal to �. In this expres-

sion, g has been extended from a �eld on � to a �eld on B, but � is independent of

this choice.

The Euclidean version of the black hole is now obtained by gauging the U(1) subgroup

the in�nitesimal action of which is given by

Æg = �fGg + gGg; (3)

6



where G is the constant SL(2; R) element

G =

�
0 1

�1 0

�
: (4)

To gauge this symmetry, we introduce a gauge �eld A with the transformation law

ÆAi = �@i�: (5)

In local complex coordinates z; �z, the gauge invariant action now takes the form

S = SWZW +
k

2�

Z
�

d2zfA�zTr(Gg�1@zg)+AzTr(G@�zgg�1)+AzA�z(�2+Tr(GgGg�1))g:
(6)

One now �xes the gauge by setting

g = cosh r + sinh r

�
cos � sin �

sin � �cos �

�
: (7)

The gauge �eld A appears quadratically and without derivatives. Integrating it out

and dropping the Wess{Zumino term (as it is a total derivative) one �nds the e�ective

action

I0 =
k

4�

Z
d2x
p
hhij(@ir@jr + tanh2r@i�@j�): (8)

This has the form of a nonlinear sigma model with target space metric

ds2 =
k

2
((dr)2 + tanh2r(d�)2): (9)

It is well{known [23] that upon integrating out the gauge �eld one �nds that the

integration measure yields a �nite correction to the action:

I = I0 � 1

8�

Z
d2x
p
h�(r; � )R; (10)

where R is the world sheet curvature and � is the target space dilaton. In the present

case, one �nds

� = 2 ln cosh r + �; (11)

where � is a constant related to the black hole mass. This form of the dilaton can

also be seen from the target space action which we will consider in the next section.

The Lorentzian signature form of the black hole, which we shall use in the next section,

can be obtained most simply by the analytic continuation � ! it, or by gauging a

di�erent U(1) subgroup, in which the matrix G above is replaced by

G !
�
1 0

0 �1
�
: (12)
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As noted by Witten [2], if one computes the central charge from this action, it di�ers

from the SL(2; R)=U(1) value of 2+ 6
k�2 by an amount of order 1

k2
, implying that there

are further corrections from the integration over the gauge �eld. These corrections

would presumably appear in terms higher order in the sigma model coupling �0. We

will return to this point in a later section.

Nearly all of the 2{d black holes in the recent literature are related in some way to the

SL(2; R)=U(1) black hole. For example, the analysis of the CGHS model [3] begins

with the M = 0 limit of the SL(2; R)=U(1) black hole (which corresponds to � !
�1). A set of minimally{coupled scalars is added to the action, and one �nds that

any incoming scalar wave creates a black hole. Of course, for a given incoming scalar

distribution, it is not known whether the resulting background solution corresponds

to a conformal �eld theory.

The massive dilaton models recently considered by Gregory and Harvey [19] are also

related to the SL(2; R)=U(1) model, in that they are solutions of the same target

space action, but with the addition of an explicit potential for the dilaton (though

they do not contain the scalars of the CGHS model). By taking the mass to zero, one

can recover the SL(2; R)=U(1) model. Of course, the mass terms imply that these

models de�nitely do not correspond to a conformal �eld theory. While such terms do

not appear in string perturbation theory, it is widely speculated that they are related

to supersymmetry breaking. Furthermore, a mass must be generated since the dilaton

is related to the string coupling constant. Experimental tests of conventional Brans{

Dicke models also put tight constraints on very light scalars, though there are recent

models in which such limits are evaded if the metric is chosen to couple di�erently to

a \dark matter" dilaton than to ordinary \visible" matter [24].

II. Analysis of Linearized Equations

II.1 Small{Fluctuation Analyses of Black Holes

In the following sections we shall explicitly analyze the perturbations of two{dimensional

string{theoretic black holes. Here we shall �rst survey the general procedure used in

the analysis of the perturbations of black holes in any number of dimensions [25]. We

suppose that one has found a black hole solution to the coupled �eld equations of an

interacting system consisting of gravitation and, in general, additional \matter" �elds

of various possible types, including di�erent spins. The di�erent species of \matter"

will be denoted by labels  (1) through  (n), where possible tensor indices have been

8



suppressed. The �eld con�guration which de�nes the black hole solution, which we

will refer to as the background, will be denoted by the collection of gB�� and  
(i)
B . The

coupled �eld equations to which the background provides a solution are then given

by

R�� = T (1)
�� + � � �+ T (n)

�� ; (13)

Ĥ(1)
�
 (1)

�
= I(1);
...

Ĥ(n)
�
 (n)

�
= I(n) ; (14)

where the T (i)
�� are the various stress tensors associated with the di�erent \matter"

�elds, the Ĥ(i) are in general coupled, nonlinear, tensor{valued, second{order partial

di�erential operators which may depend on the di�erent �elds and the I(i) are pos-
sible source terms. From these coupled nonlinear equations one now computes the

associated �rst{order variations, which yields4

ÆR�� = ÆT (1)
�� + � � �+ ÆT (n)

�� ; (15)

0 = Æ
h
Ĥ(1)

�
 (1)

�i� ÆI(1);
...

0 = Æ
h
Ĥ(n)

�
 (n)

�i� ÆI(n) : (16)

One next substitutes the background �eld values gB�� and  
(i)
B into these equations

and then works out the reduction of the system which results upon identifying any

integrability conditions and imposing any kinematical constraints. This leads to the

following system of linear, coupled partial{di�erential equations

�̂(1)Æf1 = �(1);

...

�̂(m)Æfm = �(m) ; (17)

4It is important to note that there is a proper order in which to perform these computations: it

is only after calculating the abstract variations that one may substitute the background �eld values

into eqs. (15) through (16). If this order is not respected one will in general miss those terms which

vanish in the background but do not 
uctuate to zero.
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where the Æfi are the distinct perturbations of the background �elds and the �̂(i)

are linear partial{di�erential operators which depend on the background but are

independent of the various perturbations. In these equations, for a given Æfi the

corresponding �(i) is a function of as many asm�1 of the remaining perturbations and

their derivatives and in general one has m � n. In the subsequent treatment of these

equations one usually assumes that all �eld perturbations have a time{dependence

/ ei!t, where ! is a non{dispersive frequency, and a temporal Fourier analysis is

performed.

One next looks for an appropriate separation of variables in order to transform eqs.

(17) into a set of coupled ordinary di�erential equations. The chosen separation must

be consistent with the boundary conditions imposed on the �eld perturbations. It is

then usually convenient to introduce integrating factors which serve to eliminate all

�rst derivative terms, after which one attempts to decouple the resulting system of

ordinary di�erential equations in two steps. One �rst searches for a transformation

of the dependent variables which will allow the system to be expressed in the form:

0
@
D̂2

. . .

D̂2

1
A
0
@
Æf1
...

Æfm

1
A =

0
@
P11 � � � P1m
...

. . .
...

Pm1 � � � Pmm

1
A
0
@
Æf1
...

Æfm

1
A =

0
@
P1
...

Pm

1
A ; (18)

where D̂2 = d2+!2 (here d is the spatial derivative), the Pij are scalar functions and

the Pi = Pi (Æf1; : : : ; Æfm) are therefore in general linear functions of all the distinct

perturbations, but not of their derivatives. We say that the system in this form has

been only di�erentially decoupled. In the second step we diagonalize the matrix (Pij),

after which the completely decoupled system of equations may be expressed in the

form

D̂2Æpi = viÆpi ; (19)

where the physical perturbation functions Æpi are linear combinations of the Æfi appro-

priate to the diagonalization of (Pij), and the scalar functions vi are the perturbation

potentials which surround the black hole as a consequence of the presence of the small


uctuations. Thus the original system has been reduced to a set of completely de-

coupled Schr�odinger{like radial equations. As a result, once one has worked out the

explicit expressions for the vi it is possible to study the properties of any possible

bound states, to calculate the various scattering coeÆcients associated with di�erent

incident perturbations and in general to determine completely the linear response of

10



the black hole to diverse types of incoming waves of small to moderate intensity. It

must be emphasized, however, that there is no guarantee that it will be possible in

all cases to secure a suitable transformation of the dependent variables which will

allow the system of equations to be decoupled. Indeed, in the general case this is an

extremely challenging mathematical problem, and as we shall see, it is in precisely

this regard that two{dimensional black holes display unexpected properties.

