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Abstract 

We present a simple and intuitive derivation of the track parameter co- 
variance matrix due to multiple Coulomb scattering for use in track fitting 
with the Kalman filter. We derive all the covariance matrix elements for two 
experimentally relevant track parameterizations (i.e. x and y slopes and inter- 
cepts, and direction cosines and intercepts) in the presence of thin scatterers 
and absence of magnetic fields. We further comment on how to account for 
thick and/or continuous scattering centers. 

1 Introduction 

lkack fitting (including multiple Coulomb scattering) with the Kalman filter 
technique[l][Z] has recently proven to be a powerful alternative to the tradi- 
tional Wiener or “global” method, as well as to the breakpoint and various 
other ad hoc methods[3]-[12]. 

The Kalman filter is a recursive or stepwise procedure for estimating the 
state parameters of a linear, discrete dynamic system (e.g. a track in a particle 
physics detector). The Kahnan method was originally introduced in 1960[1], 
and subsequently led to a revolution in various engineering fields, including 
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optimal signal processing, navigation, spacecraft tracking etc[l3]. It was not 
until Fruhwirth’s 1987 paper[2], however, that the Kahnan filter technique 
became generally known in particle physics. Prior to this Billoir[4] indepen- 
dently derived equations equivalent to the Kalman filter equations without 
realizing it. With Fruhwirth’s paper, however, the full power of the Kalman 
technique became available, especially the smoother algorithm. 

The Kalman filter solution reproduces the result of the global least squares 
fit, but avoids the N x N matrix inversion required by the latter method 
(where N is the total number of measurements). This matrix is in general 
non-diagonal due to correlations (caused by multiple scattering) between mea- 
surements. The largest matrix inversion required by the Kalman technique is 
the smaller of m x m (gain matrix formalism, see below) and p x p (weighted 
means formalism), where m is the number of measurements per point, and 
p is the number of parameters to be estimated (i.e. dimension of the state 
vector). 

In contrast to the Kalman filter, the breakpoint method[7] reproduces the 
results of the global fit through actual fitting of the multiple scattering angles 
at each scattering plane. Ad hoc methods often only approximate the result 
of the global fit, and are generally used simply to avoid the costly matrix 
inversion. 

An essential ingredient in the Kalman technique is the covariance matrix 
of the track parameters due to multiple Coulomb scattering. Although some 

partial results are available in the current literature[3][12], results are incon- 
sistant, and derivations are often absent. In the following we offer a concise 
and general method for evaluating the covariance matrices in the presence of 
thin scattering centers and absence of magnetic fields. 

The organization of our discussion is as follows. In section 2 we review 
the K&mm filter technique, and present a simplified derivation of the filter 
equations. In section 3 we define our notation and coordinate systems, and 
derive all terms of the covariance matrix for two experimentally relevant track 
parameterizations. We then comment on how our formalism can be used with 
thick and/or continuous scattering centers. In section 4 we discuss recent re- 
sults concerning the variance of the projected scattering angle due to multiple 
scattering. Section 5 contains a summary and conclusions. 

2 The Kalman Filter 

The K&mm technique focuses on a p x 1 “state vector” that contains the p 
state parameters to be estimated, and on a model that extrapolates the state 
vector from point to point. These points can either be real points in space 
or time, or can simply be dimensionless integers (e.g. the track number in 
vertex fitting). 
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In the following, we use Zk to denote the p x 1 state vector containing the 
true state parameters at point k. The state vector extrapolation model in the 
linear case is 

& = FL--1Zke-I t W&-I, 

where Fk-1 is a matrix that extrapolates the state vector from point k - 1 to 
point k, and mk-1 represents “process noise” that corrupts the state vector 
(in trade fitting, for example, the process noise is due to multiple scattering). 
The process noise is assumed to be unbiased and to have finite variance, and 
it3 Cwari~Ce matrix iS Qk. 

The main result of this paper, given in section 3, is the evaluation of &k 
for two experimentally relevant tredr parameterizations. 

