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Abstract

We examine the Q{ag) corrections to inclusive heavy-flavour differential
distributions in transverse momentum and rapidity in electroproduction. We
assume that the electron is tagged and present results for fixed v and Q? for
c-quark production at HERA.
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1 Introduction

Inclusive neutral-current heavy-flavour production

e"(h) + Plp) — e (I2) + Q(p)(Q(p2)) + X, (1.1)

at the eP collider HERA has heen analysed within the framework of per-
turbative QCD [1] (X denotes the hadrons in the final state which are not
detected). The dominant contribution to the cross section comes from the
photon-gluon fusion reaction

Yig) + glky) — Qp1) + Qlpa2) . (1.2)

where 4(g) is a spacelike virtual photon and g(k,) is an on-mass-shell gluon.
Therefore a measurement of the inclusive production cross section provides
an opportunity to determine the gluon density in the proton g,(&, M 2} at
small momentum fraction £ [2] {defined by the identity &) = £p) and mass
factorization scale M?. The O(eg) corrections to the inclusive cross sections
and inclusive heavy-quark distributions in transverse momentum (p,) and
rapidity (y) were discussed for a real photon (g% = 0) in (3] (sce also [4]).
These corrections are valid in the "no-tag” situation where the electron re-
mains in the beam pipe and the Weizsicker-Williams approximation is valid.
Unfortunately the presence of a poorly determined hadronic (resolved) gluon
density in the real photon g. (2., M?%) complicates the extraction of the gluon
density in the proton g,(&, AL?) [5].

A more reliable test of QCD can be made for heavy-quark production
cross sections and inclusive distributions when Q* = —¢® > 0 (say Q* > 2
(GeV/c)?) because the magnitude of the resolved component in the virtual
photon decreases as ()? increases. In this case the electron is tagged so its
Bjorken scaling variable 2 = Q%/2p - ¢ and Q? values are known. At HERA
the outgoing clectron can be detected if Q2 > 4(GeV/c)?. A measurement
of the heavy-quark inclusive cross section then requires the analysis of a five-
fold differential involving the heavy-quark energy and polar angle together
with the azimuthal angle between the plane containing the incoming and the
outgoing leptons and the plane containing the proton and the heavy quark,
as well as © and Q? for the detected electron. We recently calculated the
QCD corrections to the four-dimensional-differential cross section [6], having



integrated over the azimuthal angle. This involved the calculation of the
bremsstrahlung process

7" (g) + g(k1) = Q(p1) + Qpa) + glka) | (1.3)

and the virtual (one-loop) corrections to the reaction (1.2). Furthermore at
O(a%) we encounter a new production mechanism given by the process

Y (q) + @)k = Q) + Qlp2) + «(§)(k2) . (1.4)

The resulting partonic cross sections were determined in the MS scheme both
for coupling constant renormalization as well as for mass factorization, which
was also performed in the DIS scheme. As an application we computed in
[6] the O{cs) corrections to the heavy-flavour contributions to deep-inelastic
structure functions, denoted by Fy(x, Q% m?) and Fy(x, Q% m?), where m is
the heavy-flavour mass. To illustrate the effect of the higher-order corrections
we adopted the Morfin-Tung (MT) parametrization of the parton densities
presented in table I, (Fit B;) of [7] with A4y = 0.194 GeV/e (in the MS
scheme). Furthermore, we chose the renormalization scale (yt) to be equal
to the mass factorization scale (M), so that p? = M? = Q? + 4m? and
12 = M? = Q? + m} for c-quark and b-quark production respectively.

Our results showed that even for an inclusive measurement, the Oasg)
corrections to the deep-inelastic structure functions cannot be described by
constant factors multiplying the Born cross section (commonly called K-
factors). Indeed ratios such as

FO(x, Q% m?) + FV (2, Q2 m?)

