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ABSTRACT. Analytic.calculations of the cosmological density fluctuations and MBR 
anisotropies induced by gradients in a topologically trivial scalar field are presented. 
This analytic solution should provide a good test for numerical simulations of microwave 
anisotropy from scalar fields. To the extent that these results generalize to other scalar 
field models and configurations, they imply 1) MBR measurements limit large scale pri- 
mordial variations greater than about 5 x 10”GeVtithin our horizon, 2) The total scalar 
field variation seems to be a good predictor for of the magnitude of the MBR anisotropy 
produced in an oscillation, 3) Scalar fields as well as other models of seeded produce a few 
times more AT/T for a given 6p/p (on the the same scale) than do primordial adiabatic 
perturbations, 4) Models of scalar field seeds which produce a scale-invariant spectrum 
of perturbations seem to require galaxies to be more clustered than the mass on small 
scales, 5) Scalar fields do not “tilt” the universe. 

I. INTRODUCTION 

There have been several recent suggestions that the observed cosmological inhomo- 
geneities could have been seeded by the dynamics of a massless or ultralight scalar field. 
Proposed models include the breaking of a global continuous symmetry in the early uni- 
verse, leading to Kibble gradients (Kibble 1976) in the remnant Goldstone boson. Large 
scale gradients induced by quantum fluctuations during inflation may also lead to struc- 
ture. Such models include various O(N) ( non )li near u-models [N = 2: global strings 
(Vile&in and Everett 1982); N = 3: global monopoles (Barriola and Vile&in 1989, Ben- 
nett and Rhie 1990); N = 4: cosmic textures (Turok 1989); large-N (Turok 1989)]. Even 
fluctuations in a topologically trivial scalar field may produce inhomogeneities ($11). Such 
theories are acceptable only if they are able to reproduce the observed density and velocity 
inhomogeneities while also respecting the observations of MBR anisotropies. The recent 
detection by the satellite COBE of large angular scale anisotropy (Smoot et al. 1992, 
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hereafter COBE92-04) in conjunction with observations of galaxy clustering and peculiar 
velocities will provide a stringent test for these theories. 

All of the models mentioned above are similar to inflationary models in that they 
produce an approximately “scale-invariant” Harrison-Zel’dovich spectrum of perturba- 
tions, although the temperature patterns may be significantly non-Gaussian. Scale-invariance 
implies that significant MBR anisotropies should exist at angular scales (2 10’) where they 
cannot be erased by reionization of the universe, i.e. just the scales observed by COBE. 
Thus the anisotropy produced in these models should be measurable even if the universe 
is reionized at a high redshift. 

While several calculations exist of the density perturbations produced, especially 
in the N = 4 texture model (e.g. Gooding, Spergel, and Turok 1991; Park, Spergel, and 
Turok 1991; Cen et al. 1991), calculations of MBR anisotropy are only now underway (D. 
Bennett private communication, D. Spergel private communication). Turok and Spergel 
(1990) have calculated the temperature boost/decrement given to photons passing by a 
collapsing texture (N = 4) in Minkowski space. Such a collapse is a rather dramatic 
oscillation of a scalar field, involving energy concentrated towards a point in space, and 
it is also very rare. Turok (1989) and Turok er al. (1991) showed that collapsing knots 
of global texture occur in only 4% of horizon volumes. In regions where texture collapse 
does not occur there will still be Kibble gradients of similar magnitude, but these will be 
smoothed out by a gentler, less dramatic type of oscillation. 

In this paper we consider MBR anisotropy produced by the oscillations of a~sine- 
wave configuration of a massless scalar field, which has a topologically trivial “flat” vacuum 
manifold. The calculation is done analytically in an expanding universe. The anisotropies 
in this simple oscillation should be indicative of those to be found between the “texture 
spots” in the N = 4 texture model, and may also be indicative of the magnitude of 
anisotropy in other models where the dynamics are not driven by the vacuum manifold 
geometry. While detailed numerical calculations will be necessary in order to test the 
nonlinear u-models with observations, this exact calculation provides a simple framework 
in which to understand the various physical effects, and provides a potential check of 
numerical techniques as well. 

