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SUMMARY

A large N-body simulation is used to compare the galaxies found by tagging peaks
in the linear density field with the halos that actually form. A variety of filters on
the density field are tried in order to improve this correspondence, but none seems to
do particularly well. The corzelation function and velocity dispersion of the tagged
peaks and the actual halos also do not correspond very well. These comparisons bring
into question the results of any study of galaxy formation that assumes that galaxies
form at peaks in the initial density field or simulations of large scale structure that
use the high peak model to determine the galaxy distribution.

1 INTRODUCTION

An outstanding problem in verifying cosmological
models is the relationship between the mass distribution
and the light distribution. Most modeling follows the
evolution of the mass distribution, while observations
are made of the light. The simplest method for connect-
ing the two is to assume that the mass density is pro-
portional to the luminosity density, i.e. that the mass
traces the light. However, in the gravitational instability
picture, this assumption has run into serious difficulties.
For example, with the initial power spectrum predicted
by the Cold Dark Matter (CDM) model, N-body simu-
lations have shown that the correlation function of the
matter steepens with time (Davis et al. 1985). When
the slope of the correlation function is equal to the ob-
served slope, the correlation length is ro == 1,34~ 3 Mpe
for 1 = 1, which would require a Hubble constant
of Ho = 25kms~! to match the abserved correlation
length of ro & 5.4h~!Mpc (Davis and Peebles 1983).
This is much smaller than any observational estimates
for Hy. Also, the RMS peculiar velocities of the dazk
matter are ~ 1000kms~! in the numerical simulations;
much higher than the observed value of 300 + 50 kms™—!
for galaxies. A simple method of relaxing the assump-
tion that mass traces light is to make the hypothesis
that galaxies preferentially form in higher density re-
gions. With this assumption, the galaxy distribution
forms a “biased™ estimate of the mass distribution, and
the correlation function of the galaxies is enhanced by a
factor b7, where bis a “bias factor”, ovet that of the mass
{Kaiser 1984, and Bardeen et al. 1986 (BBKS)). Due to

)

this enhancement in the correlation amplitude, the cor-
relation length is able to match the observed value when
the simulation is less evolved, thereby giving the corre-
lation function a shallower slope and reducing the ams
peculiar velocities.

A common way to model galaxy bias is to assume
that galaxies form only at high peaks in the initial den-
sity field, known as the high peak model for galaxy for-
mation. Using the formalism of BBKS, one can derive
many useful galaxy properties just by studying peaks in
the initial density field. This assumption has also been
used in many numerical simulations to ideniify galaxies
(e.g. Davis et al. 1985). To simplify their analytic cal-
culations, BBKS introduced the peak-background split
to identify the sites of galaxy formation. The peak-
background split makes use of the fact that the den-
sity of high peaks on & small scale {i.e. the scale of
galaxies) can be estimated from the background density
smoothed on a larger scale. For many properties con-
cerning both the distribution and velocities of galaxies
this technigque yields results that are statistically simi-
lar to those obtained by actually following peak tracers
(Park 1991). The peak-background split is particularly
useful for studying the formation of large scale structure.
Given the limited range of even the largest N-body sim-
ulations, it allows modeling of the galaxy distribution
in simulations of large scale structure that do not have
the resolution to determine the evolution of individual
galaxies {White ef al. 1987b, Weinberg and Gunn 1990,
Park 1950, Park and Gott 1991). The peak—background
split has also been applied to simulations of galaxy clus-
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ters (Frenk et al. 1990, Dalton et al. 1992).

Various proposals have been put forward to provide a
physical mechanism for biasing, such as gas-dynamical
feedback mechanisms suppressing the formation of low
mass galaxies (Dekel and Silk 1986). The possibility
that biasing could occur “naturally”, i.e. through nor-
mal hierarchical clustering, has been discussed by Frenk
et al. (1988) (FWDE). By studying N-body simulations
of small regions of the universe (~ 14 Mpc) at high reso-
lation, they showed that massive halos formed preferen-
tially in regions of high density. This happens because
the higher background density accelerates the forma-
tion of structure, including the formation of heavy ha-
los, when compared to regions of average background
density. However, their conclusions of how this affects
large scale strmcture are somewhat limited due to the
small size of their simulated regions.