Rilzx, Q2. mQ) =
FO G

: (1.3)

(k = 2,L) showed significant increases at small and large values of = at
fixed Q? (see figs. 17a, 17b, 21a, and 21b in {6]). In this cquation the
superscript denotes the order in perturbation theory, (0) corresponding to
the Born reaction (1.2), which is already O(as) and (1) to the O(a%) terms
given by the corrections to (1.2} and the contributions from (1.3} and (1.4).
Combining the results in {6] with the O(a%) corrections to the standard
(massless-quark) structure functions Fy(x, Q%) and Fy(x, Q%) calculated in
[8] we were able to make more quantitative statements about the heavy-
quark contributions to the deep-inelastic structure functions [9]. Note that
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we have analysed the QCD corrections to extrinsic heavy-flavour production
and concentrated on the region of moderate and small 2. The magnitude of
an additional intrinsic component at large  has been investigated in [10}.

In this article we discuss the corrections to the inclusive transverse mo-
mentum (p,) and rapidity (y) distributions for heavy-quark production at
fixed values of x and Q>. Since heavy quarks are detected by an analysis of
their decay modes, information on the p; and y distributions is crucial in any
complete Monte Carlo program containing both heavy-quark production and
decay. Prograns presently available (1], [2] use only the Born approximation.
It is therefore necessary to check whether the QCD corrections to these in-
clusive distributions can be accounted for by simple multiplicative factors
or not, since, in addition to the choice of the scheme, there are now several
scales to consider. For example 312 can depend upon Q?, m? and p?. As it
is impossible to cover all possible schemes and scales, our results should only
be considered as an indication of the shapes of the corrections. Furthermore
to reduce the number of plots we only present results for c-quark production
since this has a larger cross section than that for b-quark production. Finally
we choose tlie same schemes and scales as in [6], except for the p,-distribution
for which we take M? = Q? + 4(p? + m?2). Comments on other scale choices
will be made in the text.

The variation in scale provides us with an estimate of how muck the
uncalculated higher order corrections change our O{a%) results in the appro-
priate regions of phase spacc. If all invariants and scales are roughly equal
then there should not be any large logarithmic terms which destroy the reli-
ability of the perturbation series expansion. Although the calculation in [6]
is applicable to any eP collider, the results we present here arc for x and
(Q? values relevant to HERA. Note that the details of the QCD correction
calculation are available in [6] so we limit ourselves to a brief listing of the
important definitions in the next section and then present our resuits. Some
useful kinematic relations are given in the Appendix.



2 Inclusive Heavy-Quark Distributions

After performing the integration over the azimuthal angle the deep-inelastic-
electroproduction cross section can be written as a four-dimensional-differential
cross section in the form

d4a(S,T1,U1,:1?,:) _ E"‘}“[Q(l _ q)dQJL(S’TI1U1,Q2)
daed=dTdUy,  ~ 27 zz " dT\dU,
d*oyp(S, Ty, U1, Q%)
_ .2 Ty L1V,
+[1 + (1 "') ] dT]_dU] ] Y (21)
where x and : denote the usual Bjorken scaling variables
Q? p-q
= s Joi—— . 2.2
Ty p-h @2

related by Q% = 25 where S = (I, + p)? and V'S = 314 GeV at HERA.
The fine structure constant is a = ¢2/47. The longitudinal- and transverse-
virtual-photon cross sections occuring in {2.1) are denoted by doy and dor
respectively. Both cross sections also depend on the heavy-flavour mass de-
noted by m. The other kinematic invariants which appear in tlie above cross
section are defined by

S=p+q? , =5+,
T\=T-m?=(p—-p)2=m?
Uy=U-m?=(¢g—~m)?—m? . (2.3)

