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We describe a general method of calculating the fully differential cross section for 
the production of jets at next-to-leading order in a hadron collider. This method 
is based on a ‘crossing’ of next-to-leading order calculations with all partons in the 
Cnal state. The method introduces universal crossing functions that allow a modu- 
lar approach to next-to-leading order calculations for any process with initial state 
partons. These techniques are applied to the production of jets in association with 
a vector boson including all decay correlations of the 6nal state observables. 
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I. INTRODUCTION 

One of the most striking features of hadronic events is the appearance of ‘jets’ of hadrons. 
By use of a suitable experimental jet algorithm, the hadronic data may be organized into 
final states containing a definite number of jets. This defines the topological structure of the 
event for a given jet algorithm. Different jet algorithms or jet defining cuts can lead to a 
different number of jets being observed in a given event. As a result, jet cross sections depend 
on the procedure used to define an experimental jet. Nevertheless, at the experimental level, 
a jet is a perfectly well defined quantity since for a given jet algorithm each event contains 
a precisely determined number of jets. 

From the theoretical point of view, the jet algorithm plays an important role in selecting 
high momentum transfer events in which the soft radiation is removed by a cut on the 
minimal transverse energy of the jet. At the same time, individual hadron behavior is 
averaged out by replacing all hadrons within a cone of a given size by a single jet axis and 
jet energy. Because the hadronic information is averaged out, we can relate the hadronic 
jet axis and energy observed in the experiment to a jet axis and energy constructed from 
a parton shower calculated within perturbative QCD The jet axis and energy obtained 
from the hadronic shower are thus modelled by the jet axis and energy obtained from the 
parton shower. This is a weak form of the parton-hadron duality theorem [I]. Of course, 
non-perturbative hadronization effects are not predicted by perturbative &CD. Similarly, the 
contributions from the underlying event (at hadron colliders) are not included. ‘Sensible’ jet 
algorithms minimize these effects and allow a more direct comparison between theory and 
experiment. 

More precise theoretical predictions of jet cross sections are potentially valuable since new 
physics is often evident in events containing a specific number of jets. The corresponding 
QCD background is then the exclusive jet cross section containing the same number of jets. 
For example, the signal to background ratio for the top quark in the lepton + jets channel 
is improved by demanding that more jets be observed [2]. 

The lowest order matrix elements for the two most prominent processes containing jets 
at. hadron colliders. 

pp -+ nl jets, (1.1) 
pp -+ W*/Z + 71.2 jets, (1.2) 

have been computed for nt 5 5 [3] and nz 5 4 [4] by making use of helicity amplitudes [5], 
color decompositions [6-8] and recursion relations [9, lo] to control the rapid increase in the 
number of Feynman diagrams as the number of partons involved grows. The jet cross section 
is then obtained by Monte Carlo integration of the phase space of the final state partons. 
This approach allows any experimental jet algorithm and acceptance to be applied, and one 
can study any distribution depending on the jet observables. It is important to note that 
at leading order, t,he jet is modelled by a single parton. The ~jet defining cuts are applied 
to this lone parton and the parton’s direction&d energy describe the jet’s axis and energy 
1111. 

Comparisons of lowest order QCD predictions of jet distributions with the data have 
proved reasonable, bearing in mind the fact that one is comparing a theoretical perturbative 
calculation with hadronic data. Generally, the shapes of infrared safe distributions are well 
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predicted while the overall normalization is uncertain, due to a dependence on the unphysical 
renormalization and factorization scales pn and PF [12]. 

The addition of next-to-leading order effects produces three important improvements over 
a leading order calculation. First, the dependence on the unphysical scales pn and pp is 
reduced so that the normalization is more certain. Second, we begin to reconstruct the 
parton shower. This means that two partons may combine to form a single jet. As a result, 
jet cross sections become sensitive to the details of the jet finding algorithm, particularly 
the way in which the hadrons are combined to form the jet axis and energy, and to the size 
of a jet cone. This sensitivity is also seen in experimental results. Third, the calculation 
becomes more sensitive to detector limitations, because radiation outside the detector is 
simulated. This can change leading order results considerably for quantities such as the 
missing transverse energy in events containing a W boson. 

From a more theoretical point of view, the presence of infrared logarithms in a generic 
perturbative QCD prediction implies that the expansion of physical quantities is not strictly 
a series in the coupling constant a,, but is rather a series in o, In’ via and o, In ~rs (as 
well as LY, alone), where urn is an experimental resolution (for example, the minimum jet 
invariant mass in e+e- collisions). Thus even in the perturbative regime, the leading-order 
result - where the size of these logarithms is uncalculated - suffers from potentially large 
corrections which might spoil the applicability of perturbative &CD. In a next-to-leading 
order calculation, these logarithms are calculated explicitly, and thus one regains confidence 
in the applicability of the perturbative expansion. From this purist’s point of view, a next-to- 
leading order calculation is necessary in order to understand whether a leading-order result 
is trustworthy. 

At next-to-leading order, the n-jet cross section receives contributions from virtual cor- 
rections to n-parton, and from real corrections in the form of (n + l)-parton, final states. 
Both contributions are divergent. The matrix elements for the virtual diagrams are infrared- 
divergent, while the real (n + 1).parton matrix elements are well defined. However, when 
the (n + l)-parton matrix elements are integrated over the allowed regions of phase space 
an infrared-divergent cross section is obtained. This comes about because the jet algorithm 
allows one of t,he partons to be soft, or for two psrtons within a jet cone t,o be collinear. 

In order to cancel these divergences explicitly, it is convenient to divide the (n + l)- 
parton phase space into regions where (n + 1).partons are ‘resolved’ and regions where only 
n-partons are ‘resolved’ [13-161. F or example, if the invariant mass of two partons, s;i, is 
smaller than some theoretical parton resolution parameter s,in only one parton is resolved, 
while if sij > s,in both partons are resolved. All of the divergences from the (n + 1)parton 
final state separate and are associated with the regions where only n-partons are resolved. 
These divergences can be cancelled directly against the virtual corrections to the n-parton 
cross section. With such a physical picture [20] it is straightforward to extend this method 
to deal with any number of partons in the final state. Indeed, using a color decomposition 
of the a,mplitude, one can write down a simple soft fact.orization [21] for the sub-amplitudes, 
which in turn allows the construction of a universal set of functions summarizing the soft 
and collinear behavior of the matrix element of any colored particles. both before and after 
the cancellation of infrared divergences described above. Recently, we have described how 
this scheme may be applied to multijet cross sections in e+e- annihilation [15]. This case is 
rather special since there can be no QCD radiation in the initial state and all divergences 
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therefore reside in the final state. In the paper, we wish to extend this method to processes 
which involve partons in the initial state. 

In Sec. II, we show how to set up the next-to-leading order calculation of the matrix 
elements for e+e- + n partons and how they may be ‘crossed’ to give the cross section for 
pp -+ V + (n - 2) partons where V = W*, y’, 2. In order to do this it is convenient to 
introduce (in addition to the universal soft and collinear functions mentioned above) a set 
of universal crossing functions which multiply the lowest order cross section. These crossing 
functions are essentially convolutions of the input structure functions with the Altarelli- 
Parisi splitting functions. Section III deals with the derivation of the crossing functions 
which enable us to cross final state partons to the initial state. In Sec. IV, we construct 
explicit Monte Carlo programs for, 

pp -+ V + 0, 1 jets + &? + 0, 1 jets, (1.3) 

at next-to-leading order. The jet algorithm may then be applied directly to the n and (n + 1) 
parton final states. All dependence on the unphysical parton resolution parameter s,ie 
cancels numerically The cross section is fully differential in all jet and lepton observables 
and therefore differs from calculations of the W transverse momentum distribution at O(crz) 
[22,23] or of the single jet inclusive transverse momentum distribution at 0(oi) [14,24]. 
Equivalent techniques have been applied to pp + W’ + 0 jets [25] and p@ -+ 2 jets [26] at 
next-to-leading order. Finally, we summarize our results in Sec. V. 