Although Park (1991) has shown that the peak-
background split is statistically equivalent to following
high peak tracers, only FWDE attempted to determine
if the high peak model correctly identifies the sites of
galary formation. They conelude that the high peak
model works quite well but their conclusion may have
been compromised by the small size of their simulated
regions. Also, they only modeled a low amplitude CDM
spectrum and one might expect the correlation between
high peaks in the initial density field and actual sites of
galaxy formation to weaken as the simulations become
more evolved.

Here, we aim to investigate how well the high peak
model describes the sites of galaxy formation and the
“natural biasing” that occurs in gravitational collapse
models by studying a simulation that is both large
enough to model the formation of large scale structure,
and of high encugh resolution to model the formation of
individual halos. First the simulation used for this in-
vestigation is described, then the results are presented
and discussed.

2 SIMULATION

To cbtain the large dynamic range needed to follow
the collapse of individual galaxies while correctly fol-
lowing the development of large scale structure, simula-
tions with large numbers of particles and high resolution
forces are needed. The simulation we use is described
in detail in Gelb (1992) and contains 144% particles in
a 5000kms—! box with periodic boundary conditions.
The particles are evolved using a modified version of
Couchman’s (1990) adaptive Particle-Particle-Particle-
Mesh (PPPM) algorithm. Each particle has a mass of
2.324 x 101° Mg, and the form of the force softening is a
Plummer model with ¢ = 65 kpe, constant in comoving
coordinates.

The initial conditions are a realization of a Cold Dark
Matter density distribution with 2 = 1.0 and are pro-

duced by perturbing the particles off a cubic lattice us-
ing the Zel’dovich appioximatiion. The power spectrum
is that given by BBKS with the amplitude determined
by setting the lineatly extrapolated AM/M in 8h~! Mpc
spheres to 1. The simulation starts at an expansion fac-
tor of 1/70 wheze an expansion factor of 1.0 represents
the present if there is no bias; the output is studied at
expansion factors of 0.5, 0.7, and 1.0, corresponding to
biases of 2.0, 1.43, and 1.0, respectively,

Peaks in the initial density field are found by first
evaluating the density field on a 1442 grid, then smooth-
ing the density field with a given filter, and finally locat-
ing grid points that are higher than all 26 neighboring
gnid points. The evolution of these peaks are then fol-
lowed by tagging the particles closest to the peak grid
points, and examining the distribution of these tagged
particles at later times.

Bound groups in the simulations are identified us-
ing the DENMAX algorithm described in Gelb (1992)
and Bertschinger and Gelb (1991). This involves using
the particle positions to evaluate the density on a very
fine grid (5123), and allowing the particles to follow the
density gradient upward until they end up at a den-
sity peak. All the particles ending at a given peak are
considered to be one group. These particles are then
checked to see if they are gravitationally bound to the
rest of the particles in the group, and discarded if they
are not. We only consider those groups whose mean den-
sity within 150 comoving kiloparsecs is greater than 200
times the mean density. This ensures that the groups
actually are collapsed objects. The density cutoff re-
quires that the groups contain at least 9 particles—a
mass of 2 x 101! Mg,

3 RESULTS

The main concern of this paper is the correspondence
between peaks in the linear density field and the groups
(halos) that subsequently form out of that field. To this
end we investigate whether particles tagged as belong-
ing to peaks end up in groups, and therefore, how weil
these peak particles mimic the distribution of groups.
At several times, corresponding to different biases, we
examine all the peak particles to determine if they have
become part of a group as defined above, and to deter-
mine if thete is a correlation between the peak height
and the group mass.