Here /S stands for the c.m. energy of the virtual-photon-proton system.
Further T and U are the squares of the momentum transfers hetween the
outgoing heavy antiquark and the proton and virtual photon respectively
(see fig.1 in [G]). If the heavy quark is detected, p; in (2.3) is replaced by p;.
In the figures discussed below we will plot the inclusive distributions
dF{x, Q% m? p))/dp, and dF.(x, Q% m? y)/dy with k = 2, L. Here p, and
y denote the transverse momentum and rapidity in the c.m. frame of the
photon-hadron system. These distributions can be derived from the longitu-
dinal and transverse photon-hadron cross sections in {2.1). Let us define

d*o (S, T, Uy, Q%) _ drta &°Fi(2,Q° T, 1))

[ 2.4
dTydU, Q? dTdU, 24)
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and

(FUT(Sw Tl ) L'rl ) QZ) . 471-20' szl ("1"5 Q21 Tl ' U‘l)
dT] (l[}rl - p-q (.lTl (H/r]

Here we will concentrate on cFFL/dTl dU; and dgFg/clTl dU, where the latter
is given by

d2F2($1 Q25 Tl ) U'i ) — 21‘(121':[(1‘1 an Tl l le ) (ZQFL(;U! sz Tla U-l)
dT] dU[ ) dT] dUl (lT] (EUI

Note that when the above expressions are integrated over T) and U} we
obtain the heavy-flavour contribution to the structure functions Fi.(x, Q%, m?)
as presented in [6]. The longitudinal and transverse plhoton-hadron cross
sections are obtained from their partonic analogues via the formula

Sr2d20k(S,T1,U1=QZ) _ Z_/l d€ SfQCIQ&k,i(S,UJH,Qg,.-Mf?)
; Yhi-

2 2
dT,dU, g fil& A dt,d,

(2.5)

(2.6)

1

(2.7)

where do(k = 2, L) are the reduced parton cross sections (Wilson coeffi-
cients) calculated in [6]. The kinematical variables s, s', ¢, and | are defined
in an analogous way as in (2.3) where now p is replaced by the incoming
parton momentum ky = &p. The fi(€,M?) (i = ¢,4,¢) denote the parton
densities as defined in [7], which like the déy; depend on the mass factoriza-
tion scale A{ which is equal to the renormalization scale. Finally the lower
boundary £, in (2.7) is given by

s +T,

From d?F, /dT1dU, one can derive the experimentally relevant distributions
d*F./dydp,. We define positive rapidity to be in the direction of the virtual-
photon. Since the transformation (T1,U,) — (y,p,) is not relevant to the
text we give some details in the Appendix. As mentioned in [6] the rapidity
distribution of the heavy quark changes when the latter is replaced by the
heavy antiquark. This is due to an asymmetry under ¢; < u; in the parton
cross sections d*5y o , ddy g leading to (%op,)i—0 # (204, )iy—g for i = ¢, .
(see (3.37) and (3.38) in [6]), where we define

1~ (2.8)

ty = (ky — pg)2 — m? Juy = {g — pg)2 —m?. (2.9)
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However the difference is nuimnerically very small so that we only will plot the
rapidity distribution of the heavy antiquark.

We now turn to results for the inclusive distributions dFy.(z, Q%, m?, p,)/dp;
and dF(z, Q% m?® y)/dy with k = 2, L. The variables x and Q2 are chosen in
the relevant I\nlematlc range cavered by HERA, so we take Q% = 10 (GeV /c)?
and vary x from 0.1 to 0.0001. We use the two-loop corrected runuing cou-
pling constant «g in the MS scheme with four light flavours. For the parton
densities we choose the MT-B1 set presented in table [, of [7] with A, = 0.194
GeV/c. In order to show the effect of the O{ag)-corrections we write a series
expansion in ag for the deep-inelastic distributions in (2.4} and (2.5) where
the Q{aZt!} contribution is denoted by dF,f,m]. Furtherniore we distinguish
between the initial-state gluon and initial-state-{anti)quark contribution to
dF{™ by splitting dF{™ into dFy, ("’) (1.3) and dF ,f':;) (dF, (’")) 1.4). Notice
that the Born contribution is glven by dF.Lg corresponding to the process
(1.2).