II. CALCULATIONAL ORGANIZATION 

In this section we give a general overview of the manner in which the calculation is set up, 
without going into details, which we shall present in subsequent sections. The organization 
minimizes the computational effort while retaining the standard MS prescription [27]. For 
example, the cumbersome d-dimensional squaring of the matrix elements is avoided. Fur- 
thermore, the introduction of universal crossing functions will allow us to obtain the initial 
state parton cross sections from the all-outgoing cross section. These techniques depend 
crucially on the universality of the QCD soft and collinear radiation patterns. 

An efficient way of organizing next-to-leading order calculations for all-outgoing parton 
processes was given in ref. 1151. The basis of this method is the use of ordered amplitudes 
associated with each color structure rather than the full matrix element. For example, let 
us consider the decay of a vector boson into a quark-antiquark pair with n accompanying 
gluons. The full squared amplitude is obtained by summing the squared ordered amplitudes 
over all permutations of the gluons [6-81, 

IMvV’ + qQ + n s)l’ - Pg. IA(q;gl, rgn; dl* (2.1) 

For simplicity, we keep only t.he t,erms at leading order in the number of colors. See Sec. IV for 
a full discussion of the subleading terms. Of crucial importance is the fact that the ordered 
amplitudes exhibit QED-like factorization [28] in the soft and collinear limits [21]. This 
forms the basis of our method and allows the integration over the singular (or unresolved) 
parts of phase space without calculating the hard matrix element explicitly, 
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J d Psoft/collinear IA(d;gl,...,gh+,;~)(’ + R(q;glt. .. rgn;~Ismin) IA(q;gl,. ,gn;q)l’ 
(2.2) 

where the soft and collinear regions of phase space are defined by the invariant mass cut s,,,~“. 
At this point everything is done in an arbitrary number of dimensions [29,30]. However, we 
never have to calculate the hard amplitude squared explicitly since this result is obtained 
without any detailed knowledge of the hard process. The next step is to calculate the virtual 
corrections to the squared matrix elements which have the generic form, 

IMv(V-+qq+ ns)l2,= c V(q;gl,...,gn:d IA(q;gl,...,g,;~)l’+T(q;gl,...,g,;~), 
Perm. 

(2.3) 

where V(q; 91, , gn; Q) is the singular part proportional to the tree level ordered amplitude 
and .F(q; 91,. , gn; Q) is the remaining finite contribution. This can be immediately com- 
bined with the unresolved phase space contribution Eq. 2.2 to give the finite next-to-leading 
order squared matrix elements, 

IMv(V + qP + n dl; - p& (11 + xl 14~ 91 ,...I 9n;d12+T(4;91 ,...> S&9)). 

(2.4) 

Note that due to the Kinoshita-Lee-Nauenberg [31,32] theorem the combination of the phase 
space factor and the virtual factor, K = R + V, is finite. As a direct consequence we can 
now perform the squaring and summation over the polarizations in 4 dimensions using the 
standard techniques developed for evaluating complicated tree level amplitudes (helicities [5] 
and recurrence relations [9]). While V can be calculated in a process-independent manner 
[15], the finite remainder of the virtual correction + needs to be calculated on a process-by- 
process basis. The general structure is process-independent, and it is in this sense that the 
K factor is universal. 

In order to generalize the framework above, used in e+e- collisions, to hadronic collisions, 
we must include initial state partons in the calculation. One useful property of lowest order 
matrix elements is that of “crossing”. In other words, the matrix elements for V -+ qq + n g 

are related to those for the crossed processes, 

qq-V + ng, 

49-+v + Q + (n-1)9, 

qgg-v + q + (“-l)g, 

w-+v + qq + (n-2)9, 

(2.5) 

by reversal of the momentum and helicity of the crossed particles. The fully differential cross 
section at leading order in the collision of hadrons Hi and Hz, 

HI + Hz + V + npartons, (2.6) 

is, 
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(2.7) 

Here I,“(Z) is the probability density of finding parton a in hadron H with momentum 
fraction z and, 

do,Lb(qrz2) = $ IM,b12 d P(ab + V + npartons), (2.8) 
ob 

where @,b is the appropriate spin and color averaging factor and d P the V + n parton 
phase space where all parton pairs satisfy Sij > s,in. The matrix elements for ab -+ V + n 

partons are denoted IM.I$ and are related by crossing to IMvJ’, Eq. 2.1. 
We have already discussed how the next-to-leading order matrix elements for e+e- -+ 

n partons can be written in an explicitly finite way using the parton resolution parameter 
s,in. We now wish to extend this to processes involving partons in the initial state while 
maintaining the crossing properties of lowest order. In order to achieve this, the next-to- 
leading order hadronic cross section must be defined by, 

dm,rrz = ~3.H’(~1)3bH1(~2)da,NbL~(~1,~2) dxldxz, 
ab 

(2.9) 

where 3aH is the “effective” next-to-leading order structure function and dnibLo the “crossed” 
analogue of the finite next-to-leading order partonic cross section. This cross section can be 
expanded as a series in the coupling constant, 

d utbLo = d ~2~’ + a,d 6~;~~’ + O(c&, (2.10) 

where we have extracted the coupling constant from the finite crossed matrix elements. Note 
that o, is evaluated at the renormalization scale ps. Similarly, after mass factorization, the 
effective structure function 3aH may be written as, 

7:(r) = C(& PF) + as c,“cx. PF) + q4, (2.11) 

where pi is the factorization scale. Both ff(r, P.Q) and the crossing function C,“(Z, PF) are 
finite. Once again a, is evaluated at the renormalization scale. In principle one could evaluate 
o, at the mass factorization scale, however, provided o, log(&&) << 1, the difference is of 
0(&j) and can be ignored. For a detailed derivation of the structure of the crossing function 
C,” we refer the reader to Sec. III. 

Inserting these definitions back into Eq. 2.9 and expanding up to O(a,) we find, 

+a, {c,“L(-df~(~z, + .~~(xI)C~~+~)} do;f(.q,x2) + O(a;) 
I 

dz,dss. 

(2.12) 

For simplicity, we have suppressed the dependence on the renormalization scale in the cou- 
pling constant and the factorization scale in the structure and crossing functions. 
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The crossing function receives two contributions which both stem from the fact that we 
consider two partons to be unresolved when their invariant mass is smaller than the parton 
resolution parameter S,in. Firstly, we cannot distinguish between a single initial state parton 
and a parton which emits collinear radiation such that the invariant mass of the collinear pair 
is smaller than s,in. This implies that part of the initial state collinear radiation is removed 
from the hard scattering and absorbed into the effective structure function. Clearly, this 
contribution depends on s,in and therefore so do the crossing functions (and also FaH). This 
term is a convolution of ft with the Altarelli-Parisi splitting function, P.+(z) [33]. 