We should note that it has been suggested that Planck-scale physics may not allow 
scalar field masses as small as is required in the models considered here (Kim and Lee 
1989, Holman et ~1. 1992, Kamionkowski and March-Russell 1992). We feel that the 
present understanding of Planck-scale physics is not on a sufficiently firm basis to take 
these arguments as a constraint on cosmological theories. If, however, any of these scalar 
field theories were to provide good agreement with all cosmological observations then one 
might consider using this as an empirical constraint on Planck-scale physics. 

II. METRIC FLUCTUATIONS 

To estimate the effect of gradients in a scalar field we consider the simplest possible 

2 



configuration where gradients occur, i.e. a single minimally-coupled massless scalar field 
with a sinusoidal oscillation. We are most interested in the very large scale gradients in the 
scalar field, on the scale of 100 - 1000 Mpc, which produce the large-angular scale MBR 
anisotropies. These scales entered the cosmological horizon during the matter-dominated 
era. Since gradients on scales larger than the horizon are frozen in, all of the interesting 
oscillations occur in the matter era. Thus it is sufficient for our purposes to consider a 
pure matter era cosmology. It is natural to consider a spatially flat cosmology. The metric 
is, 

gav = a2(vpv + hllY) vpv = diag[-LL I,11 47) 0: T2, (1) 

where we use conformal time, q = I’ = so -‘dt, comoving coordinates, x, and gravita- 
tional units (G = c = 1). Recall that a scalar field, 4, is dimensionless in these% units. 
Here qrv is the vacuum metric and h,, is the metric perturbation. We use the formalism 
and notation of Veeraraghavan and Stebbins (1990, hereafter VS) to calculate the lin- 
ear perturbations produced by the scalar field. Thus we choose synchronous coordinates, 
h,, = h,; = 0. 

The equation of motion of the scalar field in an expanding universe is 

$+2++=0 * &. 

At early times when the wavelength is much larger than the horizon, changes in 4 are 
strongly damped by the expansion. Thus the appropriate initial condition is #(x,0) = 0. 
Solving for the evolution of the sinusoidal &field we find 

4(x, 7) = do sin(q- 4 f(lslv), f(z) = 3qI f(0) = 1, f’(0) = 0. (3) 

Here jr is a spherical Bessel function. The functional dependence off follows from dimen- 
sional arguments. The quantity $0 determines the amplitude of the initial field gradient. 

To derive the gravitational field we need the stress-energy of the ,$-field which is 
given by 

Q,” = 4,r#,v + +lA412 - lV4l”) (4) 

and is quadratic in I$. Thus the inhomogeneous part of O,, will have a wavenumber 
g = 2q. The metric perturbations which respond to the stress-energy will also have this 
higher spatial frequency. The relevant components of 0,” are 

Q,, ‘;n2&[(f2 + f2) + (f2 - y2) cos rt * x] 

Q+ d300 + Q;i = @‘(l - co9 n’. x). 
(5) 
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The stress energy consists only of scalar terms in the scalar-vector-tensor decomposition 
of 3-dimensional tensor fields. This is a peculiarity of our sinusoidal configuration. If 
we had considered a configuration with two or more sine-waves whose wavenumbers were 
not parallel, their cross term in the stress-energy tensor would contain scalar, vector, and 
tensor parts. 