We begin with the p,-distributions dFy(x, Q?, m2, p,)/dp, for c-quark pro-
duction assuming the mass ni, = 1.5 GeV/c? and M? = Q% + 4m?. In this
case we checked that the integrated distributions agree numerically with the
values for the deep-inelastic structure functions Fy(x, Q% m?2) given in [G).
We now change the mass factorization scale for the p,-distributions to the
more standard choice M* = Q% + 4(p? + m?). Flgmes 1-4 display the results
for the mass factorization scale M? = Q2 + 4(p? + m?2), Q? = 10 (GeV/c)?,
and x = 0.1, 0.01, 0.001, and 0.0001 respectively.

From the figures we iufer that the O(ag)-correction denoted hy dF_§l Hdp,
is positive over the entire p,-range when & > 0.001 (see figs.1,2,3). For
z = 0.0001 it becomes negative iu the small p; region whereas it becomes
positive again as p, increases (see fig.4}). Because showing the corrections to
the p, distribution on a semi-logarithmic scale distorts the actual size of the
O{ag) corrections, we illustrate the effects of this correction more effectively
by plotting the ratio

(lF(O)(t Q2 m2, p)/dp, + dFV (2, QY m2, p,)/dp,
(lF(O)(IL Q2,m2,p,)/dpy

Ry(x, Qg, 1713,;},) = .

(2.10)

with £ = 2 in fig.5.



Figure 5 reveals that as o — 0, the corrections decrease relative to the
Born contribution. It is important to note that dFy(z, Q* m?2,p,)/dp; is
peaked around p, = m./2, so the corrections to the integrated structure
function Fy(x, Q% m?) are primarily from this region, and not the region
of larger p,, where dFy{x, Q% m?,p,}/dp, is rapidly falling. In the region of
small p;, however, perturbation theory breaks down and one should apply
resummation technigues as done in {11] or {12]. Note the result that the
corrections decrease as @ — 0 could be anticipated from the magnitude of
the integrated contribution given in fig.17a of [0]. In the case that z is
small (x < 0.001) the correction rises in the small-p, region and remains
around the 50% level for p, > 5 GeV/e. Though we would see a steep rise as

P — PP =/ S5/4 — m? if we had extended the plot to iuclude these values

of p;, as we do for the larger values of &, this region does not contribute much
to the integrated result due to the steeply falling spectrum.

One can understand the shape of these curves by investigating the in-
dividual contributions to d.Fél) /dp, which are given by dF_ﬁllg)/dpt (1.3) and
dFQ(_l())/dpt (1.4). For =z > 0.01, dFQ(,lg)/dpt is positive for all values of p,.
The vg correction dF.z(,lq) /dp,; is negative for small values of p, and positive
for large values of p, for all x-values. Since the gluonic contribution is nu-
merically more important at small p, the result is that we find a positive
correction. However for x = 0.0001 the gluonic correction is negative near
the edges of phase space p, — 0 and p, — p"*™ = /S/4 — m2. Also since
the integrated result is dominated by the behaviour in the small p, region
the fact that fig.17a in [6] shows a small increase at « = 0.0001 is due
to effects in both the gluon aud the quark clhannels. Further it appears
that for large p,-values |ch2(fq)/cip,| > I(IFQ(L) /dp,| whereas for small p;-values
|dF§‘1,;/dp,[ < ]cTFéL)/dptl. Botli statements are generally true over the whole
z-range. This is understandable for large x where the quark densitics dom-
inate over the gluon. However at small x this is due to the complicated
structure of the reduced cross sections déq; (i = ¢,G,¢) in (2.7).