Figures 1 and 2 show the results for & Gaussian filter
with two different smoothing radii and at the three dif-
ferent, times. The two smoothing radii, #y = 0.55 Mpc
and 0.88 Mpe (Ho = 50 kms™! Mpe™?), correspond to
masses of ~ 2 x 10'* Mg and ~ 8 x 10} M. In Figures
1 and 2, the panels in the upper row use a filter mass
of 2 x 10} Mg and the lower panels use 8 x 101! Mg.
The first column is at an expansion factor of 0.5, the
second column is at 0.7, and the last column is at 1.0.
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Figure 1. The peaks in the filtered initial density field that are associated with groups are plotted, showing the initial peak height
against the group mass. The initial peak height is in units of the standard deviation of the linear density field. The highest peak
associated with a group is indicated with a “x”. To avoid crowding, only one out of every ten peaks is plotted. A Gaussian filter is used
on the initial density field. The plots in the upper row are for a filter lengih of Rf = 0.55 Mpe, while the Jower row is for R, = 0.88Mpc.
The left column is for an expansion factor ¢ = 0.5, the middle for a = 0.7, and the right for a = 1.0. The line along the horizontal
axis is the cumulative distribution in group mass of groups with no peak associated with them. The line along the vertical axis is the
differential distribution in peak height of peaks not associsted with groups. Also indicated are the numbers of peaks, groups, groups

nol associated with peaks, and peaks not associated with groups.

If a particle tagged as a peak in the initial conditions
ends up in a group, and it is the highest peak to end up
in that group, it is plotted as a “x” in Figure 1 at the
appropriate group mass and peak height, v, in units of
the standard deviation, o, of the linear density field. If
the particle is not the highest peak to end up in that
group, it is plotted as a “+” in Figure 2. There appears
to be a correlation between the mass of a group and the
height of the peak in the linear density field from which
it comes: 2 x 101 Mg groups come from 0 to 1o peaks
while 2% 101* Mg groups come from 3 to 40 peaks. How-
ever, the converse correlation is very weak: although the
highest peaks in the initial density field end up in large
groups, small peaks can end up in any size group. Fur-
thermore, there are some peaks that do not end up in
a group at all. This is illustrated by the line along the

vertical axis, which shows the differential distribution in
peak height of peaks that do not end up in groups. Of
the ~ 18000 peaks identified in the initial density field
with a smoothing of 0.55 Mpe, ~ 4000 never end up in a
group, including a few that are greater than 3. For the
peaks in the density smoothed at 0.88 Mpc the siiuation
is better, with only about 10% of the peaks not ending
up i & group; however, there are still a few peaks above
3o that do not end up in a group.

The line along the horizontal axis shows that all is
also not well with the group size to peak correlation. It
plots the cumulative distribution in group mass of those
groups that have no pesk particle in them. For peaks
smoothed on a 0.55 Mpe scale, over 1/3 of the groups
have no peak associated with them. For the 0.88 Mpc
smoothing, over 2/3 of the groups are not associated
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Figure 3. Same as Figure I except that peaks associated with a group other than the highest peak in the group are indicated with a

C+I.

with a peak in the linear density field. The groups with-
out peaks can be as large as 3 x 10'? Mg and contain
over 100 particles.

These plois suggest that using peaks to follow the
distribution of galaxy objects is a very poor strategy. If
we look at peaks from which cluster sise groups form
(v = 40 and above), ther most of those peaks do end
up in cluster size objects, but if we look at peaks from
which galaxy sise objects form (v = 2¢), then these
peaks have about an eqnal chance of either ending up
in a galaxy size group, or merging with a larger peak to
become part of a much larger group.

Perhaps there is another filter that does a better job
of finding the peaks in the linear density field that are
likely to collapse into groups; we have examined sev-
eral possibilities. In compating different filters, we try
to match the filter scales by having comparable filter
masses. This mass is determined by integrating the
background density under the filter function.

In view of the merging problem described above, one
promising filter is the sharp k space filter, which is the

Heaviside unit function in k. A cutoff below a scale &,
produces a smoothing function [k2/(6x2)]W(k.r) where

Isinz — 2 cos2)

Wi(z) = p

(1)

Since this function has negative sidelobes, one expects
that this filter will tend to pick out isolated peaks, which
would be less likely to merge. The mass scale of this
filter, given a Ry = 2x/k., is determined by the integral
of W(k.r} over all space giving

My = %Ripb- (2)

Using this formula, the filtering radii are 2.29 Mpc and
3.64 Mpc for 2 x 10'! Mg, and § x 101! Mg, respectively.
The results for these filters are very similar to those plot-
ted in Figures 1 and 2, and show that the sharp & space
filter does not do any better than the Ganssian filter
and that the correlation between peak height and group
mass is even weaker. There seem to be just as many, if
not more, peaks that end up merging with larger peaks,
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Figure 3. Same as Figure 1, but with a power law filter in k space. The top row is for a power law index of —1, and the bottom row is
for & power law index of —2. The highest peak associated with & group is plotted with & “x"”, and other peaks associated with groups

are plotted as “+".

and & higher percentage of the peaks found do not end
up in a group. There is also no significant change in the
number of groups that have no pesk associated with
them.