Now we will assume that the cosmology is initially unperturbed, i.e. hij(X,O) = 0, 
as would occur if the scalar field were produced in an initially homogeneous universe (see 
VS). In order to obey the the energy constraint equation (VS-3.8) we must set up an initial 
growing mode underdensity in the matter 

$lio6g(Xj7)i) F -q~o~ @oo(Jb9i) = -$&(Kqi)‘(l + CDS n’. X) . (6) 

which compensates the positive energy density of the $-field. Since the momentum density 
of the &field is initially zero the momentum constraint equation is trivially satisfied by 
setting the matter velocity to zero. We take the matter to be effectively pressureless since, 
for the large scales we are interested in, even a light neutrino species would be effectively 
cold and pressureless. The subsequent evolution is given by (VS-5.5) 

where 
6(x, d = -4: [(A(v) - WV)) + (A(w) + B(v)) ~0s n’. xl (74 

A(z) = g and B(x) = $+I8 
24+8x2-x4-4(6-x’)cosx-24xsinx 

X6 . (7b) __ 

The evolution of the trace of the metric perturbation h E hii is tied to the matter under- 
density via h = -26. AS for the traceless part, &j E hij - fbijh, it is fully determined 
by the energy constraint equation, (VS-3.18) 
obtain, 

since the metric is purely scalar. We finally 

&(X,7) ~2~4: 
[ 

56ij[(A(nrl)-B(rcll))+(A(~rl)+B(nl))-C(nll))cosn’.~] . (84 + r2’icqlc~) COB z * x 1 
where 

(8b) 
Long after the wave enters the horizon the perturbation takes the form of a normal growing 
mode 

hij(X, 7)) =i& [k’kj((~/)’ + 30) - lOSij] COS Z . X + O 

6(x, 7) = - ~~&~)2 cos ii. x + 0 

%(x,7) = -4xV-2a2~6(x,rj) = ~x&os&x+O 

(9) 
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where @ is the gravitational potential. 

A conserved cosmological energy and momentum is given in $V of VS. To see how 
energy conservation works here, consider the homogeneous component of the energy. The 
-(A - B) term which gives the homogeneous matter underdensity starts as a negative 
growing mode, - -&(K.T)~ but as the $-field oscillates it “transfers” all its energy to 
the matter via 8+ 0: 2qJ2, leaving no net perturbation: -(A - B) --$ 0. The A + B 
term which is the inhomogeneous part of the matter underdensity starts out as a growing 
mode, N &l(~d2, and becomes an even larger growing mode N &(nr~)~. As the &field 
oscillates the inhomogeneous part of the &field energy, a 1V$(2, gets redistributed via 
the momentum density, a -I$VI$. The energy transport is from the regions where lV$12 
was initially large to regions where it was initially small. The total energy transport is 
actually twice that needed to smooth out the energy distribution, so the net effect is to 
transfer the energy away from regions of large negative compensation to regions where 
there is little compensation. Thus when the energy is transferred to the matter, via the 
$” term, it adds to the initial compensation rather subtracting from it. 

In the absence of a compensating underdensity, the scalar field cannot transfer 
its energy and the net perturbation would be halved. Contrary to narve expectations, 
the compensation actually increases the final inhomogeneity rather than decreasing it, in 
accordance with with Veeraraghavan and Stebbins (1992) who find that compensation 
can, in some cases, increase the observable effects of the perturbations (note however that 
compensation of the homogeneous part of the perturbation is crucial because without it 
the cosmology would be closed and not spatially flat as initially assumed). This effect 
of compensation increasing inhomogeneities is probably generic in scalar field models, 
because energy transfer, which is proportional to the square of the time derivative of the 
field, is likely to be largest where the initial field configuration takes its extremal values, 
and these are just the regions where the initial gradients and hence the initial scalar field 
density are small. Energy is transported away from regions of large compensating energy 
densities to regions where they are small, before it is transfered to the matter, increasing 
the net inhomogeneity. 