II.2 Analysis of the Linearized Equations of Motion in Two Dimensions

II.2.a General Formulae for Two{Dimensional Theories of Gravitation

In considering the small 
uctuations of two{dimensional black holes we �rst note that

the most suÆciently general form for the perturbed metric associated with a given

initial con�guration can be represented by a diagonal matrix. This is always possible

to arrange through a transformation of the coordinates, as a result of which we note

that we will not encounter the analogues of the \axial" perturbations which arise in

the study of black hole perturbations in more than two dimensions. The �rst{order

perturbations of two{dimensional black holes are entirely \polar", and thus the metric

tensor corresponding to the squared line element

ds2 = �e2f0dt2 + e2f1dr2 ; (20)

will experience perturbations in the form

��e2f0 0

0 e2f1

�
!

��e2f0+2Æf0 0

0 e2f1+2Æf1

�
: (21)

We note in passing that, having taken the metric tensor to be diagonal, and thus taken

the perturbed metric tensor to be diagonal as well, the choice of gauge in the perturbed

system has been partially �xed. We shall consider the residual gauge freedom in the

perturbed system presently. We see that with the reasonable assumption described

in the previous section that all �eld perturbations carry a time{dependence / ei!t,5

the various equations for the di�erent small 
uctuations are automatically separated

in the coordinates. For any two{dimensional black hole, then, the small 
uctuations

are determined by a system of coupled ordinary di�erential equations.

5It is the case that the background spacetimes considered in this paper are all characterized by

a Killing vector. The norm of this vector in the perturbed metric is inde�nite, as a result of which

perturbations about the background are in general time{dependent.

11



We will consider the physics determined by the two{dimensional action:6

S = (2�)�1
Z
d2x
p�ge�2�

h
R+ 4 (r�)2 + 4�2 � e�2�V (�)

i
; (22)

where � is the dilaton �eld, V is a generic \potential" for the dilaton, and � is the

cosmological constant. Extremization of the action with respect to the gravitational

and dilaton �elds, respectively, leads to the following equations of motion:

2e�2�
n
r�r�� + g��

h
(r�)2 �r2�� �2 +

1

4
e�2�V (�)

io
= 0 ; (23)

e�2�
n
R + 4�2 + 4r2� � 4 (r�)2 + e�2�

h1
2

@V

@�
� 2V (�)

io
= 0 : (24)

Upon contracting both sides of eq.(23) with the metric tensor, substituting the result

into eq.(24), resolving the resulting equation into components again and thereafter

employing the convenient substitution 7 �! ��=2 one may rewrite these equations

as:

0 = r2� + (r�)2 � 4�2 + e� ~V ; (25)

and

R�� = r�r��� 1

2
g��e

�

�
1

2
~V 0 � ~V

�
; (26)

where ~V � V j�!��=2 and a prime denotes di�erentiation with respect to the dilaton

�eld.

The variations of r2�, (r�)2 and r�r�� are given by

Æ
�r2�

�
= �;�Æg

��
;� +

h
(f0 + f1);��;� + ���

i
Æg�� + g���;� (Æf0 + Æf1);�

+ g��Æ�;�;� +
h
(f0 + f1);� g

�� + g��;�

i
Æ�;� ; (27)

6We employ the sigma{model metric throughout the following analysis.
7This substitution is in accord with the convention for the relation between the string coupling and

the exponential of the dilaton �eld employed by Witten in [2]. It di�ers from the convention chosen

in [19,21], which are devoted to the analysis of two-dimensional black holes coupled to a massive

dilaton. For these cases, when viewed as solutions to a two{dimensional theory of gravitation, the

choice is intrinsically unimportant (in particular since there is no electromagnetic �eld present and

hence no duality transformation relating possible electric and magnetic solutions), and may be in

any event irrelevant when viewed in the context of string theory since the massive dilaton black

holes considered in [19] may have little, and possibly nothing whatsoever, to do with string theory.
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Æ
�
(r�)2� = �;��;�Æg

�� + g���;�Æ�;� + g���;�Æ�;� ; (28)

Æ (r�r��) = Æ�;�;� ��;�Æ�
�
�� � ����Æ�;� ; (29)

and thus we derive from eqs. (25) and (26) the following linearized perturbation

equations:

0 = g��Æ�;�;� +
h
g��;� + g�� (f0 + f1);� + 2g���;�

i
Æ�;� + e�

�
Æ ~V + ~V Æ�

�

+ �;�Æg
��
;� +

h
(f0 + f1);� �;� + 2�;��;�

i
Æg�� + g���;� (Æf0 + Æf1);� ; (30)

and

ÆR�� = Æ�;�;� � �;�Æ�
�
�� � ����Æ�;�

� 1

2
e�
��

1

2
~V 0 � ~V

�
Æg�� + g��

�
1

2
Æ ~V 0 � Æ ~V

�
+ g��

�
1

2
~V 0 � ~V

�
Æ�

�
:

(31)

We now note that for the general metric given by eq.(20) computation reveals that

the components of the Ricci tensor are given by:

R00 = e2f0�2f1
�
f0;r;r + f20;r � f0;rf1;r

�� �
f1;0;0+ f21;0 � f0;0f1;0

�
; (32)

R01 = R10 = 0 ; (33)

and

R11 = �e�2f0+2f1R00 : (34)

One thus �nds that the perturbations in the Ricci tensor are given by:

ÆR00 = e2f0�2f1
h
Æf0;r;r + (2f0;r � f1;r) Æf0;r � f0;rÆf1;r

+ 2 (Æf0 � Æf1)
�
f0;r;r + f20;r � f0;rf1;r

� i� Æf1;0;0

� (2f1;0 � f0;0) Æf1;0 + f1;0Æf0;0 ; (35)
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ÆR01 = ÆR10 = 0 ; (36)

and

ÆR11 = �
h
Æf0;r;r + (2f0;r � f1;r) Æf0;r � f0;rÆf1;r

i

+ e�2f0+2f1
h
Æf1;0;0 + (2f1;0 � f0;0) Æf1;0 � f1;0Æf0;0 � 2 (Æf0 � Æf1)

�
f1;0;0+ f21;0 � f0;0f1;0

� i
:

(37)

II.2.b The SL(2; R)=U(1) Black Hole

The SL(2; R)=U(1) black hole with Lorentzian signature is the solution to eqs. (25)

and (26) for ~V = ~V 0 = 0 given by the metric tensor of eq.(20) characterized by the

Wick rotation of the metric components given in eq.(9) above:

g00 = �e2f0 = �k
2
tanh2 r ; (38)

g11 = e2f1 =
k

2
; (39)

where k = 2��2 is the level of the underlying Wess{Zumino action, along with a

dilaton �eld given by

� = log cosh2 r + � ; (40)

where � is a constant which is related to the mass M of the black hole through the

equation e� = (k=2)1=2M .