When we choose a p;-independent scale such as M? = Q2 + 4m?, then
the values for the O(«g)-corrected p,-distributions are increased roughly by
a factor of two as p; gets large. Furthermore we observe that the decrease of
Ry(x, QQ,mf,p,,) as a function of p, takes place at much larger values of p,
than in the case of a p,-dependent mass factorization scale. In view of this
we conclude that the scale M? = Q2 + 4(p? + m?2) is a better choice than
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= Q% + 4m?.
In figs.G-9 we show the corresponding plots for dFy(z, @%, m2, p;)/dp, with
= Q?+4(p?+m?). Comparing dFy /dp, with dFy/dp, we see that the peak
in the distributions becomes much more conspicuous in the former than the
one observed in the latter. This is due to the vanishing of dFy /dp, as p; — 0.
However as one can infer from Rp(z, Q% m2,p) (2.10) in fig.10 the Born
contribution dF' I(JDJ /dp; vanishes much more quickly than dF }}; [dpyasp; — 0,
causing Ry, to become large. For p;-values in the area of the peak of dFy /dp,,
the effect from dF ilg, /dp as ¥ — 0 is decreasing and even hecomes negative
in a small region when @ = 0.0001. Thus, the cancellation against dFéllg/dpt
is reduced and the dip in fig.10 becomes more pronounced. In the region
of intermediate py, dFE;/dpt is still substantial relative to d.FI(J?;/dp,, while

dF}J]) /dp, is somewhat less important. For larger p,, dFI(‘l:, /dp; decreases and
changes sign for « £ 0.0001. On the other hand for large p,, the distribution
dFL q/dp, dominates all other contributions indicating the importance of the
valence-quark densities in this region. Figure 10 reveals a large sensitivity
of Ry to the chosen values for p, except for = 0.001 where the corrections
are roughly constant when p, > 5 GeV/c. However their large size (100%)
is an indication of the poor convergence of the QCD perturbation series in
regions of phase space wlere the longitudinal cross section in (2.1) cannot be
neglected. In the analysis of the differential cross section note that dFy /dp, is
usually numerically smaller than dF,/dp,. These findings are consistent with
the results for the integrated distributions in fig.17) in [6]. Even though the
corrections seem large at moderate py, the fact that the underiying spectrum
is falling rapidly means that the integrated contributions are most sensttive
to small p, and therefore the corrections are moderate in the region 0.001 <
x < 0.01.

Next we investigate the rapidity distributions dFs(xr, Q% m?2,y)/dy for ¢
quark production, with mass m, = 1.5 GeV/c?, but this time assuming the
original mass scale M? = Q% + 4m? as in [6]. We fix Q% = 10 (GeV/c¢)? and
vary & in decades from 1 = 0.1 to 2 = 0.0001 showing these results in figs.11-
14. The correction szj/dy is generally larger than the Born contribution
sz(_g)/(fJ in the negative rapidity range, becomes comparable in the central
rapidity region, and dies off in the large positive rapidity range, where it
eventually becomes negative. The contribution ({Fz(fg}/(ly is responsible for



the bulk of the O{ag) corrections as the contribution (I.Fr_f"q) /dy is generally
an order of magnitude smaller and becomes mostly negative for large z.
However at small z, it is mainly positive, turning negative only in the region
of large positive rapidity. Again the semilogarithmic plots in figs.11-14 tend
to distort the actual influence of the O{ag) corrections. To demonstrate the
higher-order effects more clearly, we define the ratio

dF (2, Q% m2,y)[dy + dF (2, Q% m2, y)/dy
AF{N(z, Q2 m2,y)/dy

Ri(z, Q% m2 y) = , (2.11)

with & = 2, L, where Ry{a, Q% m?,y) is presented in fig.15. At large negative
rapidity 25 is very large. It decreases towards y = 0 where it becomes
relatively flat and the cotrections are reasonable. This flattening extends
over a larger range in y when z gets smaller. In the large positive rapidity
region Ry drops off very rapidly and even hecomes negative. This effect
is primarily due to dF.é‘ly) /dy which becomes negative and its magnitude is
larger than the Born coniribution (lFé’(‘]q)/dy. From the above we conclude
that the corrcctions are generally stable in the central rapidity region and
range numerically from 50% to 100%. Notice that the integrated distributions
represented by the structure function Fy(z, Q%, m?) receives its main support
from the large positive rapidity region where the corrections are small. This
explains why fig.15 is consistent with the integrated plot in fig.19a in [6].