The second contribution arises from crossing a pair of collinear partons with an invariant 
mass smaller than s,in from the final state to the initial state. In principle we should remove 
this contribution from d6azbLo, however in order to preserve the structure of Eq. 2.9, we 
subtract this contribution from the parton density function. This is possible because we 
cannot distinguish the two parton incoming state with invariant mass smaller than s,in 
from a single incoming parton. 

Both of these contributions are divergent and schematically, 

c.“cx, w F [J.’ $f (;) fi,.(t) - t’(z) /( dG-&)] 9. (2.13) 

A more precise formulation of the crossing function is given in the next section including all 
d-dimensional factors. After mass factorization the crossing function is rendered finite, 

cH+cheyr, pLF) = (2) [AH(z) log ($) + H~se-e(r,] a (2.14) 

Although At is scheme independent, B/ does depend on the mass factorization scheme and - 
therefore so does C,“. Explicit forms for these functions in the MS scheme are given in the 
next section. 

The overall cross section cannot depend on the unphysical parameter s,in. When the 
contribution from HI + Hz + V + (n + 1) partons where all partons are resolved is included, 
bhe s,in in the logarithm is replaced by an energy scale defined by the experimental cuts. In 
a numerical computation, one would also force the factorization scale to be determined by 
the experimental cuts; the argument of the logarithm would then be of O(1) and the contri- 
bution from A: would be small. If this were not true, the logarithm would be large so that 
c~,Af(x) log (E&J&) N f,“(r), perturbation theory would break down and a resummation 
of the leading logarithms would be necessary. 

III. DERIVATION OF THE CROSSING FUNCTIONS 

In this section we derive explicit formulae for the crossing functions C!(Z,~F) as de- 
fined in eqs. 2.9-2.12. First, we derive the init,ial state collinear phase space behavior in 
a parametrization suitable for our parton resolution parameter. We then reformulate the 
standard collinear matrix element factorization in the ordered amplitude language. Com- 
bining these results enables us to derive the universal crossing functions which after mass 
factorization yield finite crossing functions. 
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A. The initial-state collinear behavior of phase space 

First consider the production of a heavy object, Q, by the collision of two massless 
particles with momenta p, and ph. The d-dimensional phase space measure, including the 
flux factor, is given by, 

kdP$+h-Q)=$ J(sars - Q*), (3.1) 
oh 

where s,h = (pa + ph)z. This extends straightforwardly to the production of any number of 
particles (massless or otherwise) with momenta pi,. ,p, by use of the relation, 

dP(a+h+l+ . . + n) = dPd(a + h + Q)% dQ2dPd(Q +l+...+n). (3.2) 

Next consider the phase space for the production of a msssless particle with momentum 
p, in association with Q from the collision of two massless particles with momenta p,, and 

PW 

(3.3) 

where we integrate over the invariant mass of Q and the polar angle with respect to p, by 
using Is.,/ and l.spulr as well as integrating over the (d - 3) azimuthal angles relative to the 
direction of p,. 

The region where momentum p, is collinear with momentum pp is defined by, 

ISPI < Smin. (3.4) 

In this region we introduce the hard momentum ph which is the amount of the parent 
momentum pp remaining after the emission of the unobserved collinear momentum p, such 
that, 

ph = zp,, sah = ZS,pr 

Pu = Cl- “IP,, (S,“j = (1 - z)sap. 

In this limit the phase space factorizes, 

IdPd(a + p 
25-a, 

+ u + Q) + dPP,,(p + u + h) x &dPd(a + h -+ &I, 

where, taking d = 4 - 26, we find, 

(3.5) 

(3.6) 

dP,4,;2’(p + u + h) = 
(4T)’ 

167rT(l - E) 
zdzdls,uJ [(l - ~)lqul]-. (3.7) 

The square bracket contains the necessary factors to regulate the poles in the matrix e,lements 
in (1 - Z) and sPU. 

Combining these results we find that in the collinear limit, the full phase space measure 
of interest factorizes as follows, 

dPd(n+p+u+2+...+n)=dPC$,,(p+u+h)x~dPd(a+h + 2 +. ” + n). 
(I 

(3.8) 
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B. Behavior of matrix elements 

The matrix elements also undergo a collinear factorization when one of the final state 
partons is collinear with one of the initial state partons. Take the case where an initial state 
parton P splits into partons u and h (which participates in the hard scattering) as in Eq. 3.5; 
then, for each ordered amplitude, 

where, 

[A( . . . . p,u,n ,... )~2+.-“h~A( . . . . h,n ,... )12, (3.9) 

,y-uh 
F (3.10) 

Note that the quantum numbers of the unobserved parton u are determined by the quantum 
numbers of the parent parton p and the hard-process parton h. 

This is very similar to the factorization that occurs when two final state particles are 
collinear. In this case, when parton a (which participates in the hard scattering) splits into 
a final state collinear parton pair 1 and 2 then, 

]A(. , 1,2,. .)I2 + $?-“]A(. , a,. .)I*, (3.11) 

$‘” = 2.E L&+&) ( ) 2 SF2 
(3.12) 

and, 
Pl = ZP,, P2 = (1 - Z)P,. (3.13) 

The different averaging factors for initial- and final-state quarks and gluons have been taken 
into account, however, we do not sum here over different flavors of quarks participating in 
the hard process. 

As before, the splitting functions may be either in the conventional scheme (all particles 
in d-dimensions) [33] or in the ‘t Hooft Veltman scheme (only unobserved particles in d- 
dimensions) (291. In the conventional scheme, the splitting functions are given by, 

es-&) = Pgg-g(z) = 4 (A + + + z(1 - 2)) , 

e,-,c4 = (I - &) Pqg-? (z)=?(l-&J (1+z2;+y 1 

Pq&z) = $Pqi& = ; 
( 

z2 + ‘: 1 ;I2 - E 
1 

(3.14) 

For the splitting functions in the ‘t Hooft Veltman scheme, see Ref. [29]. 
One difference from pure final state singularities is that the initial state parton is always 

hard - there is always a minimum value for z imposed by demanding that a hard scattering 
takes place. On the other hand, the upper bound on z is still determined by the requirement 
that parton u is collinear but not soft. In other words, s,, > s,in, where n is the neighbouring 
hard parton in the ordered amplitude (see eq. 3.9). 

For the g -+ 99 process. there will be contributions from two ordered amplitudes. 
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IA(... ,m,p,u,n ,... )[‘+[A( . . . . m,u,p,n ,... )/*+/A( . . . . m,h,n ,... )I*, (3.15) 

where the order of the other hard partons in the ordered amplitude is preserved. The upper 
limit on z will be different in each case since the requirement that gluon u be unobserved 
depends on the adjacent momenta. Note that in the final state case, each ordering counts 
equally, however, the Bose symmetry factor takes this into account. For processes involving 
collinear quarks (antiquarks), only one ordering will contribute. Note that only ordered 
amplitudes where p and u are adjacent contribute in the collinear limit. If they are not 
adjacent as in Eq. 3.15 the collinear limit gives a contribution of the order of the parton 
resolution cut s,in, which is therefore negligible. This property is very useful since it avoids 
overlapping divergences for a given ordered amplitude and this makes partial fractioning to 
isolate the divergences unnecessary. 

C. Behavior of the cross section 

In this subsection we derive exact expressions for the crossing functions C,“(z) or, equiv- 
alently the effective structure function 3/(z) as defined in Eqs. 2.9-2.12. We will consider 
the generic process of scattering of partons a and h to form an arbitrary final state with an 
invariant mass 0 (e.g. partons only, vector boson plus partons, etc.). The leading order 
cross section for the production of a vector boson plus partons is given in Eq. 2.7. Cross 
sections for other final states are given by similar formula. The next-to-leading order cross 
section is defined in Eq. 2.9, or in its expanded form in Eq. 2.12. 