In order to study the small 
uctuations around this background con�guration we

specialize eqs. (30) and (31) to the case of ~V = ~V 0 = Æ ~V = Æ ~V 0 = 0, which yields:

0 = g��Æ�;�;� +
h
g��;� + g�� (f0 + f1);� + 2g���;�

i
Æ�;�

+ �;�Æg
��
;� +

h
(f0 + f1);� �;� + 2�;��;�

i
Æg�� + g���;� (Æf0 + Æf1);� ; (41)

and
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ÆR�� = Æ�;�;� � �;�Æ�
�
�� � ����Æ�;� : (42)

The basic perturbation equations for the Witten black hole are then obtained by

substituting eqs. (38), (39) and (40) into eqs. (41) and (42), which yields

Æf0
00+2coth r Æf0

0�sechr cschr Æf10+!2coth2rÆf1+sechr cschr Æ�0+!2coth2r Æ� = 0

(43)

Æf0
00 + 2sech r csch r Æf0

0 � tanh r(csch2r + 2)Æf1
0 + !2coth2r Æf1 + Æ�00 = 0 (44)

Æ�00+tanhr(csch2r+4)Æ�0+!2coth2r Æ��2tanhr Æf1
0�8Æf1+2tanhr Æf0

0 = 0 (45)

0 = i! (Æ�0 � 2 tanh r Æf1 � sech r csch r Æ�) ; (46)

where in these equations a prime denotes di�erentiation with respect to r. As ex-

pected for any two{dimensional black hole, as described above, we �nd that these form

a system of coupled, linear, ordinary di�erential equations. As noted in the Introduc-

tion, this model of two{dimensional dilaton gravity does not incorporate propagating

degrees of freedom. This obviously does not imply that the linearized equations of

motion may not be reduced to di�erentially{decoupled form. In order to proceed we

would like to attempt to follow the prescription outlined in the previous section. Thus

we must search for a suitable transformation which will put the system into di�eren-

tially decoupled form, after which the �nal reduction to a completely decoupled set

of equations would proceed without diÆculty. In this connection we note that eq.(46)

�xes the relation between Æf1 and Æ�, as a consequence of which we would naively

expect a �nal reduction to two decoupled second{order equations for the physical

perturbation functions. However, we also see that the distinct �eld perturbations

appear on an unequal footing in these equations: neither Æf0 nor Æf1
00 appear in these

equations and, as we shall discover, this fact portends unusual consequences.

We will begin the attempt to di�erentially decouple the system given in eqs. (43)

through (46) by noting that, in virtue of the so{called Curci{Pa�uti equations [26]

1

2
r��

(�) = r��(g)�� � 2�(g)��r�� ; (47)

where �(�) and �(g)�� are the beta{functions8 for the dilaton and gravitational �elds,

respectively, we are guaranteed that any single one of the equations of motion of

8�
(g)
�� and �(�) are beta{functions of the non{linear sigma model with target space metric given

by eqs. (38) and (39), and generate the equations of motion for the SL(2; R)=U (1) black hole.
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the background �elds is automatically satis�ed if the beta{functions corresponding

to the remaining equations vanish. This in turn allows us to proceed to attempt to

decouple the system of perturbation equations by considering �rst eqs. (43) through

(45), without imposing eq.(46). To that end we can �rst eliminate Æ�00 between eqs.

(44) and (45) to obtain:

Æf0
00 + 2Æf0

0(sech r csch r � tanh r)� Æ�0(sech r csch r + 4tanh r)

� !2Æ�coth2r � sech r csch r Æf1
0 + Æf1(!

2coth2r + 8) = 0 : (48)

We now write eqs. (43) and (48) as a simultaneous system:

MX = Y ; (49)

where

M =

�
!2coth2r �sech r csch r

!2coth2r + 8 �sech r csch r

�
; (50)

X =

�
Æf1

Æf1
0

�
; (51)

Y =

� �Æf000 � 2 coth Æf0
0 � sech r csch r Æ�0 � !2coth2rÆ�

�Æf000 � 2Æf00 (sech r csch r � tanh r) + Æ�0 (sech r csch r + 4tanh r) + !2coth2rÆ�

�
:

(52)

Using

M�1 =
1

8

� �1 1

� sinh r cosh r
�
!2coth2r + 8

�
!2coth r cosh2 r

�
; (53)

we �nd:

4Æf1 = 2 tanh r Æf0
0 + (sech r csch r + 2tanh r) Æ�0 + !2coth2rÆ� ; (54)

and

4 sech r csch r Æf1
0 =

= 4Æf0
00 + 2

�
!2 + 4

�
coth rÆf0

0

+
�
!2coth2r (sech r csch r + 2tanh r) + 4sech r csch r

�
Æ�0

+ !2coth2r
�
!2coth2r + 4

�
Æ� : (55)
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Di�erentiating eq.(54) we get:

4Æf1
0 = 2 tanh r Æf0

00 + 2sech2rÆf0
0 + (sech r csch r + 2tanh r) Æ�00

� �
sech2rcsch2r � !2coth2r

�
Æ�0 � 2!2coth r csch2rÆ� ; (56)

and combining eqs. (55) and (56) we obtain:

2 tanh r
�
sinh2 r + cosh2 r

�
Æf0

00 + 2 cosh2 r
�
!2 + 4 � sech4r

�
Æf0

0

� (sech r csch r + 2tanh r) Æ�00 +
�
4 + sech2rcsch2r + 2!2 cosh2 r

�
Æ�0

+ !2coth r
h
(! cosh r coth r)2 + 2

�
2 cosh2 r + csch2r

� i
Æ� = 0 : (57)

Returning now to the basic perturbation equations (eqs. (43) through (46)), we

substitute the values for Æf1 and Æf1
0 dictated by eq.(54) into eq.(45), which, after

some manipulation, yields

sech2rÆ�00 �
h
!2coth r + sech3r csch r

�
sinh2 r + cosh2 r

� i
Æ�0 � 2!2Æ�

� 2 tanh2 rÆf0
00 � 2 tanh r

�
2 + sech2r

�
Æf0

0 = 0 : (58)

Upon eliminating Æf000 between eqs. (57) and (58) we �nd:

�coth2rÆ�0 + coth3r
�
!2 cosh2 r + 2

�
Æ� + 2 cosh2 rÆf0

0 = 0 : (59)

Given this reduction, it is evident that the original system of equations is not amenable

to further reduction to di�erentially{decoupled form through the use of a transforma-

tion of the dependent variables. The most general simultaneous linear transformation9

of all of the dependent variables when substituted into the set of equations given by

(43) through (45) fails to di�erentially decouple the system, which at �rst appears to

be surprising.10 That this is the case, however, becomes apparent when one notices

that eq.(46) is in fact equivalent to eqs. (54) and (59). Thus, one may check that the

9A nonlinear or more complicated non{local transformation would be inconsistent with the re-

striction to small 
uctuations we have imposed throughout the analysis.
10The algebraic manipulations required in the analysis of the general case are very involved. A

machine symbolic manipulation program, such as Mathematica, proves extremely useful in sorting

out the many pieces.
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original system of perturbation equations given in eqs.(43) through (46) is actually

entirely a consequence of the following two �rst{order di�erential equations:

0 = 2Æf0
0 � csch2r Æ�0 + cosh r csch3r

�
!2 cosh2 r + 2

�
Æ� ; (60)

0 = 2Æf1 � coth r Æ�0 + csch2r Æ� : (61)

We therefore �nd that, for a given frequency !, the spatial evolution of the small


uctuations of the Witten solution is completely determined by eqs. (60) and (61).