The components of the state vector Sk are not measured directly. The 
actual m measurements mk at point k are linear functions of the state vector 
L?k such that, 

mk = Hkek t ‘k, 

where mk iS a m X 1 VeCtOr, Hk iS a m X p matrix, and ck repreSent mea- 
surement noise, or measurement errors. In analogy to the process noise, the 
measurement noise Ek is assumed to be unbiased and to have finite variance, 
and it6 COwimCe matrix iS vj. 

Following Gelb[l4], we defme z:-’ to be the best estimate of the true 
state vector Zb using all measurements up to but not including the kth mea- 
surement, and ~2 to be the best estimate of the state vector including the 
kth measurement. In the language of Kalman filtering, Et-’ is the pwdicled 
estimate of *it, and E: is the j&red es2imate of Sk. Further, for II > k, 2; is 
called the smoothed estimate of zk. 

In the Kalman scheme 5: is taken to be an arbitrary linear function of 
the extrapolated (or predicted) value of the state vector, $‘, and the actual 
measurement mk made at point k: 

-k zk = K:z;-~ + Kin+, 

where Ki and Ki are arbitrary matrices. The Kalman prediction equation is 
taken to be 

-k-l 
=k = Fk-&I;. 

Requiring 5: to be unbiased (i.e. expectation value of (5: - fk) = 0) yields 

5: = g-1 t &(TQ. -If&') 

where Kk is called the Kahnan gain matrix. Further, 

K: = (I - Kk&) 
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and 

Kk is determined by requiring that it minimize the sum of the squares of 
the standard deviations of the estimated parameters, 

BTr(Ck) = o 

c%k ’ 

where T+(Ck) is the trace of Ck and Ck is the p x p covariance matrix of the 
estimated parameters at point k. Solving for Kk yields 

Kk = c,*-‘a;‘(& + I&c,“-‘HI’)-‘, 

where 

and 

CL-’ = F ck-‘Fi” 
k-1 k-1 k-l t Qk-1 

CL = (1 - &&)ck-’ 

(the superscript T denotes the transpose). In correspondence to our earlier 
notation, C:-’ is the best estimate of Ck excluding the kth measurement, and 
Ci is the best estimate of Ck including the kth measurement. 

We note that our equations correspond to the “gain matrix” formulation 
of the Kalman filter method. Fruhwirth[2] further explores the “weighted 
means” formulation, which focuses on the Ki and Ki matrices instead. The 
two methods are mathematically equivalent; the gain matrix formulation is 
generally preferred if m < p. 

Full discussions of the K&mm filter, Kalman smoother, and other ap- 
proaches to track fitting including multiple scattering can be found in refer- 
ences [2]-[21]. 

3 Calculation of Covariance Matrices 

3.1 Notation and Outline of Calculation 

Multiple scattering is conveniently parameteriaed by two mutually orthogonal, 
uncorrelated scattering angles 01 and 0,[3][12][22], which are assumed to be 
small. We ignore the transverse displacement of the track as it crosses the 
scattering plane[23], and assume that the scattering takes place at a single 
point in the center of the scattering plane. 

The covariance matrix elements (ei, Sj) for the scattering angles 81 and 82 
can be written as 

(@i,ej) = ~2(&moj) &j, (1) 
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where a’(e,,) is the variance of the projected multiple scattering angle (see 
section 4 for an explicit form for U(8,,)). 

The covariance matrix elements (Pi:, Pi) for any two arbitrary functions 

E(hvb) ad Pj(e 1, 2 can be evaluated by using the propagation of errors 0 ) 
formula[22] 

tpit Pj) = m$E, $2 (6719 8”). 
n 

In the present context, (I’;, Pj) represents the elements of the covariance ma- 
trix Qk, defined in section 2. Substitution of Eq. 1 into equation Eq. 2 yields 

(Pi,Pj) = O*(e,,) (~~ + ~~). 

Hence, calculation of the covariance matrix elements for any track parameter- 
ization requires evaluation of the partial derivatives of the track parameters 
with respect to the two orthogonal scattering angles (in the limit 81,82 -+ 0). 