III TEMPERATURE FLUCTUATIONS 

Since we are interested in large-scale perturbations, much bigger than the horizon at 
last-scattering, we have ignored the initial radiation-dominated era. In the same spirit we 
will take the surface of last scattering to be at 7 = 0. For our solution the initial density 
inhomogeneity, outside the horizon, is zero. Thus for adiabatic initial conditions the 
initial temperature perturbation to the photons should also be zero, and the temperature 
deviation as seen by a given observer at event (x,,,~~), in direction fi is given by, 

i%(i) = -; lVO 
d?) jlijLjjlij(+(?j), ?f) 



to first order in the synchronous gauge7 where we use the unperturbed trajectory ~~(7) = 
x, + ri(qO - 7). The deviation in temperature is relative to that expected at the observer 
time in an unperturbed universe. Of course, we have no a priori way of determining the 
MBR temperature at this time, and only differences in AT/T in different directions are 
measurable. Substituting our metric into equation (10) and integrating by parts we find 

y(h)=-q$ [~(A-B)+C’~.;:sin~.x,-C”cos~.~]:I~ 
I 

J % + nd7 D(n$) cos Z . x7 0 I 
where 

D(x) = C”‘(x) + ;(A’(+) + B’(z) - C’(z)). WI 

As we shall see below this expression has much the same form as the classical Sachs- 
Wolfe anisotropy (Sachs and Wolfe 1967). It is straightforward but tedious to perform 
the integration and the general result is given in Appendix A. Below we will present the 
results for two cases corresponding to large and smaller scale anisotropies. 

Small Scale Anisotropies 

Consider the anisotropy pattern when the wavelength is much smaller than the 
horizon at the time the photons are observed, i.e. no >> 1, but also much larger than 
the horizon at last scattering. This will produce anisotropies with a small angular scale 
N (~7)~‘. Using (11) we find 

$(k)=-n4: Y$fi.;tsinz.x,-$ 

[ 

co9 2. x, 

+ &+A,( ( fd > cosn’~(x,+~~,) q, >> 1. (124 

+ H,(i - ii) sin it . (~0 + &jO) 1 
where 

He(u) = J O” dx D(x) cos ax 
0 

H.(a) = J o”dxD(x) sinax. 
0 

Wb) 
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The integral terms, Hc and Hs, are not present in the classical Sachs-Wolfe effect, but the 
boundary terms in Eq. (12) have an exact correspondence with the classical formulae: 

2vo - 
-+I 10 --n.~sinn’.x,=(~.vv,-~.vl.), 

-4 
( 

$ cos E * (& + i&) - ; * cosz*& 
> 

= ;(*,# -f&) 
(13) 

The Doppler term on the surface of last scattering is zero, and the Doppler term due 
to the motion of the observer leads to a dipole pattern much larger than the rest of the 
anisotropies. Note that even though the $-field is initially compensated the gravitational 
potential is not initially zero. 

To calculate the rms small scale anisotropy, we drop the Doppler and ‘P, terms 
(which only contribute to large-scale anisotropies), and average over all observer locations 
x, and lines of sight ri to get, 

We may compare this to the classical Sachs-Wolfe anisotropy which we would get- for 
an adiabatic primordial perturbation density perturbation given by Eq (9). In the same 
approximation (i.e. ignoring the dipole and monopole terms at the observer), we find 

ATChSSiCd 
rms 

T 
= ;4qqq x 0.222&. 

Thus, for a given 6 today, the anisotropy produced by this &field configuration is on aver- 
age about 5 times greater than that .obtained in adiabatic models. This higher efficiency 
in producing MBR anisotropies for a given density perturbation may be what is required 
by the data. Normalizing the standard CDM model of primordial adiabatic perturbations 
with the anisotropy reported in COBE92-04 one finds that the small scale inhomogeneity is 
too large (see Gelb 1992). Small scale power may be less of a problem if the perturbations 
are seeded by scalar fields. 