The first step in the derivation of the crossing function is to consider the initial-state 
collinear radiation contribution to the next-to-leading order cross section. Consider the 
splitting of a parent parton p to a (unobserved) collinear parton U, and a parton h partic- 
ipating in the hard scattering: p + uh, where the invariant mass lss,,l < s,,,;” so that this 
configuration is indistinguishable from the leading order configuration where parton h comes 
directly from the hadron. This contributes to the next-to-leading order cross section and 
using Eqs. 3.7 and 3.9 we find 

dUi”itial= C j?(Zl) {j,H’(y)t$bUhdPP,l(p + U+ h)d(Z, - Zy)dy} dU,LR(Zl,Z*)dTCld3T2, 
ab 

(3.16) 

where, by definition, the momentum fraction 2s carried by parton h is given by the momen- 
tum fraction y of the original parton p multiplied by the energy fraction remaining after 
radiating the unobserved parton a. There is an implicit integration over z contained in 
the collinear phase space factor, see Eq. 3.7. Comparing Eq. 3.16 with Eq. 2.12 gives the 
contribution of the initial state radiation to the crossing function, 

asC~initia,(z2) = c j,H’(y)PF-“hdP:,(p + u + h)J(a - ?/)&A (3.17) 
P 

Using Eq. 3.10 and the collinear phase space factor of Eq. 3.7 gives, 

C?initial(22) = - (g) r(li E) (2)‘: T a l:-” ?(I - ~)-‘i)~,,,(t) j? (Zj) 
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where we have integrated y over the delta function and sP using the constraint lspul < s,in. 
Here ~1 is an arbitrary scale introduced to keep the strong coupling constant o, = g2fi-2’/41r 
dimensionless in d-dimensions. The upper boundary on the z integral is determined by the 
constraint that the unobserved parton u is not soft with respect to its neighbouring parton 
n. In other words, )s,,l = (1 - z)lshnl > smin. Explicitly this gives 

*<l-$1-**. (3.19) 

Note that shn is only defined because of the use of the ordered amplitudes and is different 
for each ordering. 

Looking at the definition of the splitting functions, Eq. 3.14, we see that Jq-s and Jg-tcl 
do not depend on the upper boundary on z (up to negligible corrections of O(smin)). This 
is due to the absence of a singularity in the limit that the quark or anti-quark becomes 
soft. In contrast, the J9+s and J*-s functions do contain a soft singularity, arising from 
the limit where the gluon becomes soft, and therefore do depend on 2s. In order to write 
these contributions to the crossing functions in the second form in Eq. 3.18, we use the ( )+ 
prescription defined by, 

(F(Z))+ = i3 e(~ - z - P)F(z) - 6(1- 2 - PI i’-’ F(Y) h) > (3.20) 

such that, 

J 
l-r2 

g(l), (3.21) 
z‘ 

and, 

J .‘d$$+ -i~1dzg(z)(10~~~‘))++C7(r”), (3.22) 

J g(z) J l z1 dZ(l - %)+ = z dz g(z) -g(l) 
1-Z 

+ 541) k(l - s), (3.23) 

J ( l dzg(z) 
log( 1 - z) 

z 1-z += I ) J 
l &I(4 -g(l) ,og(l _ *) + s(l) 

1-Z 
+og*(l -z), (3.24) 

provided t,hat g(z) is a function well behaved at z = 1. 
The functions Js+, are thus given by, 
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4&f, 22) = ( > “‘, l 
6(1 - 2, + [(l _ ;)I+<]+ + 

(1 - t)‘-r 
z + z(l - z)i-’ + U(Smin), 

Jdz, 22) = (1 - &) { ( zT’c- ‘) 41 - 2) + ; ( [(1 1-‘1)$+ - E(1 - z)ij} + O(&&& 

‘~-9(‘, ‘2) = ~‘S~-*(r)(l - Z)-’ + U(S,i,), 

(3.25) 

The next step is to correct for the fact that we have crossed a final state collinear cluster 
to the initial state. As explained in Sec. II this is done by subtracting the collinear factor 
resulting from the splitting h + up integrated over the final state collinear phase space (see 
[15] for a detailed derivation). The contribution to the next-to leading order cross section is 
given by, 

d ufinai = 2 ff’bd {fhH’(zz)~‘hdPP,,,fin,i(h + u + P,} do,LhO(zI, zz)dqdx2, 

(3.26) 

giving, 

~sc~;n,,(Q) = .$%2, ~$-hdPP,,,,,,,(h --+ u + p) 

=- ($jr(,‘,, (~)‘fhX1(1-2)~~r~-h(Z1,z2). (3.27) 

Note that the parton density function is associated with parton h rather than with parton p. 
The integration boundaries of the z integral are again defined through the requirement that 
the hard partons are resolved. For each ordered amplitude zi and t2 are given by demanding 
that the invariant mass of parton u with both its neighbors in the particular ordering is 
larger than the parton resolution cut s,in so that u is not soft. In the conventional scheme, 
the final state integrals over the splitting functions, Ipu-hr are given by, 

I pu-h(llrt2) = ’ 
J 

1-q 

4 a 
dz [t(l - Z)]-’ ri,&) (3.28) 

(3.29) 

We can now define the crossing function as a convolution integral involving the parton 
density function and a crossing kernel ,Ys.+h(z) which is obtained by subtracting the final 
state contribution given by Eq. 3.29 from the initial state contributions of Eq. 3.25 
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‘fCz) = cL! initiaI(x) - cl!f ftnal(5) 

= F l’ $f; (:) &-h(Z), (3.30) 

where the crossing kernel for specific processes is given by 

%7-,(z) = - (g) r(ly E) ($)’ ; 
x (Js& 4 + JS-+S(~> 22) - [I,,42,, z*) + ~Iqq-g(o,o)] a(1 - z)) 

=- (3 r(l: E) (g)’ 

x : 2 [(l - $+q+ + [( 

(1 - z)‘-6 
z 

+ z(1 - 2)1-f 
) 

+((““6,‘“‘)-~(~-~+~))6(1-2)], 

L.?(z) = - (3 r(ll_ E) (3 f(Uz,z2) - zq,.d0,z2b5~l - 2)) 

=-B,,,‘,,(~)‘(1-2 
1 1 1 + 2 

x- - 
[ ( E 2 [(l - Z)lfr]+ 

-~,,-*)1-‘)+(~_((~-~))6(1-*)]. 

We see that the dependence on the boundaries exactly cancels, making the crossing function 
independent of the hard process. The other two functions, Xg&) and X,,,(z), do not 
receive contributions from the final state crossing, 

Here, we have replaced endpoints that do not contribute with a zero (that is, we have simply 
dropped contributions of O(s,i”)). 