The outline of our derivation is as follows. We express the unscattered 
track parameters in a reference coordinate system, let the track to scatter 
at the point (z~,~~,zo), and recalculate the scattered track parameters in 
the reference system. The scattering angles 81 and Bz are defined in a track 
coordinate system whose origin is (20, ~0, a), and whose z axis is aligned with 
the unscattered track (note that although the z axis of the track system is 
aligned with the unscattered track, the orientation of the other two axes is 
arbitrary). We then calculate the partial derivatives of the scattered track 
parameters with respect to 81 and 02 in the limit B1,& + 0, and use the 
propagation of errors formula to obtain our final result. 

The angles between the projections of the unscattered (scattered) track 
onto the z-z and y-z planes of the reference system and the z-axis of the 
reference system are 0, and 0, (0: and 0;) respectively. Similarly, the angles 
between the projection of the scattered track onto the z-z and y-z planes of 
the track system and the z-axis of the track system are 81 and 82. In the limit 
e1,e2+o, e;,e;-+ez,ey. 

Finally, the direction cosines of the z, y, and t axes of the track system in 
the reference system are (al,Pl,yt), (az,&~z), and (a3,&y3) respectively. 

3.2 Direction Tangent Case 

For the direction tangent case, we define the 4 x 1 state vector z as: 

(4) 
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That is, (PI, Pz,O) is the intercept of the unscattered track with the reference 
x-y plane at z = 0, and P3 and P4 are the direction tangents (or slopes, dz/dz 
and ify/cfz) of the unscattered track in the reference system. In the track 
coordinate system the incoming (unscattered) track unit vector is simply 

0 0 0 1 
1 

while after scattering the unit vector becomes 

1 
tale1 

J1+ taxA% + ta& ( 1 

t.3nez . (5) 
1 

The 3 x 3 rotation matrix connecting the track and reference systems is 

R= ($ $ f;), 
with elements obeying the relations 

%aj t PiPj t 7i7j = 6ijg 

ad-% t %82 +(x3/% = 0, 

~171+%7zta373 = 0, 
I3171 tp272 t p373 = 0. 

(‘3) 

Thus the scattered unit vector in the reference system is 

(7) 

where a and a’ are normalization constants for the unit vectors. Solving Eq. 7 
for the direction tangents of the scattered vector in the reference system yields 

Pa = tane: = 
altane1taZtane~ta~ 
7lt~&t72tanB2+73’ 

(8) 

P4 = tans; = 
filt=el thtdzth 
71t-91t7zt~e2t73’ 

(9) 

Taking the partial derivatives of P3 and P4 with respect to ill and O2 in the 
small angle limit gives 

ap3 - = =173- a371 

m s,.s,-o (73Y ’ 
(10) 

6 



ap3 m73 - a.?72 - 
ae2 e,,+o 

= 
(73)2 ’ 

BP4 = 8173 - P371 - 
86 a,,Bz---ro (73)2 ’ 
ap4 - 
m2 a,.&--4 

= Pzn - 8372 

(7312 . 

(11) 

(12) 

(13) 

Furthermore, 

=i ap3 

ae,= 
- 

-a2 ae, ’ 

BP1 ap3 

ae,= 
- 

-+4 ae, 3 

BP2 ap4 

ae,= 
- 

--a as, 9 
a4 ah ae,= --K’ 

Substituting the above partial derivatives into Eq. 3, and simplifying with 
Eqs. 6 yields 

l&h) = u2(OFoj) 
11 

a173 - a371 2 

(73Y I[ + a73 - a372 = 

(73Y I> 

= 4e,oj) 
1 

(Q3Y + (73Y 1 (7314 . 
(14) 

Note that this result only depends on (a3,&73), i.e. on the orientation of 
the z axis of the track system with respect to the reference system. Using the 
identities 

a3 = 

he, 

(I t tde, t tan2 ey)w’ 

B3 = (ittd~~BL~By)l/~’ (15) 

1 

73 = (1 t td e, t tan2 ear)m’ 

(P3,P3) becomes (in the limit el, e2 + o, e;, 8; + e,, e,) 

(p3,JV = a2(eroj) (1 t tde, t tde,)(i f tde,) 