Ignoring the slow variation of H, and He with angle, the pattern on the sky is 
sinusoidally varying. Thus the rms is not dominated by a few rare peaks, and there is no 
evidence of a strongly non-Gaussian pattern. On large scales (2 4”), which are unlikely 
to be affected by reionization, measurements constrain AT/T $I 1 - 3 x 10m5 (Meyer et 
al. 1991) which implies that scalar field inhomogeneities of 2 4 x 10e3 N 5 x 10’sGeV 
with coherence scales 400 h-‘Mpc are excluded. If scalar field gradients are the source of 
inhomogeneities in the universe then the COBE92-04 detection implies A4 N 3 x 10m3 N 
3 x 1O’sGeV on the 10’ or 103hm1Mpc scale. 
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Large Scale Anisotropies 

Scalar field gradients on the scale of our present horizon may lead to very large 
angular scale anisotropy. The canonical measure of this large angular scale anisotropy is 
the rms amplitude of the quadrupole anisotropy, Q, which gives the contribution to the 
rms AT/T from the quadrupole component of the temperature pattern. The value of Q 
will depend sinusoidally on the position of the observer, with rms, 

P(x) =I E(x) + l* dy WY) E(x - Y) 
x2)sinx-3xcosx 

E(x) =4(3 - x3 . 
(1’3) 

A plot of Qrm./(z&) is given in the figure. The maximal value occurs when tcq, N 6, 
yielding Qrm* N 0.7~4: while values of Qr,. N 0.03& are possible even for nqO as large 
as N 23.5. Since Q varies sinusoidally with position we again find that the rms is a good 
estimate of the “typical” anisotropy. Previously the upper limit on Q was 1.9 x 10e5 
from the Relikt experiment (Klypin et al. 1987). In COBE92-94 a positive detection was 
announced at the level of Q = 4.8(f1.5) x lo-‘. Comparing the COBE detection and the 
maJdmd QrmB above we find 4. s 1.5 x 10e3 N 2 x 101’ GeV. 

Finally we note that for wavelengths on the scale of the horizon or greater, the 
dipole anisotropy is never much greater than the quadrupole anisotropy. In fact for super- 
horizon perturbations the opposite is true. Thus isothermal perturbations in the form of 
adiabatically compensated scalar field gradients cannot lead to a “tilted universe” (Turner 
1992) where the observed dipole is generated on superhorizon scales. In order to “tilt” the 
universe one needs to separate the photons and dark matter initially, that is, to consider 
non-adiabatic initial conditions. 

IV. IMPLICATIONS 

We have calculated analytically the MBR anisotropy generated by the oscillation of 
an initially compensated, simple, scalar field configuration. We find that any very large- 
scale gradient in a massless scalar field will produce inhomogeneous stress-energy and thus 
MBR anisotropies as well as density perturbations. COBE92-04 has reported anisotropies 
at the N 1 x 10m5 level from 10’ up to the quadrupole. Our calculation thus indicates 
that horizon-sized variations in a simple scalar field of N 3 x 10-3M~ranck x 4 x 1O”GeV 
would be required to produce these anisotropies, and that larger variations are excluded 
by the COBE measurement. 

Can we generalize this to limits on the VEV of O(N) models? (By VEV we mean 
the radius of the spherical vacuum manifold.) We would like to stress that scalar field 
gradients will be present in these models whether or not topologically non-trivial effects 
exist in a region. The gradients are due to causality and not due to topology. The aver- 
age difference between scalar field values (as measured along the geodesic of the vacuum 
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Figure. Here we plot 84 P(nq,)/5 vs. nw. The absolute value of the ordinate gives the 
rms quadrupole moment in units of the z&, while the abscissa gives the wavenumber of the 
perturbation in units of the inverse horizon scale at the time of observation. 

manifold) at causally disconnected points for these O(N) models is $ xVEV, independent 
of N. Equating this variation to 40 in our sine wave model, we would expect from Eq. 14 
to find rms AT/T’s of N 10. VEV2. Bennett and Rhie (1992) have numerically calculated 
the anisotropy pattern from global monopoles (N = 3) and cosmic textures (N = 4) for 
cosmologically realistic configurations. Expanding their temperature pattern in spherical 
harmonics they find contribution to the mean square AT/T from each 1 to be well ap- 
proximated by $Y$ VEV4 (21+ 1)/(1(1+ 1)) for 1 > 2, where as z 8.7 and ~4 % 4.7. For 

small angles this gives $ 2 ffN VEV’ as the rms contributed by each logarithmic interval 
in 1, or 7.7 VEV2 for N = 3 and 4.2 VEV2 for N = 4, which are reasonably close to what 
we would expect from our exact calculation. 