We have now derived the process independent crossing function. They still contain the 
mass singularity which has to be removed by the mass factorization prescription. In fact in 
the language we have developed here the mass factorization is done very easily as is shown 
in the next subsection. 
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D. Mass factorization 

The only physical, and therefore finite, quantity associated with resolved partons is the 
effective structure function 3:(z) as defined in Eq. 2.11. Conventionally, the parton density 
function is made finite by renormalizing the parton density function at the factorization scale 
PFI 

f/?,“(x) = f,“(? PF) - % T /rl $f; (;, PF) &+h(Z, PF) + o(a:) (3.32) 

This is very similar to coupling constant renormalization. The U(a,) term is subsequently 

absorbed in the crossing function 

=fhHb,~F) + asC/(r,pF) + o(@;), (3.33) 

with 

c,“(x, ll~) = T jr1 $f: (zt tiF) (-%-h(Z) + Rp-h(z, jlF)) > (3.34) 

where the mass factorization counter function absorbs the divergences in the crossing func- 
tions. Note that the effective structure function, 3:, is left unchanged by the mass fac- 
torization and is in fact independent of the factorisation scale. However for a cross section 
calculated at fixed order in perturbation theory, we have to expand the effective structure 
functions explicitly and neglect terms of U(a,2) as was done in Eq. 2.12. This makes the 
fixed order cross section factorization scale dependent since we have to neglect the term 
@:(PF)C?(Zlr pF)c,H?(z21 !JF), 

The mass factorization counter functions R p-h at the factorization Scale PF are given by, 

x (11N-2n45(1-*)+2 * 

I ( 

+ (1 - 2) 

RF:;me(z;,,,=(g) (~)fr~~‘.l~(~-‘~;:’ * 

+ z( 1 - 2) + cf;Jy 

x 
1 

$3(1 - 2) + 1 
1 + 22 

( ) 2 (1 -z)+ 
+ qt;yz)} ( 

R:~(z> PF) = (2) (F)' & <); { $g-,C4 + d~;-W} , 

RT!i;me(z, PF) = (E) (%)’ rcll Ej 5 {up,“,+&) + ~fgschi~‘(~)} , (3.35) 

where the four dimensional part of the splitting function is given by &-e(z) and &+(z) 
is the d - 4 part. The function f$~““(z) is th e SC h eme dependent maSs factorization term 
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chosen such that fsF,,(z) = 0. Th e s t rong coupling constant in (3.32) is evaluated at the scale 
p, which through coupling constant renormalisation is identified with the renormalisation 
scale. Other choices of the scale are possible, however, provided a,log(&/&) << 1, the 
difference is of U(oi) and can be ignored. Indeed, this condition is necessary in order to 
prevent the appearance of large logarithms. In practice, pLR and pF will usually be chosen 
equal, but if they are not, the ratio ~R/PF should be small. 

Combining the unrenormalized crossing functions of Eqs. 3.31-3.31 with the counter func- - 
tions of Eq. 3.35 gives us the finite, renormalized crossing functions in the MS scheme, 

cP% PF) = (g) [Aw c1F) log (z) + BP%? llP)] , (3.36) 

where the arbitrary scale fi has canceled and, 

A,Hb., PF) = C A,H_h(~, IJF), 
P 

By=@, PF) = c Bfy(x, PF). 
P 

(3.37) 

The finite scheme independent functions AF’,(z, pF) are given by, 

A,H_,(Gc~F) =11 $f: (~,PF) ( (11N6~2”‘)S(l - Z) + 2 ( (1 :z)+ + (l i *) + 2(i- *I)}, 

A&q(&PF)=l’ $f,H (t,PF) (1 - +) ($ - 2) + i ((:‘z;+)}, 

-4,H_,(s, fiF) = l1 $f; (;> PF) ;lj,“,-,(Z), 

A34=~1 ?f; (;&F) +$-,(z), (3.38) 

and the scheme dependent functions B::ys -Cd by, 

BHy=(x,~~) = 5 /rl $f; (;> PF) {6&(z) bdl - 2) - &&)} > 9-q 

B;~(wF,=:~~ $f,H (;+F) {~‘,4,&)l%(l - --I - &,(~,}. (3.39) 
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With these formulae we can calculate the crossing functions for each set of given parton 
density functions. These crossing functions are independent of the hard process. It is now 
straightforward to evaluate A,,(z, PF), Bh(z, pp) and Cs(z, fiF) numerically for a given set - 
of input parton density functions in a particular scheme. We use the MS scheme, and in 
order to give some idea of the size and relative importance of the crossing functions we use - 
set Bl of Ref. [34] as input proton MS parton density functions. Furthermore, we focus on 
the crossing functions associated with valence up quarks and gluons. The distributions for 
down valence quarks show a similar behaviour to the up valence quarks while the sea quarks 
are related to the gluonic distributions. 

First, we show the I dependence of the crossing functions for valence up quarks at a fixed 
scale PF = 25 GeV in Fig. 1. In order to illustrate the s,in dependence of C,, three values 
of s,in have been chosen, s,in = 1, 10 and 100 GeVz. The first two values are typical of 
the s,in chosen in practical applications (see Sec. IV) and are values where the systematic 
uncertainty in evaluating the cross section is of the same order as the uncertainty introduced 
by approximating the matrix elements at small s,in. Although C, does explicitly depend on 
this unphysical parameter, this dependence is balanced by a growth of the bremstrahlung 
contribution to the next-to-leading cross section. Once this cancellation takes place, S,in is 
replaced by a scale of order of the experimental cuts. For jets with ET 2 ET,,,~” - O(15 GeV) 
and a jet-jet separation of AR - 0.7, this scale is of order E&,,i,ARZ - U(100 GeV2). The 
curves with s,in = 100 GeV* are representative of such a scale and give some indication of 
the contribution to the physical cross section. As shown in Fig. l(a), both A, and C,, are 
negative for some values of z. Although this seems somewhat strange, A, and C, are not 
directly interpretable as physical distribution; only the complete next-to-leading order cross 
section as defined in Eq. 2.12 is expected to be positive (so long as higher-order corrections 
are not too large). It is worth noting that although A, and BP are roughly similar in size, 
the contribution of A, to C, is enhanced by log(smir,/p$) which can be large. Therefore, 
particularly for small s,in, the shape of C, is dictated by the scheme independent function 
A,, while B, is only important as s,in -+ &. As mentioned earlier, a more physical quantity 
is the effective structure function .7=” defined in Eq. 2.11. This is shown in Fig. l(b) for the 
same three values of s,i,, as is the ordinary parton density function fU. We see that at 
large z, Y=,, is enhanced relative to fU, while at small 2 there is a depletion. Furthermore, 
as s,in + &, Jr,, approaches f.. Note that for very small factorization scales such that 
P$ < Sminr then .Y=,, is depleted at large r and enhanced at small .z. 

Fig. 2 shows the z distribution for the gluonic crossing functions. These crossing functions 
receive contributions from both 9 + 99 and p + 9q splitting functions, and, due to the soft 
gluon poles that are present, A, and Bg both grow at small .r. As a consequence, C, is 
negative in this region. However. for large sminr there is a significant cancellation between 
A, and Bg so that C, is less singular. This is reflected in Fig. 2(b) where -7=g and ,f, are 
shown for the gluon. .4t small z there is a dramatic softening of the growth of the gluon 
density function. This depletion is entirely consistent with the depletion of the up valence 
distribution discussed above. Similarly, at large z, there is a small enhancement. 

It is also instructive to study the scale dependence of the crossing functions. This depen- 
dence is present in the inmrt parton density functions and hence A and B and through the 
log(smi./&) factor multiplying A in Eq. 3.36. 3 contains an additional pr dependence from 
the strong coupling constant evaluated at the factorisation scale which we take to be equal 
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to the renormalisation scale. Fig. 3 shows the p,W dependence for the up valence density 
functions at z = 0.05. A, is a slowly decreasing function, much smaller than B, while both 
A, and B, are positive for PF < 1000 GeV. As a consequence, for s,in < &, C, is relatively 
small due to a cancellation between the two terms. This is not the case for smaller scales 
where C, can be quite large. Fig. 3(b) again shows the ordinary parton density function fu 
with the effective structure function 3”. For large pi, where C, is small, fu and 3, are very 
similar in size, while at small scales we can see very large differences. 