In figs.16-19 we show the rapidity plots for dFy(x,Q* m? y)/dy. In
the regions of negative rapidity, dF }2 /dy domiuates the Born contribution
dF E’; /dy, and as 2 becomes smaller, the difference is several orders of magni-
tude. Furthermore, (IF}:; /dy makes a significant contribution relative to the
Born in the same region. In the central rapidity region, dFﬁg) /dy is decreas-
ing but still considerably larger than ng /dy. The contribution from the v¢
chaunel dF i'(: /dy is still significant but decreasing as well. In the positive ra-

pidity region, (IFEE(: /dy becomes negative, closer to the central rapidity region
as r increases. The gluonic correction decreases as well, providing a reason-
ably moderate correction in the large positive rapidity region where dFy,/dp;
is peaked. As y™* is approached, both the v¢ and the vq corrections turn
negative, however becoming positive again at the very edge of phase space
and are respousible for the enormous rise in Ry{x, Q%, m2,y) as y — y™me=.
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Finally we remark that we Lhave also computed the corrections for Q? = 4
(GeV/c)? and for Q2 = 100 (GeV /c)? covering the same range in 2. Although
there are changes in the plots the overall picture remains the same so our
conclusions are unaltered.

For completeness we have also plotted the p, and y distributions for b-
quark production using the parameters m;, = 4.75 GeV/c?, Q% = 10 (GeV /c)?
and M? = Q? + p? + m?, M? = Q? + m} respectively. While the results are
similar to the case of the c-quark the corresponding plots to figs. 5,10,15 and
20 do indicate less sensitivity to the variation of A2,

We have reported here the first results on the O{a%) QCD contributions
to the inclusive heavy-flavour distributions at fixed values of the x and Q? of
the electron. We have demonstrated that the higher order corrections to the
inclusive heavy-quark p, and y distributions are sensitive to the choice of the
mass factorization and renormalization scales. Fortunately the integrated
differential distributions for the dominant structure function Fy(z, Q?,m?)
show some stability in the region 0.0001 < z < 0.01 which is consistent
with moderate corrections to the inclusive p, and y distributions near their
respective maxuna. Since actual experiments will have acceptance cuts it
is not clear which region of z and Q? will be the most relevant. Therefore
further work will be required to clarify the situation when experimental data
become available.

While this work was under way we received a preprint [13] containing
an examination of tlie clectroproduction of heavy flavours at Ligh energies
including leading contributions at small . These contributions originate
from gluon exchanges in {-channel processes which are all positive. It turns
out that these effects, when resummed, are very small in the HERA range.
This approach is different from ours. We have calculated the exact corrections
up to O(a%) in perturbation thieory, which implies that the coefficients in the
perturbation series can become negative due to virtual corrections and mass
factorization. These negative corrections never show up in the calculation of
[13], and thus our results are quite different in the HERA regime.
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Appendix

The relationship between T} and U}, the heavy-quark transverse mass mr,
and the rapidity vy in the c.m. frame of the virtual-photon-proton system
is complicated when both Q2 and m? are non-zero. Using the definitions in
(2.3) the energy of the outgoing heavy antiquark is

Q-1 - U,

E= 575 , (A1)
where Q% > 0. The transverse mass is determined by
S$?m2 = §'T\U; + QT2 + Q*S'Ty, (A.2)
where § = § + Q% The square of the longitudinal momentum is
P?=FE?— ma., (A.3)
so we define the rapidity to be
y=%ln(gi§i) (Ad)
After some algebra we find the relations
7 = —-Tlg-myey ,
Ul = =Q%—mp(Se™? - Q%)/VS. (A.5)