Another popular filter is the top hat filter. Here, the
real space representation looks like the k space represen-
tation of the sharp k filter, and the k space representa-
tion is the function W(k) defined above. The results for
this fiter with R,.phrqe: chosen to match the filiter mass
scales of Figure 1 were examined. There appears to be
no significant difference from the results for a sharp &
filter. The only difference of note is that, because the
top hat filtered field has more peaks than the sharp k& fil-
tered field, there are correspondingly fewer groups that
have no peak associated with them. However, there are
correspondingly more peaks without groups.

We have also looked at power law filters, that is,
W (k) o k™, Here there is no simple function describing
the real space smoothing function; therefore, there is no
easy way to determine a filiering mass scale. We have

chosen two power law indices, n = —1 and n = -2,
The first index is somewhat arbitrary, but the second
corresponds to finding peaks in the unsmoothed poten-
tial field. The results for these are shown in Figure 3.
They are considerably worse than the previous results.
The n = —2 filter in particular seems to have almost no
correlation between group mass and peak height, and
despite there being relatively few peaks, there are some
quite high peaks that do not end up in a group.

Given & linear potential field, @, there are three lin-
early independent scalars that can be extracted from iis
second derivatives, consiructed from the eigenvalues of
the shear tensor, {i; = V;V;®. The density field is re-
lated to the sum of these eigenvalues (trace of (i;) from
Poisson’s equation:

V3® = Tx [(i;] = 4xGp. (3)
If the power spectrum is falling rapidly with k, we would
expect the first collapses to occur where the maximum

eigenvalue is largest, since the collapse time is primarily
dependent on the largest eigenvalue (Zel'dovich 1970).
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Figure 4. Same as Figure 3, but the peaks are taken from the field of maximum cigenvalues of the shear tensor associated with the
deunsity ficld. The upper row is for a filter length of Ry = 0.55Mpe, while the lower row is for R; = 0.88Mpc.

w-u’ln-lth 0 Greup Mass (M)

Figure 5. Samc as Figure 4, but with s sharp k filter. The top row is for a filter length of Ry = 2.29Mpe, and the bottom row is for
R; = 3.64Mpec.



Figure 8. Same as Figure 4, but the peaks are taken from the field of minimum eigenvalues of the shear tensor, The top row is for &
filter length of Ry = 0.55Mpc, and the bottom row is for Ry = 0.85 Mpe.
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Figure 7. Same as Figure 6, but with a sharp k filter. The top row ia for a filter length of Ry = 2.29Mpc, and the bottor row is for
Ry = 3.64Mpc.
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Figure 8. The fraction of H’oup. above a given mass that contain peak particles is plotied against masa. The top row is for filtering

on & mass scale of ~ 2 x 10

M@, and the bottom row is for filtering on a mass scalec of ~ 8 x ID“'M@. The solid, dotted, and dashed

lines are for Gaussian, sharp k, and top hat filtering of the density field, respectively. The long dashed and dot dashed curves are for
peaks in the maximum eigenvalue ficld of the shear tensor associated with the density smoothed with a Gsussian and sharp k filter,

respectively.

To study this, we have smoothed the initial density field
on a given scale, calculated the shear tensor in k space

) = BbsAGRE) ©

and transformed to real space to find the eigenvalues.
The results for Gaussian smoothed densities and sharp k
smoothed densities are shown in Figures 4 and 5, respec-
tively. The results are not significantly better or worse
than those obtained directly from the density field.
The other linearly independent quantity to check is
the minimnm eigenvalue. Results for peaks in the min-
imum eigenvalue for Gaussian and sharp % space filters
are shown in Figures 6 and 7. Here, the correlations
between peaks in the field and groups are significantly
worse than either the density or the maximum eigen-
value. There is only the slightest trend of increasing
peak height with increasing group size, and in every case
over half the groups have no peak associated with them.