The scale dependence of the gluonic crossing functions is shown in Fig. 4. Unlike the up 
valence quark case, A, becomes negative at a scale of c1.P = 7 GeV. As a consequence, A, 
and the rather large Bg combine together coherently to form C, which grows logarithmically 
at large scales. Furthermore, the effective structure function 3g is always significantly larger 
than the ordinary parton density function f,. 
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FIG. 1. The valence quark density functions (a) A,, B, and C,, and (b) 3, and fU as a function 
of I for pp = 25 GeV. C, and 3, are shown for s,,,in = 1, 10 and 100 GeV*. 
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FIG. 2. The glum density functions (a) A,, B, and C, and (b) Tg and fs m a function of I 
for pp = 25 GeV. C, and ;Fs are shown for s,,,~” = 1, 10 and 100 GeV*. 
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FIG. 3. The valence quark density functions (a) A,, Bu and Cu and (b) 3‘s and j” as a 
function of the factorisation scale p.u in GeV for I = 0.05. C, and 3” are shown for Smin = 1, 10 
and 100 GeVZ. 
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FIG. 4. The gluon density functions (a) A,, Bg and C, and (b) 39 and j, as a function of the 
factorisation SC& p.~ in GeV for + = 0.05. C, and Ts are shown for s,,,in = 1, 10 and 100 GeV2. 
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IV. APPLICATIONS 

We turn next to the construction of an example of a next-to-leading order cross sections 
for jet production at hadron colliders. Let us focus on the process, 

v-+q9+n9, (4.1) 

for which the lowest order matrix element is given by, 

Mv(Ql; 1,. . . ,n;Q,lP) = $(Ql; 1,. . . , n;i&)V’. (4.2) 

Here VJ’ represents either the vector boson polarization vector, the lepton current which 
created the vector boson, or the leptonic decay products of the vector boson, while S,, is the 
hadron current. Both currents depend on the particle helicities which we suppress throughout 
and the particle momenta which we denote by P for the vector boson, Qi, Qs for the quarks 
and Ki, , K, for the gluons. These momenta satisfy the momentum conservation relation, 

P’=Q’;+z+Kf+...+K;. (4.3) 

In addition, the hadron current depends on the colors of the gluons ai,. , a, and the quarks 
Cl rC2. 

The hadron current Sp may be decomposed according to the different allowed color struc- 
tures [6-81, 

$(QI; 1,. . , n;Q2) = ieg” C (T”’ . ..T”“).,.,S,(QI;~,...,~;~~,), (4.4) 
P(l,...,“) 

where S, represents the colorless ordered amplitude in which the gluons are emitted in an 
ordered way from the quark line. Note that the prefactor associated with each S, is also 
ordered according to the color of the gluons. These color factors form a complete basis and 
therefore each S,, is gauge invariant with respect to the gluons. Although the full hadron 
current Sp is invariant under permutations of the gluons, the ordered amplitude is not. This 
property is recovered by summing the ordered amplitudes over the n! gluon permutations, 
P(l,...,n). 

One advantage of using this color decomposition is that the squared matrix elements 
summed over helicities and colors have a very systematic structure, 

IMv12 = lQq2=e2 (qy (9) [p(g,.v~\2+o (&)I , I 1 
(4.5) 

where n 2 1 counts the number of gluons. On the right hand side, we have expanded in 
the number of colors. The terms subleading in the number of colors are related to matrix 
elements with abelian couplings. For example, when R = 2, 

I&,(Q1; 1,2;g2)Vpj2 = 2 

L2;~2)vpj2 - ~~s,(Ql;i,i;~2)V~~2 1 , (4.6) 

where. 
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$(QI; i,%%,) = S,(Ql; l,2;gz) + S,(Q1;2,1;Q2), (4.7) 

and the contribution from the triple gluon vertex drops out. The Feynman graphs contribut- 
ing to S,,(Q1; i, 2;gz) are therefore those for V + up + 2 y or V + qrj + g + 7. 

The ordered amplitudes also have special properties in the soft gluon or collinear parton 
limits which allow us to isolate the singular regions using the parton resolution parameter smin 
[21,15]. These divergences are proportional to the lowest order squared ordered amplitudes 
as are the virtual divergences. Therefore we can combine them directly and, due to the 
Kinoshita-Lee-Nauenberg [31,32] theorems, obtain a finite result after the usual coupling 
constant renormalization. The finite next-to-leading order matrix elements can be written, 

+7(&l; l,.. ,n;Q,) + 0 (&) 1, (4.8) 

where 3(Q1; 1,. , n; Gz) is the finite contribution from the virtual graphs. The dynamical 
ordered K factor is given by, 

K(Q~;ll...,~:U,)=(~“~~‘“) [~{-lopY(~)+~(o(sij)-~)} 

+~log(~)+~log(~)+~7~~9-~] 

+ a,(&JhJn log + uCE) + o(Srnin), 

where the sum runs over all (n + 1) color-connected pairs, that is, ij = Qll, 12.. , nQz, and 
where bo is the one-loop coefficient of the QCD beta function. Note that K(Q1; 1.. , n;g*) 
depends explicitly on the parton resolution parameter s,in. The renormalisation scale no is - 
the scale at which the MS counter term is subtracted. For vector boson decay all s;j > 0 so 
that O(Sij) = 1. However, when we cross partons into the initial state this will no longer 
be true and it is necessary to maintain the explicit analytic continuations of the log’ terms. 
Up to this point, we have continued both matrix elements and phase space into d = 4 - 2~ 
using dimensional regularization. In Eq. 4.9, we now see that all singularities have cancelled 
explicitly and we may therefore take the 4-dimensional limit. This means that the squared 

ordered amplitudes, lS,,V“/2, may be evaluated in I-dimensions and not in &dimensions, 
thus simplifying the calculation dramatically. Similarly, it is not necessary to extend the jet 
algorithm to d-dimensions as in the work of Ellis, Kunszt, and Soper [24]. 

Keeping all orders in the number of colors presents no problems. For example, the effective 
matrix elements for V + qp + 2 9 at next-to-leading order are given by, 

pQJP\“, = 2 (q)’ (“;; ‘) 
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~c(Q1;L%G2) - $~(QdJ) \&(QI; ~2;~2)V’~~ 

-~~(Ql;l;~2)+RS(Q1;2;~2)- ( 1 + $) K(Qd)) /&(QL i,%~~)vpjz], 

+?QI; L%Q,), (4.10) 

where UQI;QZ), VQl; 1;Q2) and Kc(Q1; 1,2;G2,) 
respectively. 

are given by Eq. 4.9 with n = 0,l and 2 

A. HlH2-+V+Ojets 

As a first application of 2.12 and the next-toleading order crossing approach, let us 
consider the production of a vector boson in ha&on-h&on collisions followed by the decay 
of the vector boson in the absence of jets. The relevant parton-level processes are, 

m + v, (4.11) 

along with the bremstrahlung processes, 

9q+v+9, El+ v+9, 9G -+ v + K (4.12) 

for which the generic cross section is given by, 

d&b(zl, 22) = $ 
ab 

(M&l2 dP(ab -t V + 0, 1 partons). (4.13) 

The spin and colour averaging factors, +,,b are given by, 

aqi = -L 1 1 
4N2’ 

a&, = agq = 
4N(N2 - 1)’ ‘gg = 4(N2 _ 1)2’ (4.14) 

The lowest order matrix elements for these processes are related to those for Eq. 4.1 with 
n = 0 and 1 through the usual crossing relations, In other words. the momenta and helicity 
of crossed particles are reversed. For example, 

and, 

~&,-(QI; 1,. > d#‘)/2 = IA&(-Q,; 1,. ,n; -g2z,I - P)12, (4.15) 

(M,,(a; 1,. , ~72~l~f = -IM,(Q~; -1,. ,K -Q21 - ~11~. (4.16) 

An explicit form for these matrix elements and hence ]S,,(Qi; G2)Vp12 and ]S,(Qi; l;Q2)V”]z 
using spinor language is given in Appendix A of [15]. Full details of how crossing affects the 
spinors is given in Appendix E of Ref. [35]. 