We note that these are two equations in three unknowns, and that only Æ� and its

derivative appear in both eqs. (60) and (61). The consequence of this is that one

�nds that a consistent �rst{order11 perturbation solution may be found for any choice

of functional form for Æ�, which is a completely unprecedented result. This result

is altogether di�erent from the corresponding results one �nds for any of the solved

small{
uctuation problems involving the known black hole solutions in the general

theory of relativity, where to date one has always encountered eigenvalue equations

(cf eq.(19)) for some perturbation potential, and where in virtue of the decoupling

constraints it is not possible to �nd solutions for arbitrary perturbations.12 In the

usual case, the classical linear response of the black hole may be determined once the

perturbation potentials are known. The linear response is de�ned by the scattering

coeÆcients, which, for an assumed asymptotic behavior, are uniquely predicted by

the radial eigenvalue equations. In the present case, in contrast, the equations admit

a continuous in�nity of solutions. Within this set of solutions are entirely distinct

functions with identical asymptotic behavior, and thus the equations do not uniquely

determine scattering coeÆcients. Therefore, although eqs. (60) and (61) may be

unambiguously solved, it is nevertheless impossible to unambiguously ascertain the

linear response of the black hole. We may thus say that the equations which normally

determine the linear response of the black hole are in this case physically unpredictive.
13

We may gain perspective on the surprising behavior of the SL(2; R)=U(1) black hole

which we have discovered by viewing our results in the context of the underlying

conformal �eld theory. In particular we shall consider the dimension (1; 1) operators

11Technical details involving boundary conditions on the �elds and residual gauge invariance,

respectively, are discussed in Notes 2 and 3 below, following the conclusion section.
12One also �nds results similar to those which obtain in general relativity in the case of the known

\string{inspired" solutions in four dimensions, i.e., for dilaton gravity in four dimensions [27].
13Note that this is not the same as the condition of a vanishing perturbation potential, vi = 0, for

which one would have a reduced system of the form Æpi
00 + !2Æpi = 0.
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of the conformal �eld theory: the so{called marginal operators. These operators have

the property that when one or more of them is incorporated into the de�nition of

the sigma model the value of the central charge is preserved. There is a subset of

these operators which are further distinguished by the property that the conformal

dimensions of all operators in this subset are preserved as well in the modi�ed model.

This special class of marginal operators are known as exactly marginal operators.

Their properties have been elaborated in [8], where it was shown how to explictly

compute them to �rst{order in an expansion in 1=k.14 The spacetime e�ect on the

background �elds of speci�c exactly marginal operators (evaluated to �rst{order in

1=k) was derived in [8]. We shall now consider the compatibilty of this action with the

conditions embodied within the basic perturbation equations of the SL(2; R)=U(1)

black hole. The particular exactly marginal operators investigated in [8] were the

operators L1
0
�L1
0 and L2

0
�L2
0.

15 It was shown in [8] that the addition of the operator

L2
0
�L2
0 to the action of the non{linear sigma model generates the deformed lagrangian

L given by (� is an arbitrary parameter)

L = @zr@�zr

�
1�2� �csch2r + sech2r

� �
+@z�@�z�

�
sinh2 r+2��

�
sinh2 r + 2�

�2
cosh2 r + 2�

�
: (62)

We would like to determine whether or not this deformation, produced by an exactly

marginal operator, is encompassed within the continuous in�nity of allowed deforma-

tions we have discovered in our analysis of the small 
uctuations of the black hole.16

In comparing the deformation produced by the operator L2
0
�L2
0 with our analysis of the

small 
uctuations it is important to note that the calculation in [8] leading to eq.(62)

was performed with the neglect of terms in the sigma model which were of higher than

bilinear order in derivatives. With the proviso that the metric is asymptotically{
at

it is legitimate to neglect these terms in the limit r!1. Thus, we may read o� from

eq.(62) the appropriate �elds to substitute into the perturbation equations given in

eqs. (60) and (61), taking care to work in the large{r limit. It is straightforward to

verify that eqs. (60) and (61) are indeed satis�ed in this limit, and we thus �nd that

a particular example of a �rst{order 
uctuation which is consistent with the linear

14In the limit that k !1 one obtains purely classical conformal �eld theory.
15Here Ls

n is de�ned as Ls
n = V s

n + ~V s
n , where V

s
n and ~V s

n are the n'th Fourier components of two

of the generators of the super{W1 algebra, and s is the W1 \spin" of the algebra [8].
16Note that it is appropriate to ask this question since the deformation in eq.(62) has been com-

puted to lowest{order in an expansion in 1=k, which is to say that it represents a classical conformal

�eld theoretic e�ect. As such, it is consistent to compare it with our analysis of the small 
uctuations

since it has also been (implicitly) performed at lowest order in 1=k.
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constraints given by the basic perturbation equations is provided by the operator

L2
0
�L2
0. However, the analogous calculation applied to the operator L1

0
�L1
0 reveals that

the deformation it generates corresponds to the excitation of a non{linear departure

from the background [28]. Speci�cally, the tachyon �eld, which is implicitly present in

the background with zero �eld strength in the Witten solution, appears as a second{

order perturbation. However, we have restricted our analysis to small 
uctuations

understood to be of �rst{order, and it is thus inappropriate to compare the e�ect of

this operator with our results. The complete set of all exactly marginal operators

is believed to constitute a countably in�nite set, since the quantum numbers which

distinguish them are discretely valued. Clearly these cannot encompass all of the

allowed deformations we have discovered, since, as we have demonstrated above, the

linearized perturbation equations of the SL(2; R)=U(1) black hole allow a continuous

in�nity of solutions. Although we have demonstrated that the operator L2
0
�L2
0 at large

r generates a particular one of the continuous in�nity of deformations we have discov-

ered, the fact that the operator L1
0
�L1
0 does not generate a small 
uctuation suggests

that only some (and perhaps none) of the remaining exactly marginal operators excite

small 
uctuations.17 Thus the mere existence of an in�nite set of exactly marginal

operators does not imply that there are an in�nity of allowed small 
uctuations, and

even if it did, this would have accounted for only a countable in�nity. We have thus

discovered a new, continuously in�nite class of motions the fundamental origin of

which awaits explanation.

One may therefore enquire as to precisely where the new continuous in�nity of al-

lowed small 
uctuations we have discovered �ts in the description of the physics of

the SL(2; R)=U(1) black hole. The (subset of the) countably in�nite set of exactly

marginal operators consistent with the basic perturbation equations is evidently in-

suÆcient to describe all of the allowed motions of the black hole. This black hole is

actually a particular two{dimensional solution to the equations of motion of string

theory. More precisely, the Witten black hole is an approximate solution to the string

equations of motion: It is a solution at the level of the Born approximation in string

theory since the sigma model has been formulated on a sphere and thus all higher{

loop (and, more generally, non{perturbative) string corrections have been ignored;

It is evidently an approximate solution to the sigma model as well, as re
ected in

the presence of O(1=k2) corrections to the value of the central charge pointed out by

Witten in [2]. It is natural to speculate that what is missing from the picture lies in

17Actually, the fact that we have shown that the exactly marginal operator L2
0
�L2
0 excites an allowed

small 
uctuation serves to verify the consistency, to �rst{order in 1=k, of the two 1=k expansions,

used to derive the black hole and to explicitly compute L2
0
�L2
0, respectively.
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the corrections that have been neglected in the higher string{loop contributions, or

in the higher{order 1=k contributions on the sphere, or perhaps some combination of

both contributions. The underlyingW1 structure of this model appears to be related

to the existence of an in�nite number of exactly marginal operators. However, as we

have stressed, it is not obvious that these operators generate a (countably in�nite) set

of small 
uctuations, and we expect this to remain true even if one were to consider

the e�ect of the exactly marginal operators computed to all orders in 1=k. As we have

also stressed, however, even if the exactly marginal operators computed to all orders

in 1=k did excite a countably in�nite set of modes, this would not account for the

continuous in�nity of perturbations we have found. Ideally, one would like to com-

pare the e�ects of exactly marginal operators, calculated to all orders in 1=k, to small


uctuations as determined by the exact beta{functions. The latter, unfortunately,

are not known at present, although the solution to the equations they correspond to

(with the same leading order behavior as the Witten black hole) has been calculated

[6,9]. It should in any event be worthwhile to extend our results by examining the

next{to{leading{order corrections in 1=k.