To make a more general comparison between the
above methods for determining the sites of galaxy for-
mation, in Figure 8 we plot the fraction of groups of a
given mass or above that contain peaks as a function of
group mass for most of the methods described above.
Note again, that the methods shown perform almost
equally well at finding the peaks that will collapse into
groups. With a filter mass of 2 x 10}' Mg about 1/3
of the groups are not found, and with a filter mass of
8 x 10'* My over 1/2 the groups are not found. Also,
the groups without peaks are pot the smallest groups;
aver one half of them are above ~ 6 x 10'! Mg for the
2 x 10'! Mg smoothing.

Clearly there is not a good correspondence between
peaks in the initial density field and the collapsed
groups, but this does not rule cut the possibility that the
two populations will resemble each other in a statistical
sense. To discover if this is the case, we have plotted
in Figure 9 the correlation function of the peaks found
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Figure 9. The log of the correlation function is plotted against the log of the scparation of the centers for groups, peaks, and mass.
The peaks were taken from the Gaussian filtered linear density field. The top row is for a filter length of Ry = 0.55 Mpc and the bottom
row is for Ry = 0.88Mpe. The straight solid Line is & power law with index —~1.8 with the obacrved amplitude (h = 0.5). The other
solid line i the correlation of the groups. The long dashed, short dashed, and dotted lines are the correlation of peaks with a threshold
height chosen s¢ that the their number density corresponds to that of Le, Lu/10, and L. /100 galaxics, respectively. The dot dashed

line is the correlation of the mass.

with a Gaussian filter on both mass scales, as well as
for the mass and for the groups. Here, we have chosen
to take only those peaks whose height is above a given
threshold, 145, where 14, is chosen so that the peak num-
ber densily would maich a given galaxy density. Using
the luminosity function found by Loveday et al. (1992},
the observed number densities of L./100, L./10, and
L. galaxies correspond to vy of 1.8, 2.3, and 3.2 for
the smaller filter mass, and 0.0, 1.5. and 2.9 for the
larger filter mass. Similarly, we calculate the correlation
function of only those groups whose circular velocity at
200 kpc is greater than 250 km s™1, corresponding to E.
and above galaxies.

The naive expectation is that the group correlation
funetion should match the peak correlation function cor-
responding to L. galaxies, which is not the case. In
fact, the group correlation function is anti-biased with
respect to the mass correlation function at all but the

earliest tires. This anti-biasing is mostly due to over-
merging, i.e. the large clusters are only identified as
one group instead of many groups, and is discussed in
much greater detail in Gelb (1992). Although the am-
plitude of the group cotrelation function is smaller than
that observed, it has the correct power law form and
slope. When the galaxies are reinserted into the clus-
ters, as also described in Gelb (1992}, the amplitude of
the group correlation function can be increased while
retaining the correct power law form.

The peaks are more correlated than the mass so they
are biased with respect to the dark matter. As expected,
the peaks corresponding to more luminous galaxies are
mote biased than those that correspond to less luminous
galaxies, and the degree of biasing gets smaller at larger
expansion factors. At scales greater than ~ 2 Mpe the
correlation function of the L. peaks even closely resem-
bles the observed galaxy correlation function. Within
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~ 2Mpc, however, the peak correlation function be-
comes much steeper than the observed correlation func-
tion. At ~ 100 kpe, the correlation amplitude of the L,
penks is over 10 times too large.

Another statistic is the one dimensional pairwise ve-
locity dispersion along lines of separation. We plot these
for the same populations as Figure 9 in Figure 10. Here,
the peak velocity dispersions follow those of the mass
quite closely, and do not show the “velocity bias” that
is seen in the groups (Catlberg et al. 1990; Bertschinger
and Gelb, 1991). If the large clusters are broken up, as
was done for the correlation function, then the veloc-
ity dispersions of the resulting groups can be increased
so that they also match the mass (Gelb 1992). Even
with a velocity bias, only at an expansion factor of 0.5
is the group velocity dispersion low enough to match
the observed dispersion of ~ 300 £50 kms~* {Davis and
Pecbles, 1983).