The Jacobian of the change of variables from tlie two-dimensional integration
over T} and U} to the corresponding integration over m# and y yields S', so

fcl(-—Tl)/d(—Ul) = S’/dm:‘}/dy (A.6)

where the integration limits are given by

S’ S’
?(1“/3) < -Ti < 3(1‘*’5)
S’ s  TEQ? T y
E(??lzw%—QS’l) < =U 54T
m? < mi < 1
—cosh™! VS < y < cosh™! —@- (A.7)
2my 2nvp
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where 3 = /1 — 4in?/S. Changing the order of integration, we get

/ A=T)) / d(~U) = §' / dy f dm? (A.8)

with the corresponding change in the integration limits given by

1 1+4 1 1+/
—= — uy < =
'2111(1—6) < y___zln(l_ﬁ)

m? < m% < ——S,——
4 cosh*(y)
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Fig.1. The inclusive differential distributions dF; ( Q2 m?2,p.)/dp, (solid

curve) and the sum of dF. (Ol(z, Q% mZ, py) /dp,+dF (2 L QL m2, p)/ dpy
(dashed curve) at x = 0.1 “and Q? =10 (GeV/c)2

Fig.2. Same as Fig.1 hut for xr = 0.01
Fig.3. Same as Fig.1 but for x = 0.001
Fig.4. Same as Fig.1 but for z = 0.0001

Fig.5. The p,-dependences of Ro(z, Q% m?,p,) at Q% = 10 (GeV/c)® and
x = 0.1 (dot-dashed curve), 0.01 (long-dashed), 0.001 (short-dashed)
and 0.0001 {solid) respectively.

Fig.6. The inclusive differential distributions dF ( QZ m?, p,)/dp, (solid

curve) and the sum of ([FI(J[‘);(I, Q?, m‘,p;)/dp,-}-dFL (2,Q% m2,p)/dp,
(dashed curve) at & = 0.1 and Q* = 10 (GeV/c)>.

Fig.7. Same as Fig.6 hut for x = 0.01
Fig.8. Same as Fig.6 but for 2 = 0.001
Fig.9. Same as Fig.0 but for > = 0.0001

Fig.10. The pi-dependences of Ry (v, Q% m2,p,) at Q% = 10 (GeV/e)? and
x = 0.1,0.01,0.001 and 0.0001 respectively. The notation is the same
as in fig.5.

Fig.11. The inclusive differential dlstnbutlons dF; ('c Qz 2 y)/dy (solid

curve} and the sum of dF(m( Q% m )/dy + dFEM (& Q2 m2, y)/dy
(dashed curve) at 2 = 0.1 and Q? = 10 (GeV/c)?

Fig.12. Same as Fig.11 but for 2 = 0.01
Fig.13. Same as Fig.11 but for x = 0.001
Fig.14. Same as Fig.11 but for x = 0.0001

Fig.15. The y-dependences of Ry{x, Q% m2,y) at Q% = 10 {GeV/c)? and
2 = 0.1 (dot-dashed curve), 0.01 (long-dashed), 0.001 (short-dashed)
and 0.0001 (solid) respectively.
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Fig.16. The inclusive differential distributions (EF‘(L?;(:::, Q?, m2,y)/dy (solid

curve) and the sum of dF,(J?g)(:c, Q% m2,y)/dy + dFV (2, Q2 m2, y)/dy
{dashed curve) at 2 = 0.1 and Q% = 10 (GeV/c).

Fig.17. Same as Fig.16 but for = 0.01
Fig.18. Same as Fig.16 but for » = 0.001
Fig.19. Same as Fig.16 but for x = 0.0001

Fig.20. The y-dependences of Rp(z, Q% m?2 y) at Q% = 10 (GeV/c)? and
x = 0.1,0.01,0.001 and 0.0001 respectively. The notation is the same
as in fig.15.
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