At next-to-leading order, the finite effective matrix elements for Eq. 4.1 with R = 0, are 
given by, 

IMv(Qd#'!~~ = e2N (1 - $) ~(Ql;~2)ls,(Q,;~2)V~12 + T(Q4 , 

(4.17) 
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where, because of our choice for the assignment of the finite pieces between Ic and 3, 

F(QI;Q,) = 0. (4.18) 

The dynamical K factor is given by Eq. 4.9 with n = 0. Because of Eq. 2.12, we may cross 
this in exactly the same manner as the tree level matrix elements of Eq. 4.15. The only 
subtlety is in the analytic continuation of the log* terms in K which we have written out 
explicitly in Eq. 4.9. 

It is now straightforward to construct a Monte Carlo program to evaluate the fully dif- 
ferential cross section numerically. In particular, the vector boson decays are easily included 
which allows experimental cuts to be placed directly on the observed leptons. It is important 
to note that the phase space is restricted to regions where all partons are resolved. In other 
words, any pair of partons must have an invariant mass larger than the parton resolution 
parameter, lsiil > s,in. What this means in practical terms is that the bremstrahlung contri- 
bution to the cross section grows as log2(s,i”). This is balanced by the explicit - 1og2(s,i,) 
in K such that the total cross section should be independent of the unphysical s,in pro- 
vided (a) that smin is small enough that the soft and collinear approximations are valid and 
(b) that s,,,~” is not so small that the numerical cancellation between the two contributions 
becomes unstable. Fig. 5 shows that the O(o,) W + 0 jet or !* + E~‘ss’“g + 0 jet cross 
section is essentially independent of s,in over a wide range of s,in. In general, one wants 
to choose the largest smin possible, to minimize the running time of the program. In this 
case, a reasonable value to choose is s,in = 10 GeV’. (One must be careful to note that for 
certain distributions, in particular infrared-sensitive ones, a smaller s,in might be required 
for some values of the relevant kinematic variables.) 

One quantity of interest is the dependence of the W + 0 jet cross section on the choice of 
experimental cuts. In principle, including higher orders mimics more accurately the correct 
dependence. At leading order, with ‘standard’ CDF cuts, 

u(W + 0 jets) = 0.78?!:$ nb. (4.19) 

This does not depend on the jet defining cut, E$ki,, since at leading order there is no parton 
in the final state. At next-to-leading order, this is no longer true and in Fig. 6 we show the 
next-to-leading order W + 0 jet cross section as a function of E$&,, for the same range of 
scales. As ,!?Fki, becomes large, this cross-section approaches the inclusive W cross section. 

B. HlH2 - V + 1 jet 

We now turn to vector boson production in association with a single jet. As before, 
the structure of the next-to-leading cross section is described by Eq. 2.12, however the 
contributing parton-level processes include both those of Eq. 4.12 as well as, 

9cl+ v + 44, 9cl - v + 99, qg -+ L,’ + qg, gq- v+yg> yg --t L’ + qq. 

(4.20) 

.4s before, the lowest order matrix elements for Eq. 4.20 are obtained by crossing the matrix 
elements given in Appendix A of [15]. 

The finite next-to-leading order matrix elements are given by, 
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(MV(QI;1:~21P)l~=e2 (q) (y) 

x [ @QI; l;Qz, - &Qd)) (~,(QI; 1,i&)Vr12 + F‘(&I; 1;G2)] , (4.21) 

where ic(Q1; 1; gs) is given by Eq. 4.9 with n = 1. The finite one loop contributions are given 

by Eqs. A.42-A.46 of [15]. Once again, it is trivial to cross both K: and IS,,(Qr; l;~z)VfiIz. 
However, some care must be taken in crossing 3 since although crossing the helicity structure 
in Eq. A.43 is straightforward, the coefficients ai, pi and & in Eq. A.44 are expressed in terms 
of the function R(z, y) (Eq. A.45) which has been written assuming that 0 5 z, y 5 1. For 
crossed processes this is no longer true. For example, when, 

in which case, 

I < 0, Y < 0, (4.22) 

R(z,y)=-;log2(l-z)-;log’(l-y)+; 

-Liz(&) -Liz(&) 

Alternatively, if, 

x < 0, Y>l, 

in which case, 

R(x, Y) = -; log20 - x) + ; log2(y) + log biY) + ; 

-Lb (j-+-) +Li2 (i) 

(4.23) 

(4.24) 

We have checked that crossed finite virtual contributions agree with the results of Gonsalves 
et al. [23] when the vector boson decay current is replaced by its polarisation vector. 

With these crossed matrix elements, we can construct a Monte Carlo program to numeri- 
cally evaluate the fully differential vector boson plus one jet cross section at next-to-leading 
order. As before, the vector boson decays are easily included which allows experimental cuts 
to be placed directly on the observed leptons. To demonstrate that the W + 1 jet cross 
section is essentially independent of the unphysical parameter s,inr Fig. ‘7 shows that the 
O(az) W+ 1 jet cross section as a function of amin. For s,,,i,, in the range l-10 GeV2, the cross 
section is not dominated by systematic errors and does not depend on s,in. We therefore 
set s,~,, = 10 GeV2 as in the II/ + 0 jet case. 

An important issue in PI/ + jets events is the signficance of corrections to leading-order 
results. For most quantities, radiative effects should be small so that we can rely on leading 
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order to describe the basic features of the data even though the overall normalization of the 
cross section is uncertain. One of the most fundamental distributions is the jet transverse 
momentum distribution which is shown in Fig. 8. 

For the leading order results we choose two renormalisation scales, ~1s = Mw/2 and the 
total invariant mass of the event, PR = i/2. The first scale is the smallest scale available 
and generates the hardest transverse momentum distribution while the second scale is the 
hardest scale available and leads to the softest transverse momentum spectrum. The band 
defined by these two scales represents the range of leading order predictions. The factor 
l/2 is present in the choice of scale so that the corresponding total cross sections at leading 
order (0.117 nb and 0.106 nb) are close to, and bracket, the next-to-leading order result of 
0.113 nb, which is essentially independent of the renormalization scale (here taken to be 
Mw). As can be seen in Fig. 8, the next-to-leading order distribution is somewhat softer 
than the leading-order results. In fact it is even softer than leading order with the largest 
scale. This implies that the standard jet algorithm does not take into account an important 
effect thereby leading to large radiative effects for high transverse momentum jets. 