4 DISCUSSION

The resufts presented above contradict the conclu-
sion of FWDE that groups that form are closely te-
lated to peaks in the smoothed linear density field. The
biggest difference between our work and theirs is the
size of our simulation: 100 Mpc compared with 14 Mpc.
However, there are other small differences. (i) The
mass of the particles in the simulation discussed here
is 2.324 x 10'° Mg, a factor of 4 larger than that used
in the FWDE results. The softening parameter is also
correspondingly larger. {ii) FWDE do their anslysis for
epochs corresponding to a relatively high bias. They
locked at biases of 7, 4, and 2, compared to our highest
bias of 2. (ii) They use a friends-of-friends group finding
algorithm instead of the DENMAX routine used here.
The advantage of the DENMAX algorithm over friends-
of-friends is its ability to break up large dense clusters
into subgroups while still being able to to detect smaller,
less dense halos in the field. This is discussed in detail
in Gelb (1892). {iv) FWDE only consider peaks in the

10
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Figure 11. The same as Figure 3, but for the 14 Mpc simulations, and with expansion factors of a = 0.25, 0.5, and 0.7. All peaks from

three simulations are plotted.

linear density field with heights above a threshold of 10,
while we consider peaks of all heights,

In order to help determine which of these differences
leads to the different conclusions, we have created small
simulations with the same mass resolution as the large
simulation described above, but with a box size of only
14 Mpc as in FWDE, Such a simulation contained only
8000 particles. We then found peaks in the initial den-
sity field as before, and used the friends-of-friends algo-
rithm with a linking parameter of 0.2 times the mean in-
terparticle separation to find the groups. We also looked
at an earlier epoch of @ = 0.25 corresponding to b = 4.0.
In this way we can isolate ithe one aspect of our sim-
ulations that is inferior to those of FWDE: the larger
particle mass. In order to have a reasonable number of
groups, we sitnulated three realizations of the 14 Mpe
box. The results of this exercise are presentied in Figure
11, where the left panels are for a = 0.25, the mid-
dle panels are for a = (0.5, and the right panels are for
a = 0.7. With the exceptions that FWDE combine sim-
ulations with several different (2 in an attempt to model

the effects of large scale power, and that they only con-
sider peaks above 1¢, the left panels of Figure 11 should
be directly comparable with the middle panels of Figure
13 in FWDE. Likewise, the middle panels of Figuze 11
should be compared with the right panels in Figure 13
of FWDE,

The results of our small simulations compare reason-
ably well with those of FWDE. The biggest difference is
that FWDE have quite a few groups between 1x10'! Mg
and 3 x 10! My, which seem to be too small for our sim-
nlations to resolve. Otherwise our results are remark-
ably similar. For the larger smoothing, the largest peaks
that do not end up in a group are just above 2o, and
many such peaks are below 1o. For the smaller smooth-
ing, we have one or two peaks above 2.5 that do not
collapie whereas FWDE have none. However, the same
general trend of peak height and group siye is observed,
and there are a similar number of mergers. Therefore,
it appears that the resolution is not affecting our results
at either smoothing scale.

The FWDE conclusion about the correspondence of

11



peaks and groups is really only supported at the very
high biases of 4 and 7. At the more reasonable bias of 2,
their results show the same problems we have presented
above, namely, (i) smaller peaks can end up in any size
group by merging with a higher peak, (ii) there are a
few (albeit not many) high peaks that do not end up
in groups, and (iii} there are many groups of quite high
mass that are not associated with any peak.

The first of these problems is the least surprising,
since it is one aspect of the “overmerger problem™ that
arises when trying to match the predictions of CDM
to the observations of galaxy clusters. As discussed in
FWDE, the groups in clusters merge much too quickly,
and if CDM is to be viable, there must be some mecha-
nism preventing the visible parts of galaxies from merg-
ing as their dark halos merge. Recent works (Kats
and White 1992; Kats, Hernquist, and Weinberg 1992;
Evrard et al., in preparation) that include gas dissipa-
tion show that this is indeed the case and that several
galaxies can exist in a common dark matter envelope.
The question that naturally arises is whether the peaks
are a better indicator of the sites of galaxy formation
than identifying groups in a dissipationless simulation.
If this were true, it would be a serious blow to the CDM
model. The peak correlation function can be made suffi-
ciently strong at 16.8 Mpc to match the observed corre-
lation length but it becomes much too steep at scales less
than 2 Mpec. At these small scales the overmerger prob-
lem has the greatest effect on the correlation function.
In addition, since the velocities of the peaks are similar
to the velocities of the dark matter, only at b 2 2 are the
peak velocities low enough to match the observed val-
ues. Given the generally poor correspondence between
peaks and groups outside of the clusters, however, there
is no compelling reason to believe that the peaks mirac-
ulously identify the sites of galaxy formation within the
clusters.