II.2.c Massive Dilaton Black Holes

We will now study the small 
uctuations of two{dimensional black hole con�gurations

in which the dilaton is massive, and we thus return to eqs. (25) and (26). In order

to proceed it is necessary to select a particular form for the potential energy density

V (�). Here one has a great deal of latitude since, apart from a special case such as

the Witten solution (i.e., choosing ~V = ~V 0 = 0) which furnishes a solution at the level

of the Born approximation to the equations of motion of string theory, the models

de�ned by the action of eq.(22) are no more than \string{inspired" models. Thus,

the fact that it is not today known how (or better, if) string{theoretic principles

determine the form of the dilaton potential is to a certain extent unimportant. We

shall here follow the choice made in recent studies of these con�gurations [19] in which

the potential is chosen by �at to be of the form:

V (�) = m2�2 ; (63)

where m is the mass of the dilaton.18 This is certainly the simplest non{trivial choice

18It must be remembered throughout the following analysis that, as stated above in the text

and in footnote #7, in our calculations we make the substitution � ! ��=2 in the equations of

motion. This should be borne in mind when comparing certain expressions below with corresponding

expressions given in [19]. In particular with the choice of V given in eq.(63), one has ~V = 1
4m

2�2.
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one may make for the potential, and it is conceivable that such a choice may prove

to be useful. Upon substituting eq.(63) into eqs. (25) and (26) one then obtains:

0 = r2� + (r�)2 � 4�2 +
1

4
m2e��2 ; (64)

R�� = r�r�� +
1

2
m2e�g��

�
1

4
�2 +

1

2
�

�
: (65)

In recent studies a putative massive dilaton black hole con�guration was studied by

employing the ansatz of eq.(20) for the metric tensor, with the metric functions taking

the values

g00 = �e2f0 = �A2; g11 = e2f1 = A�2 ; (66)

where A = A (r) is to be determined by solving the �eld equations. It was shown

that there exist two possible black hole solutions: one for which the dilaton �eld

strength is given by a constant: � = p0, say, and another for which the dilaton �eld

is proportional to r: � = p1r.

II.2.c.i Constant Dilaton Solution

In the case of a constant dilaton �eld, � = p0, one may prove that the constant scalar

curvature is given by19

R = � �
A2
�00

= 4�2
�
1 + 2p�10

�
; (67)

as a result of which we �nd the metric solution A2 = ar2 + br + c, where

a = �2�2
�
1 + 2p�10

�
; (68)

and b and c are integration constants. We will now consider the basic perturbation

equations (eqs. (30) through (31)) for the constant dilaton solution. We observe �rst

that the (01){component of the linearized Einstein equations is given by

0 = i!
�
Æ�0 �A�1A0Æ�

�
; (69)

19See the comment in footnote #18.
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which immediately yields the integral Æ� = �A with � a constant. We must now

ensure that our small{
uctuation approximation is valid, which is the case if jÆ�=�j �
1. For the constant dilaton solution this means that we must have

jÆ�(r)=�j =
���� �p0
p
ar2 + br + c

����� 1 : (70)

We will now prove that this inequality dictates that we must take � = 0 for the value

of the integration constant. The smallness constraint must be satis�ed everywhere in

order to justify the neglect of terms of higher than �rst{order in our analysis, and in

particular in the limit r !1. From eq.(70) we see that we must have

lim
r!1

jÆ�=�j = lim
r!1

�����a
1=2

p0
r

����� 1 ; (71)

which implies that � = 0, or that a=0, or both.20 However, if a = 0 we have

lim
r!1

jÆ�=�j = lim
r!1

�����b
1=2

p0
r1=2

����� 1 ; (72)

which implies that � = 0, or that the integration constant b = 0, or both. However,

if a=b=0, one has A2 = c, in which case for arbitrary non{vanishing21 c the metric

tensor is constant and non{singular (cf eq.(66)), and the con�guration is no longer

a black hole at all.22 Therefore we must require that � = 0, as a result of which we

have found that

Æ� = 0 ; (73)

and thus all �rst{order 
uctuations in the dilaton �eld have exactly vanishing ampli-

tude. As a result of this we observe that the linearized dilaton equation (cf eq.(30))

vanishes identically. Furthermore, making use of eq.(31) we �nd that the (00){ and

(11){components of the Einstein equations simplify dramatically, and we obtain

20From eq.(68) we see that a can vanish for special values of p0 or �.
21In the special case a = b = c = 0 the metric function A2 vanishes identically in which case the

metric tensor is ill{de�ned globally. In any event, we note in passing that for this case one obtains

eq.(73) automatically.
22Note that this argument is distinct from the observation of the fact that when a = 0 the curvature

vanishes (cf eq.(67)). The constant dilaton con�guration is a black hole in virtue of the fact that

there is an event horizon, and not because there is a curvature singularity, as indeed there is not.
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A4
h
Æf0

00 + 3A�1A0Æf0
0 �A�1A0Æf1

0 + 2 (Æf0 � Æf1)
�
A�1A00 +A�2A0

2
�i

+ !2Æf1

= �1

2
A2m2ep0

�
p0 +

1

2
p20

�
Æf0 ; (74)

for the (00){equation, and

�Æf000 � 3A�1A0Æf0
0 +A�1A0Æf1

0 � !2A�4Æf1 =
1

2
A�2m2ep0

�
p0 +

1

2
p20

�
Æf1 ; (75)

for the (11){equation. Upon multiplying the (11){equation by A4 and adding the

result to the (00){equation one obtains

(Æf0 � Æf1)

�
A3A00 +A2A0

2
+
1

4
A2m2ep0

�
p0 +

1

2
p20

��
= 0 : (76)

The equations of motion of the background �elds may now be used to obtain the

relation 16�2 = m2p20e
p0. Upon substituting this expression into eq.(76), along with

the value of A2 with a given by eq.(68), one �nds that the quantity in the square

brackets vanishes identically, and thus the two gravitational equations form a redun-

dant system and there is only one independent equation. The consequence of this is

that the black hole coupled to a massive dilaton with constant �eld strength behaves

in a manner similar to that of the SL(2; R)=U(1) black hole [2]: a solution for one

of the gravitational perturbations may be found for any choice of the other one. As

before, we must ensure that the solutions are suÆciently small to be considered as

�rst{order perturbations. Since we have shown that eqs. (74) and (75) are equivalent,

we may check that the 
uctuations are acceptable by considering either one of them.

To that end we note that the (11){equation may be written as

0 = A4Æf0
00 + 3A3A0Æf0

0 �A3A0Æf1
0 + !2Æf1 +$A2Æf1 ; (77)

where $ = 1
2m

2ep0
�
p0 +

1
2p

2
0

�
is a constant. Eq.(77) can be rewritten as

0 = A
�
A3Æf0

0
�0 � 1

4

�
A4
�0
Æf1

0 +
�
!2 +$A2

�
Æf1 ; (78)

which may be integrated to yield

A3Æf0
0 =  +

Z r

rh

dr

�
1

3

�
A3
�0
Æf1

0 � �
!2 +$A2

�
A�1Æf1

�
; (79)
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where rh is the position of the event horizon and  is the constant of integration.