From a physical point of view, it is clear why the spectrum softens more dramatically than 
can be expected from leading order with the standard jet algorithm. For high transverse 
energy jets, the accompanying soft radiation increases with the energy of the jet. Therefore, 
with a fixed transverse momentum cut ( in this case Egmi, = 15 GeV), it is easier for the 
soft radiation in the event to fluctuate so that it passes the minimum transverse momentum 
threshold and subsequently be counted as a extra jet. Since we are looking at the exclusive 
jet cross section this event will be removed from the W + 1 jet cross section and added to 
the W + 2 jet cross section. This effect gets more severe when the jet transverse energy gets 
larger leading to a depletion of the W+l jet cross section and a softening of the transverse 
momentum distribution. At leading order this effect is not modelled at all because the 
leading order prediction associates all the energy with the jet and allows no soft radiation 
outside the jet cone. In contrast, at next-to-leading order the hadronic energy around the 
jet cone is modelled, allowing the generation of softer jets within the tail of high transverse 
energy jets. 

From a more mathematical point of view, it is also clear what happens in the exclusive 
jet cross section with high transverse momentum jets. From Eq. (4.9), we can see,that 
the high transverse momentum jets generate correction terms of order -(Y, 10g(E~/Egk~,) 
which become large if the I!%$ is much larger than the minimal transverse energy. This is 
undesirable since it implies large radiative effects which are due entirely to the jet algorithm 
itself. In principle, the jet algorithm should minimize these effects in order to be able to 
compare theory with experiment. 

This requires a slight modification in the jet algorithm. By scaling the minimal transverse 
momentum cut with the hardness of the event (e.g. summed scalar energies or total invari- 
ant mass), we allow the hard jets to radiate accompanying soft energy without generating 
additional small jets. That is, we show the jet to ‘vent’ its energy without producing a 
large number of soft jets. Events which formerly contained W + 2 jets where one of the 
jets is relatively soft are now counted as W + 1 jet events, t,hus increasing the W+l jet 
cross section at high transverse momentum. For example, by demanding E$ki, = A&, the 
correction t,erm is -CC, log2(X) where we can now choose the constant X and thus control the 
size of the corrections. 
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To demonstrate this effect we show in Fig. 9 the factor which we need to multiply the 
leading order distribution (with pn = g/2) to obtain the next-to-leading order result. For 
the fixed Egiin, we see a sizeable correction that depends strongly on the jet transverse 
energy. However, if we take a scaling E$ki, = max(15 GeV, 0.1 &), we get a result very 
close to leading order with only a small enhancement for soft transverse energy jets. For 
the high transverse energy jets the next-to-leading order prediction is well described by the 
leading order result. 
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FIG. 5. The Smin dependence of the W + 0 jet cross section for ‘standard’ CDF cuts; 
E$? 2 15 GeV, E$ 2 20 GeV, E;iasi”g > 20 GeV, Itit 5 2, 111’1 5 1 and a jet cone size 
AR = dm 5 0.7. The structure functions are set Bl of (341 while the factorisation and 
renormalisation scales are PF = PR = Mw. For input parameters we choose Mw = 80 GeV, 
rw = 2 GeV, sin* 0~ = 0.23 and cr,(Mw) = 0.1108. 
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FIG. 6. The NLO W + 0 jet crow section a8 a function of the jet defming cut E$& for 
p,r = pR = 2Mw, Mw and Mw/2. 
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FIG. 7. The Smin dependence of the W + 1 jet cross section for ‘standard’ CDF cuts. The 
structure functions are set Bl of [34] while the factorisation and renormalisation scales are ELF = 

PR = Mw. 
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FIG. 8. The O(crs) and O(az) jet and W boson transverse momentum distribution for ‘stan- 
dard’ CDF cuts. 
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FIG. 9. The ratio of next-to-leading order to leading order jet transverse momentum distribu- 
tions for a iixed Ejet Tmin = 15 GeV cut and for a scaled @$ki, = max(l5 GeV, 0.1 x &) cut as a 
function of the jet transverse momentum. 
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V. CONCLUSIONS 

The main theme in this paper is the extension of the general method of ref. [15], for dealing 
with final state collinear and infrared divergences, to include partons in the initial state. For 
final state partons, the soft and collinear divergences from the bremstrahlung process are 
isolated using a parton resolution parameter s,in. These divergences are proportional to 
lowest order matrix elements and can be combined directly with the divergences from the 
virtual graphs to give a finite cross section, Eq. 2.4, which depends on a dynamical K: factor 
multiplying the lowest-order term, along with a finite one loop contribution 3. In order 
t,o extend this to incorporate initial state partons, we have extended the tree level concept 
of crossing to next-to-leading order processes. This is achieved by (a) through the analytic 
continuation of the dynamical factor K (Eq. 4.9) and the finite one loop contribution 3 
(see Sec. IV) into the physical region and (b) through the introduction of universal crossing 
functions. Eq. 2.13, which are essentially convoiutions of the structure functions with the 
Altarelli-Parisi splitting functions. Together, Ic, T and C(z) form a set of finite building 
blocks with which one can calculate next-to-leading order cross sections. This is summarized 
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in Eq. 2.12; because the ordered factorization of the soft poles and the factorization of the 
collinear poles, is independent of the hard process, this equation represents the general cross 
section for any hadronic process. 

As an explicit example of this method, in Sec. IV, we have taken the next-to-leading order 
matrix elements relevant for e+e- -+ 2,3 and 4 partons [15] and crossed two of the partons 
into the initial state to obtain the cross section for, 

pp + W*/Z + 0, 1 jets -+ .@+ 0, 1 jets, (5.1) 

at next-to-leading order. The phase space is evaluated numerically with the constraint that 
all ]sij] > e,in and all final state lepton correlations are retained. This makes it possible 
to implement jet algorithms, detector acceptance effects, and other constraints numerically, 
yielding a very flexible Monte Carlo programs as we discussed in Sec. IV. One should verify 
that the cross section is independent of the unphysical parameter S,in. For our Monte Carlo 
simulations this is indeed the case, see Figs. 5 and 7. 

It is important to note that throughout this paper we have discussed cross sections that 
are exclusive in the number of jets. As a result, we are interested in calculating the W + 0 

jet cross section, rather than the inclusive W cross section which can only be identified with 
the W + 0 jet cross section as the mimimal transverse energy cut of the jet becomes very 
large. Similarly, we study the W + 1 jet cross section rather than the transverse momentum 
distribution of the W boson which is not directly measurable. As shown in Fig. 8, this is not 
the same as the jet transverse momentum distribution at next-to-leading order. At large Eg , 

the next-to-leading order jet pT distribution is significantly softened. This is because the 
existing jet algorithm generates an artificially high jet multiplicity in events containing a very 
hard jet by restricting the hadronic radiation around the primary jet in the exclusive jet cross 
section. By modifying the jet algorithm as described in Sec. IV, these large radiative effects 
can be removed. A detailed study of the implications of next-to-leading order corrections 
to vector boson production in association with 0, 1 jets at Fermilab energies is currently in 
progress [36,37]. 

The method we have presented here considerably simplifies the structure of next-to- 
leading order QCD corrections to hadronic processes. It also makes comparison with ex- 
periment more direct through the use of Monte Carlo simulations. Once technical problems 
associated with five point loop diagrams are solved, it should be posssible to use these meth- 
ods to compute processes such as e+e- + 4 jets, its crossing pp -+ W*/Z + 2 jets and 
JJJ? -+ 3 jets at next-to-leading order possible. These multijet cross sections are important 
for experiments at LEP and Fermilab because event rates are high and can be studied in 
great detail. 
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