Indeed, if the overmerging is accounted for by us-
ing an artificial but reasonable mechanism to break the
largest halos into galaxy size objects (White et al.1987a,
Gelb 1992), then the correlatior function can be in-
creased enough to match the observed value at 10.8 Mpe
while retaining the proper power law slope. When this is
done the pairwise velocity dispersions, which are lower
than those for the dark matter, increase significantly
and more closely resemble those of the peaks. How-
ever, boosting the correlation function by breaking up
the largest halos may require more than the observed
number of galaxies (Gelb 1992). In contrast, the peak
correlation function can be made sufficiently strong at
10.8 Mpe using the correct numbers of galaxies. Finally,
it should be noted that in the dissipational simulation
of Katz, Hernquist, and Weinberg (1992), where the
galaxies are identified as cold condensed regions of gas,
the galaxy correlation function follows a power law from

35kpe to 10 Mpc and has the correct enhancement over
that of the dark matier to match the observed correla-
tion amplitude.

The second problem is more unexpected, but it shows
that just having a high peak in the density field does not
imply the formation of a group from that material. The
eventual fate of such peaks is uncleat,

The third problem has the most damning implications
for the high peak model. Even in the FWDE b = 2 high
resolution simulations, there are groups above 10'? Mg,
composed of hundreds of particles, but associated with
no peak. This is a problem that is exacerbated in the
larger simulations as can be seen from the median mass
of the groups without peaks. The median mass of groups
that have no peak can be read off the bottom line of
the figures. For the small simulations and the smaller
filter, this median mass is between 3 x 10! Mg and 4 x
10'* Mg. For the large simulation with a Gaussian filter
of mass 2 x 10'1 Mg this mass is 6 x 10!! Mg, 5.5 x
10! Mg, and 5 x 10' Mg for ¢ = 0.5, 0.7, and 1.0,
respectively. This mass is 7.5 x 10’ Mg, 6 x 10" Mg,
and 5.5 x 10" M, for a filter mass of 8 x 10'! M.

The comparison with FWDE also questions the wis-
dom of just considering peaks above a threshold i4,.
In the linear theory of BBKS, the biasing of the peaks
with respect to the density depends upon v (or a selec-
tion function) and roughly scales as b = vy, in the high
peak limit. As mentioned above, another advantage in
considering peaks above a certain threshold is that it
matches the correct number density of galaxies by con-
struction. However, making such a cut in 14, throws
out many of the groups. To investigate this in detail we
examined the groups at ¢ = 0.5 whose circular veloc-
ity at 200 kpc is greater than 250 kms™", corresponding
to L. and above galaxies. We checked these groups to
see if they contained any peaks. To correctly match
the namber of galaxies this meant choosing 1y, = 2.95
for R, = 0.55Mpec and 14, = 2.50 for R, = 0.88 Mpe.
Of the 737 groups, 53% did not contain a peak for
R, = 0.55Mpc and 48% for R, = 0.88 Mpc. So us
ing the standard technique of considering peaks above a
certain threshold just exacerbates the lack of correspon-
dence between peaks and groups.

The correlation function and the pairwise velocity dis-
tribution give us a clue about which groups are being
missed by the peaks. The correlation function is steeper
than that of the mass, and the velocity dispersion is
comparable to the mass velocity dispersion. This indi-
cates that many of the peaks are found in large clusters,
and the groups that are being missed are those in the
field (see also Gelb 1992). This is to be expected, as
the probability of a peak being above a given thresh-
old is much greater in a cluster where there is a general
density enhancement.