Now, since A2 = ar2 + br + c, near the horizon one has

A � (r � rh)
1=2 ; A3 � (r � rh)

3=2 ; (80)

etc. Noting that Æf00 = A�1A0, we will �nd it convenient to ensure that jÆf0=f0j � 1 by

proving the suÆcient condition that jÆf00=f 00j � 1. Substituting eq.(80) into eq.(79)

we �nd

(r � rh)
�3=2

n
 +(r � rh)

1=2 Æf0�
Z r

rh

dr
h
!2 (r � rh)

�1=2+$ (r � rh)
1=2

i
Æf1

o
� (r � rh)

�1 :

(81)

This condition requires that we take  = 0 for the value of the integration constant,

as a result of which the constraint will be satis�ed as long as Æf1 is regular in the limit

r! rh. One can similarly check that a continuous distribution of small gravitational


uctuations can be found in the limit r!1. Thus, as is the case for the Witten black

hole, there exist a continuous in�nity of small{
uctuation solutions to the linearized

equations of motion for the massive dilaton black hole with constant �eld strength,

and it is therefore in principle impossible to unambiguously determine the classical

linear response of the black hole. Of course, unlike the SL(2; R)=U(1) black hole,

here the 
uctuation in the dilaton �eld is constrained to vanish, but there remains

an uncountably in�nite ambiguity in the gravitational perturbations. Although this

black hole is characterized by a massive dilaton and is therefore not described in terms

of a conformal �eld theory, whereas the SL(2; R)=U(1) black hole is so described, the

two di�erent two{dimensional con�gurations display similar behavior: the classical

linear response is indeterminate, an unusual situation which di�ers radically from the

behavior of all known black holes in four dimensions.

II.2.c.ii Linear Dilaton Solution

In the case of a linear dilaton solution with � = p1r the equations of motion for

the background �elds have been solved by Gregory and Harvey [19], who �nd the

following expression for the metric function A:23

A2 = 1 � 2Me�p1r � m2

16p21
e�p1r

�
2p21r

2 � 2p1r + 1
�
; (82)

23See the comment in footnote #18.
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withM (not to be confused with the dilaton massm) arbitrary. With the background

metric speci�ed by eq.(66) we may consider the basic perturbation equations for the

black hole. We obtain

0 = i!
�
Æ�0 �A�1A0Æ�� p1Æf1

�
; (83)

from the (01){component of the linearized Einstein equation, and

0 = A2Æ�00 +
h �
A2
�
0 + 2p1A

2
i
Æ�0 +

h
!A�2 +

1

4
p1m

2rep1r (2 + p1r)
i
Æ�

+ p1A
2Æf0

0 � 2p1

h �
A2
�
0 + p1A

2
i
Æf1 � p1A2Æf1

0 ; (84)

for the linearized dilaton equation. For the (00){component of the linearized Einstein

equations we obtain

A4
h
Æf0

00 + 3A�1A0Æf0
0 �A�1A0Æf1

0 + 2 (Æf0 � Æf1)
�
A�1A00 +A�2A0

2
�i

+ !2Æf1

= �!2Æ�� 1

2
A2

�
A2
�0
Æ�0 + p1A

2
h �
A2
�0
Æf1 �

�
A2
�0
Æf0 �A2Æf0

0
i

� 1

2
e�
�
A2m2

�
� +

1

2
�2

�
Æf0 +A2m2

�
1

4
�2 + �+

1

2

�
Æ�

�
; (85)

and we �nd

� Æf0
00 � 3A�1A0Æf0

0 +A�1A0Æf1
0 � !2A�4Æf1

= Æ�00 � p1Æf1
0 +A�1A0Æ�0 (86)

for the (11){component of the linearized Einstein equations. By appropriately com-

bining these equations and making use of the expression for A(r) given in eq.(82), we

may rewrite the system as24

0 = �(r)Æ�0 + �(r)Æ� ; (87)

0 = 
(r)Æf0 + �(r)Æ�0 + �(r)Æ� ; (88)

24We have taken M = 0, to ensure an asymptotically{
at metric, as well as the upper choice of

sign in eq.(82).
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0 = �p1Æf00 + � (r)Æ�0 + �(r)Æ� : (89)

In these equations the scalar functions �(r) and �(r) are given by25

�(r) � �8e3p1rm2r(2 + p1r) ; (90)

�(r) � I�1(7m4 � 832e2p1rm2p21 + 40m4p1r + 48e3p1rm4p1r + 1792e2p1rm2p31r + 192m4p21r
2

+ 216e3p1rm4p21r
2 � 512e2p1rm2p41r

2 � 576m4p31r
3 � 288e3p1rm4p31r

3 + 192m4p41r
4

� 192e3p1rm4p41r
4) ; (91)

where

I � m2 � 64e2p1rp21 + 4m2p1r + 8m2p21r
2 : (92)

The analysis of this coupled system of di�erential equations proceeds as follows. One

�rst di�erentiates eq.(88), which may be used to eliminate all terms proportional to

both Æf0 and Æf00 across eqs. (88) and (89), and hence from the complete system since

no such terms appear in eq.(87). Then eq.(87) and its derivative may be used to

eliminate all terms proportional to Æ�0 and Æ�00 from the system as well. The result

of these successive operations is a single equation of the form26

�(r)Æ�(r) = 0 : (93)

The next step in the analysis entails a numerical examination of the function �(r),

which demonstrates that in general one has �(r) 6= 0, as may be seen in Table 1

where representative values of �(r) are displayed. This result suggests that Æ� = 0.

One may then also note that eq.(87) can be directly integrated to yield

Æ� = const: exp

�
�
Z r

dr�=�

�
: (94)

25The expressions for 
, �, �, � and � are huge and will not be displayed here. A Mathematica

routine which generates these functions will be provided via electronic mail upon request.
26The explicit form of the function �(r) is extremely complicated and will not be given here. A

Mathematica routine which generates this function will be provided via electronic mail upon request.

The interested reader is warned that the output �le is exceedingly large, consuming approximately

100 kilobytes of computer memory.
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Given that generically �(r) 6= 0, and that this is true in particular for values of

r for which �=� is �nite (as may easily be checked), the above equation can be

consistent with the remaining equations (i.e., eqs. (88) and (89), or, what is the same

thing, with eq.(93)) only if the integration constant vanishes identically. Inspection

of eq.(83) reveals that one must take Æf1 = 0 for consistency. Finally, a numerical

analysis of the function 
 (r) demonstrates that in general one has 
 (r) 6= 0, as may

be seen in Table 2, where representative values of 
(r) are displayed, in virtue of

which one must take Æf0 = 0 for consistency (cf eq.(88)). This analysis demonstrates

quite generally that the only consistent simultaneous solution of the coupled system

of perturbation equations is the trivial solution in which all of the small 
uctuations

are constrained to vanish. Thus, we have found another unexpected result: the linear

dilaton species of two{dimensional massive dilaton black hole does not admit any

small 
uctuations around the background con�guration, in complete contrast once

again to the corresponding results which have been obtained for the black holes of

four{dimensional general relativity. The result indicates that the black hole coupled to

a massive, linear dilaton represents an isolated point in the space of �eld con�gurations

of two{dimensional dilaton gravity.

III. Conclusions

We have found that the Witten black hole behaves in a radically di�erent way from

all other known black hole solutions, whether in the conventional general theory of

relativity or in four{dimensional dilaton gravity. For those solutions one may perform

an analysis (as outlined in Section II.1 above) of the linear response of the black hole

to incoming waves which leads to decoupled eigenvalue equations for the physical


uctuations characterized by speci�c perturbation potentials. For these various black

holes one �nds di�erent perturbation potentials corresponding to di�erent varieties

of uniquely determined scattering behavior, and indicative of whether or not a bound

state can form. In the case of the Witten solution, however, the equations for the small


uctuations cannot be brought into completely decoupled form. In contrast to the

situation which obtains for all previously studied black holes, there exist a continuous

in�nity of acceptable (i.e., suÆciently small to be considered of �rst{order) solutions

to the linearized equations of motion about the background. We have further shown

that as a consequence of this it is impossible to unambiguously determine the classical

linear response of the black hole, since the reduced perturbation equations do not

uniquely determine the scattering coeÆcients for speci�ed asymptotic behavior.

In studying a two{dimensional conformal �eld theory it is interesting to study the

exactly marginal (1; 1) operators. In the case of the conformal �eld theory underlying
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the SL(2; R)=U(1) black hole some of the exactly marginal operators may generate

deformations of the action of the underlying sigma model which correspond to small


uctuations of the background �elds of the black hole. We have explicitly con�rmed

this for the particular case of the exactly marginal operator L2
0
�L2
0 by verifying that

the small 
uctuations it produces do indeed satisfy the linearized equations of motion.