= 4%+) P t Wl[l t (P3)* + (P4)7. 
Similarly, 

P4,P4) = 4epoj) [l t (P4)'][1 t (P3)* t (P4)*]. 
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In the same manner, 

(P3,P4) = 02(epoj) z 
= u2(eroj) P3P4[1 t (P3)’ t (P4)‘]. (18) 

Finally, the full covariance matrix of the trade parameters, constructed from 
the preceding three elements (i.e. Eqs. 16, 17 and 18), is 

I 

&9,4) w3, P4) -Io(P3,P3) -zo(S, P4) \ 
ZW3, P4) ap4, P4) -zoP3, P4) -Zb(P4, P4) 

-zo(S, P3) -zo(S, P4) P3, P3) (%,P4) . 
-e5rP4) -zo(P4, P4) P3, P4) (P4, P4) ) 

3.3 Direction Cosine Case 

For the direction cosine case the 4 x 1 state vector z is 

where (13, 83, and 73 are the direction cosines of the incoming (unscattered) 
track in the reference sytem. Proceeding as before, and using the definition 
of direction cosines, we have 

where a is a normalization constant, and a*, p, and 7’ are the direction 
cosines of the scattered track in the reference system (note that in the limit 

el,ez + 0, (a*,~3*,7*) --+ (aa,fi3,73)). Evaluating the partial derivatives of 
the scattered track parameters in the limit el, e2 + 0 gives 

ad/as, = al, ad/as2 = az, 
wish = h w*iae, = h, 
a7*m = rl, a7*/ae, = 72. 

Finally, using the propagation of errors formula and the orthogonality rela- 
tions of the rotationmatrix, the full covariance matrix of the track parameters 
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1 [ (;t%y&] 
[ (l:$r‘?:)‘] 
[e] 

i 0 

3.4 Comments 

4evoj) X 

[ (l:~::)'] [ (l+G;')','] 0 

[ ,?$:7&] 0 1 (l-P&)’ O 11 2 

0 1 - Pi -p3p4 

[ cl-P~~~,l,z] -P3P4 1 - P4’ 

If the transverse displacement of the track as it crosses the scattering plane 
cannot be ignored, two modifications must be made. First, the error ma- 
trix for the multiple scattering angles Bl and l$ (Eq. 1) must be replaced 
by the full 4 x 4 correlated error matrix of multiple scattering angles and 
displacements[3][12]. Second, the partial derivatives of the track parameters 
with respect to the two transverse displacements must be calculated, follow- 
ing the method given in the preceding sections; Eq. 2 (rather than Eq. 3) is 
then used. 

If the scattering centers are too thick to be considered discrete, the formula 
for the mean scattering angles (see section 4) and displacements[22] must be 
replaced by an integral over the scattering medium[3][12]. 

4 Variance of Multiple Scattering Angle 

Several forms of the standard deviation r(e,,,j) are available. Lynch and 
Dahl[22][24] obtain, with result good to approximately ll%, 

u(e,,j) = gzm [l + O.O38ln(L/L,)], (19) 

where L is the path length through the material, L, is the radiation length 
of the material, PC is the velocity of the particle, .z is the charge, and p is the 
momentum in MeV. Thin result is a modification of the previous formulae of 
Rossi-Griesen[ZB] and Higbland[27] ( w h o introduced the logarithmic term). 
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Lynch and Dahl also present an alternative form, good to better than 2%, 
that uses Moliere’s characteristic angle and screening angle[25] instead of the 
radiation length. 

5 Conclusions 

The application of the Kalman filter technique to track fitting requires evalu- 
ation of the covariance matrix of the track parameters due to multiple scatter- 
ing. Results in the current literature are generally incomplete, and derivations 
are often absent. 

We have briefly introduced the basics of Kahnan filter technique, and 
have calculated the full covariance matrix for two experimentally relevant 
track parameterizations for thin scatterers in the absence of a magnetic field: 
direction tangents and intercepts, and direction cosines and intercepts. Where 
they overlap, cm results agree with the partial ones quoted in reference [12]. 
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