The difference in the median mass of groups with no
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corresponding peak between the lazge and small simu-
lations hints that fluctuations on larger scales are af-
fecting the way in which groups form, possibly through
their tidal fields {(Quinn and Binney 1992). Peaks, be-
ing local phenomena, would have no mechanism for de-
termining tidal fields over large distances. Since peaks
are overdense and, therefore gravitationally unstable re-
gions, they must collapse to form groups in the absence
of any external forces. Large scale tidal fields could pro-
duce an external shearing force that may prevent some
peaks from collapsing and forming groups. Similarly,
convergent flows might allow regions to become locally
gravitationally unstable and collapse even though the
regions were tnassociated with any local density peak.

The above zesults have serious implications for the
study of galaxy formation. Since peaks are not good in-
dicators of the sites of galaxy formation, one should be
cautious when inferting galaxy properties from the prop-
erties of peaks {e.g. BBKS, Heavens and Peacock 1988,
Quinn and Binney 1992). The same caution should
be applied when using peaks as the initial ¢onditions
for simulations of galaxy formation (e.g. Dubinski and
Carlberg 1991). Moreover, since it appears that large
scale forces affect the evolution of local density peaks,
volumes that are much larger than galaxy scales are
probably necessary to simulate individual galaxy for-
mation properly. In fact, it was while trying to simulate
the formation of individual galaxies using peaks in the
initial density field as initial conditions (set up using the
method of Binney and Quinn {1991)) that we first re-
alized that peaks did not cortespond very well with the
sites of galaxy formation. The lack of correspondence
became much worse as we made our volume larger. It
was these simulations that originally motivated the cur-
rent work. Finally, although this work does not address
cluster formation, it also brings into question studies
that assume that clusters form at peaks, something that
will have to be studied in future simulations.

The above resuits also have serious implications for
the use of peak tracers or peak-background rejection
methods in large scale structure simulations. Since the
peaks do not succeed in determining the sites of galaxy
formation, then in the absence of any other criteria for
relating the density field to the galaxy distribution, any
large scale structure simalation must have enough reso-
lution to follow the formation of galaxy halos. To simu-
late a volume the size of the Stromlo-APM redshift sur-
vey (Loveday et al., 1992), this would require ~ 2 x 10°
particles of 2 x 10'®Mg. This is clearly impossible un-
less there is a several order of magnitude increase in
computing technology.

5 CONCLUSIONS

QOur main conciusion is that peaks in the linear den-
sity field are not good indicators of the sites of galaxy

formation as determined by the dissipationless coliapse
of halos. It is possible that processes not considered,
such as gas-dynamical feedback, could considerably al-
ter this result by suppressing the formation of galaxies
in the field in the same manner that peak selection does.
However, it would seem quite a coincidence if those pro-
cesses conspired to give the same effect as the statistical
process of selecting high peaks. One process considered
that could be gas-dynamical in nature was the solution
of the overmerging problem by allowing galaxies to re-
main distinct after their halos have mezged. In this case
some statistical properties of the galaxies are more sim-
ilar to those of the peaks than to those of the halos, so
such a conspiracy between gas-dynamics and the statis-
tics of peaks is not inconceivable. Another caveat is
that we have only investigated simnlations with a CDM
initial power spectrum, and the results for other initial
power spectra could be different—it is likely, however,
that the above results would hold for any power spec-
trum that is similar to CDM in the sense that it has
significant power over a large range of length scales.

it is quite unfortunate that the results presented here
appear to invalidate the usual method for determining
the galaxy distribution from the mass densily in large
scale structure simulations. This leaves the choice of
either going back to the assumption that the galaxy dis-
tzibution is an unbiased sample of the mass distribution,
or investigating a new method for determining sites of
galaxy formation. The first option is unpleasant be-
cause it means that the comparison of existing CDM
simulations with existing observations almost conclu-
sively rules out the theory. As we have been exhaus-
tive in investigating linear criteria, the second option
will almost certainly entail the investigation of nonlin-
eax effects, multiple filteys, or dynamical coasidesations,
which will preclude the use of the formalism of BBKS,
and make the ability to estimate galaxy densities from
mass densities on [arger scales quite difficult.
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