However, the exactly marginal operators constitute only a countably in�nite set, and

in any event, as we have discussed, only some of themwill excite physically{acceptable

small 
uctuations. Thus it is necessary to look elsewhere in order to account for the

complete, uncountably in�nite set of small motions which our equations allow the

black hole to perform. It is very surprising to encounter such an intrinsic ambiguity

in the classical analysis of the linear response. However, we may recall that the

SL(2; R)=U(1) black hole is a solution at the level of the Born approximation to

the equations of motion of a string propagating in two dimensions. The black hole

con�guration is approximate as well in that higher{order corrections in an expansion

in powers of 1=k are neglected in obtaining the solution. Although this approximate

character is well{known, the hope has been expressed by many authors that the

black hole solution is nevertheless \very useful for getting a qualitative picture of the

physics." We suspect that the behavior we have uncovered, which is highly unusual,

is suÆciently di�erent from the behavior of all known four{dimensional black holes

that it may be misleading to utilize this black hole model at all as a point of reference

in studying the properties of physically{realistic black holes in four dimensions. It

is natural to wonder whether a proper classical linear response can be restored by

considering instead a black hole solution which is exact. Of course, the word exact

has a double meaning here. One's chief desire would be to have in hand a black hole

solution which is truly exact in the sense of string theory, in which all string{loop

corrections have been accounted for. Such a solution is not available at the moment,

and may not be known for a long, long time. On the other hand, when considered

solely as a black hole qua a solution to a two{dimensional theory of gravitation, one

might hope that a proper linear response would be obtained by analyzing instead

the corresponding two{dimensional black hole solution in which higher{order 1=k

corrections on the sphere have been included. Dijkgraaf, et. al. [6] and Bars and

Sfetsos [9] have claimed to have derived such a solution, and work is in progress in

extending the analysis of this paper to that black hole.

As discussed in Section I.2, there are a number of related black hole constructions

which have been discovered recently. In particular, we examined two speci�c exam-

ples of related black hole solutions which have been found. These are both two{

dimensional black holes coupled to a massive dilaton. In the somewhat special case
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in which the background dilaton is characterized by a constant �eld strength, we �nd

behavior reminiscent of the SL(2; R)=U(1) black hole, in that a continuous in�nity of

small 
uctuations is admitted by the linearized equations of motion, and it is again

impossible in principle to ascertain the classical linear response of the black hole.

That this black hole behaves in a manner similar to the SL(2; R)=U(1) black hole is

surprising in that one might have thought that the essential source of this unusual

behavior in the case of the Witten solution might lie in its origin as a conformal �eld

theory. However, since the constant dilaton black hole is in particular coupled to a

massive dilaton, and is thus not derived from a conformal �eld theory, that explana-

tion is open to question. We also analyzed the linear response of the two{dimensional

black hole solution coupled to a massive, linear dilaton. This is an important example

to consider since the linear dilaton vacuum is roughly analogous to four{dimensional

Minkowski space. Here we found entirely di�erent, but again unexpected, behavior as

compared to the linear response of known four{dimensional black holes. In striking

contrast to the other examples we studied, the black hole with massive linear dila-

ton is intrinsically constrained so that no small 
uctuations are allowed at all. Thus

this black hole con�guration is an isolated point in the space of �eld con�gurations

of the theory of two{dimensional dilaton gravity, and as such represents an unusual

occurrence in a generally covariant theory.

These surprising results do not appear to be a consequence of the fact that the un-

derlying dilaton gravity theories do not incorporate propagating degrees of freedom.

All of the black holes we have studied share this property, yet they display two vastly

di�erent linear response behaviors. In this connection we note that attention has

recently turned to the study of the CGHS black hole [3]. This black hole is be-

ing closely studied in an attempt to resolve questions of four{dimensional black hole

physics, such as: What is the nature of the �nal result of the Hawking radiation pro-

cess? Do black holes destroy information? If they do, does this signal that the very

tenets of the quantum theory itself must be modi�ed? Thus, the obvious candidate

two{dimensional black hole which must, and which remains to be, analyzed using the

methods of this paper is the CGHS solution. As we have discussed, the fundamental

cause of the in�nite classical 
uctuation ambiguity found for the SL(2; R)=U(1) black

hole is not yet clear. Nevertheless, the CGHS model has its origin in a non{linear

sigma model which is closely related to that which underlies the Witten black hole.

This suggests that the CGHS model may well also display classical linear response

behavior which is radically di�erent from that of all known four{dimensional black

holes. Recall that the problems for which the CGHS model is being studied are

inherently quantum mechanical in origin, and that the correspondence principle dic-
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tates that one must properly recover classical mechanics from quantum mechanics in

the appropriate limit. However, the two{dimensional black holes we have analyzed

in detail in this paper do not display linear response behavior which is in any way

characteristic of their four{dimensional counterparts. If the classical mechanical be-

havior of the CGHS black hole is indeed shown to be radically di�erent from that of

four{dimensional black holes, then its use as a toy model from which to draw infer-

ences applicable to the outstanding problems of four{dimensional black holes must

be treated with caution.
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Notes

Note 1

As the present paper was being completed the authors received a preprint (reference

[29] by Diamandis, et. al., in which related issues involving black holes with time{

dependent tachyons are treated.

Note 2

In order to ensure consistency with our assumption throughout that all 
uctuations

are small (and hence that only linear terms need be retained) one must, of course,

choose Æ� such that jÆ�=�j � 1. With the help of eq.(40) we see that this requires

that

jÆ�=�j =
���� Æ�

ln cosh2 r + 1
2 ln (k=2) + lnM

����� 1 : (N2:1)

Having chosen Æ�, as stated in the text, one may always �nd a solution for the


uctuations in the metric by substituting it into eqs. (60) and (61). We must restrict

our attention, however, to solutions for the metric perturbations which satisfy the

constraints jÆf0=f0j � 1 and jÆf1=f1j � 1. It is easy to see that there are a continuous

in�nity of simultaneous solutions which satisfy these constraints. For instance, by

solving eq.(61) for Æf1 and using eq.(39) we �nd that

jÆf1=f1j =
����coth r Æ�0

ln (k=2)
� csch2r

Æ�

ln (k=2)

���� : (N2:2)

We are interested only in the behavior of �elds at points outside of the event horizon,

which is located at r = 0. Thus it is clear that we must consider the amplitudes of the
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�eld perturbations at the two extreme locations: r = 0 and r ! 1, since it is only

at these positions that it is possible for the necessary \smallness" constraints to be

violated. We �nd that we must choose those perturbations in the dilaton �eld such

that Æ� vanishes at in�nity and goes to zero faster than r at the horizon. Similarly,

we may solve eq.(60) for Æf00 and then integrate both sides of the resulting equation.

After an integration by parts, and making use as well of eq.(38), we obtain

jÆf0=f0j =
���� csch2r Æ�

ln [(k=2) tanh r]
� !2

R r

0
dr coth3r Æ�

ln [(k=2) tanh r]

���� : (N2:3)

We see that in order to satisfy the condition jÆf0=f0j � 1 it is necessary again to

require that Æ� vanish at in�nity and go to zero faster than r at the event horizon.

These simple conditions can obviously be satis�ed for a continuous distribution of

choices of values of the 
uctuation Æ�. Having established that the magnitudes of

the ratios of the 
uctuations to the background �elds are �nite at the horizon and at

in�nity we are done, since it follows from the above equations that they are �nite at

all intermediate values of r. To see this, and in particular to see that the ratios are

both �nite and small, recall that we are performing a classical analysis, which is to

say that we are actually working in the limit k !1. Thus, we are assured that the

smallness constraints are satis�ed for all of the 
uctuations, in view of which we have

con�rmed that there are an uncountable in�nity of physically acceptable solutions to

the basic perturbation equations of the SL(2; R)=U(1) black hole.

Note 3

In this note we discuss the residual gauge freedom implicit in our construction, and

its e�ect on the in�nite set of solutions to the linearized equations of motion. We

have chosen (cf eq.(21)) the following ansatz for the perturbed metric

��e2f0 0

0 e2f1

�
!

��e2f0+2Æf0 0

0 e2f1+2Æf1

�
: (N3:1)

In setting the o�{diagonal components to zero one has only partially �xed the gauge.

Clearly, the ansatz in eq.(N3.1) is una�ected by coordinate transformations of the

form

t! ~t = ~t(t); r! ~r = ~r(r) ; (N3:2)

where ~t and ~r are arbitrary functions of t and r, respectively. However, the background

should remain unchanged under this transformation, and therefore we must have
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~t = t+ g(t); ~r = r + h(r) ; (N3:3)

where g(t) and h(r) are of the same order of smallness as the Æfi. Upon utilizing the

standard transformation laws for the metric tensor and for the dilaton, one �nds

Æf0 ! Æf0+g
0(t)+f0;tg(t)+f0;rh(r); Æf1 ! Æf1+h

0(r)+f1;tg(t)+f1;rh(r) ; (N3:4)

Æ�! Æ� + g(t)�;t + h(r)�;r ; (N3:5)

where a prime denotes di�erentiation with respect to the argument. Recall that we

require that all perturbations have a time-dependence given by ei!t. Also, note that

all of the backgrounds which we have considered have the property fi;t = �;t = 0.

From the �rst component of eq.(N3.4), we see that consistency requires that h(r) = 0,

and that we must also have g(t) � ei!t, which merely results in an additive constant in

Æf0. Similar analyses of the second component of eq.(N3.4) and of eq.(N3.5) yield no

additional constraints. Since eqs. (60) and (75) do not contain any terms proportional

to Æf0 without derivatives, we see that the integration constant implicit in eqs. (60)

and (75) is actually a gauge artifact. Thus, after taking account all residual gauge

freeedom, one is left with an uncountably in�nite number of distinct solutions to the

linearized equations of motion for both the Witten black hole and the black hole

coupled to a constant, massive dilaton.

We remark brie
y on the overall choice of gauge in studying the small 
uctuations

of two{dimensional black holes. One may enquire as to the consequences of choosing

conformal gauge in our analysis, as well as in possible generalizations of our analysis

to other con�gurations such as the CGHS black hole. In this case, following the

procedure of reference [3], one would write the metric tensor as g�� = e2���� with � a

scalar function. In e�ecting the variation, one must be careful to allow g00 and g11 to

vary independently. Thus one must take g00 ! e2�+2Æf0�00 and g11 ! e2�+2Æf1�11. At

this point, it may naively appear to be the case that the residual gauge freedom is

�xed upon choosing Æf0 = Æf1, thereby restoring conformal gauge. In fact, for general

Æf0 and Æf1, and in particular when both are proportional to ei!t, this cannot be done.

It follows from eq.(N3.4) that one has

Æf0 � Æf1 ! Æf0 � Æf1 + g0(t)� h0(r) (N3:6)

where the fact that f0 = f1 in conformal gauge has been used. It is assumed that

Æf0� Æf1 6= 0 initially. It is clearly not necessary that Æf0� Æf1 be equal to the sum of
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a function of r alone and a function of t alone. It follows that, in general, functions

g(t) and h(r) cannot be found which are consistent with the restoration of conformal

gauge. This is in particular obvious if, as we require, both Æf0 and Æf1 vary with time

as ei!t.

We �nally note that, throughout our analysis, we have made use of the coordinate

system ( x0 x1 ) = ( t r ) rather than light cone coordinates. This choice is con-

sistent with our interest in what occurs outside of the event horizon, as opposed to

what occurs throughout the maximally{extended spacetime.
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Appendix

The Christo�el symbols and variations of same which are relevant to the analysis of

the perturbation equations are for convenience recorded below.

In the general case, one �nds:

�000 = f0;0 �001 = f0;1 �011 = e2f1�2f0f1;0

�100 = e2f0�2f1f0;1 �101 = f1;0 �111 = f1;1 (A1)

and

Æ�000 = Æf0;0 Æ�001 = Æf0;1 �011 = e2f1�2f0
h
Æf1;0 + 2(Æf1 � Æf0)f1;0

i

Æ�100 = e2f0�2f1
h
Æf0;1 + 2(Æf0 � Æf1)f0;1

i
Æ�101 = Æf1;0 Æ�111 = Æf1;1 (A2)

The SL(2; R)=U(1) Black Hole

With the help of eqs. (38) and (39) one may derive the following:

�000 = 0 �001 = sech r csch r �011 = 0

�100 = tanh r sech2r �101 = 0 �111 = 0 ; (A3)

Æ�000 = i!Æf0 Æ�001 = Æf0;r Æ�011 = i!coth2r Æf1

Æ�100 = �2 tanh r sech2r Æf1 + 2 tanh r sech2r Æf0 + tanh2 rÆf0;r

Æ�101 = i!Æf1 Æ�111 = Æf1;r : (A4)

Massive Dilaton Black Hole

With the help of eq.(66) one may derive the following:

�000 = 0 �001 = A�1A0 �011 = 0

�100 =
1

2
A2

�
A2
�0

�101 = 0 �111 =
1

2
A2

�
A�2

�0
; (A5)

Æ�000 = i!Æf0 Æ�001 = Æf0;r Æ�110 = i!Æf1

Æ�011 = i!A�4Æf1 Æ�100 = �A2
h �
A2
�0
Æf1�

�
A2
�0
Æf0�A2Æf0;r

i
Æ�111 = Æf1;r : (A6)
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Table 1: The Function �(r)

r m = 1 m = 2 m = 3 m = 4

1:0 �26:9 �1438:5 �18312:6 �1:35:105
2:0 �6:99:103 �4:42:105 �5:32:106 �3:27:107

3:0 �8:69:105 �5:56:107 �6:43:108 �3:70:109
4:0 �7:06:107 �4:52:109 �5:16:1010 �2:92:1011
5:0 �4:38:109 �2:81:1011 �3:20:1012 �1:80:1013
6:0 �2:27:1011 �1:45:1013 �1:65:1014 �9:30:1014
7:0 �1:03:1013 �6:60:1014 �7:51:1015 �4:22:1016
8:0 �4:24:1014 �2:71:1016 �3:09:1017 �1:74:1018
9:0 �1:61:1016 �1:03:1018 �1:18:1019 �6:61:1019
10:0 �5:77:1017 �3:69:1019 �4:21:1020 �2:36:1021

The above table displays representative values of the function �(r) which arises in

the analysis of the small 
uctuations of the two{dimensional black hole coupled to a

massive, linear dilaton, as discussed above and below eq.(93) in the text.

Table 2: The Function 
(r)

r m = 1 m = 2 m = 3 m = 4

1:0 1:98 7:26 13:8 18:29

2:0 14:62 56:41 119:13 192:36

3:0 75:08 297:35 657:87 1141:77

4:0 327:34 1306:38 2928:15 5177:72

5:0 1298:41 5191:21 1:17:104 2:07:104

6:0 4841:00 1:94:104 4:36:104 7:74:104

7:0 1:73:104 6:91:104 1:55:105 2:76:105

8:0 5:96:104 2:38:105 5:37:105 9:54:105

9:0 2:00:105 8:02:105 1:80:106 3:21:106

10:0 6:61:105 2:64:106 5:95:106 1:06:107

The above table displays representative values of the function 
(r) (cf eq.(88)) which

arises in the analysis of the small 
uctuations of the two{dimensional black hole

coupled to a massive, linear dilaton, as discussed above and below eq.(93) in the text.
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