We may also compare to another exact calculation. For a collapsing spherical 
texture in Minkowski space, Turok and Spergel (1991) f ound fractional variations in tem- 
perature up to 8~~ VEV2 where the initial configuration had a variation in the scalar field 
of rr VEV. Taking a spherical average around the collapsing texture (see Appendix B, Eq 
B3) we find an rms ATfT of 3.9 (r VEV) 2 which is close to what we might guess from our 
exact calculation where the total variation in the field was 2950. Note that this collapsing 
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knot gives a larger AT/T than would be expected for a typical variation of ;VEV, but 
this can be “explained” because the variation is twice the mean and one would naively 
expect AT/T four times as large. Combining this with the fact that the peak anisotropy is 
roughly twice the rms, we conclude that the picture outlined in Turok and Spergel (1990) 
of “isolated spots on the sky” should have some validity if these collapsing spherical knots 
are as common as is claimed. 

For the cases we have considered we have found that the relation between the 
magnitude of a scalar field variation and the magnitude of MBR anisotropy seems to 
be fairly universal. It does not seem to vary much between topologically trivial fields 
with flat vacuum manifold geometries and fields with topologically non-trivial and curved 
vacuum manifold geometries. Nor does it vary much between simple sinusoidal oscillation 
damped by cosmological expansion and exactly spherical topologically-driven collapse in 
Minkowski space where there is no damping. Thus generalizing our COBE92-04 limit on 
the scalar field variation to O(N) models we find limits on the VEV a factor of ?j smaller 
than the limits on the scalar field variation, or VEVS 2 x 10-3M~r*Dck N 2.5 x 10leGeV. 
Particularly strong oscillations such as collapsing texture knots, or possibly annihilating 
monopoles, may lead to even stronger limits. It is interesting to note that our rough 
estimate of the VEV is about 3 times smaller than that required for textures to give 
unbiased density perturbations (Park et al. 1991) in agreement with Bennett and Rhie 
(1992). 

Now let us return to the physical system for which we have actually done the 
calculation, i.e. a real, minimally-coupled scalar field. The COBE92-04 results indicate 
that anisotropies are roughly scale-invariant so the scalar field should also have a scale- 
invariant form, i.e. the power spectrum of the scalar field should be of the form 

(l&l”) a km3. (17) 

Thus one might consider a theory of a simple scalar field with this spectrum. How could 
one get such a spectrum? One might first consider the “equivalent” theory of an N = 1 
a-model. The dynamics of a scalar field with a linear configuration space is the same 
as that for an N = 1 a-model which has a circular configuration space. It is true that 
the circular vacuum manifold comes back on itself, but this makes no difference for the 
dynamics of the field, since a circle has no intrinsic curvature. The Kibble gradients on 
such a manifold would have a spectrum roughly equivalent to Eq. (17). However, if one has 
Kibble gradients in this theory, one should also have global strings and it is these strings 
which should dominate the dynamics. Thus our calculation is not completely appropriate 
for this model. One could imagine that inflation diluted the strings, but this would also 
have diminished the Kibble gradients to a negligible level. 

Quantum fluctuations during inflation will introduce new fluctuations of the scalar 
field, of the exact form as Eq. (17) (see Kolb and Turner 1990 $8.4). However these scalar- 
field fluctuations cannot be of sufficient amplitude to result in the COBE92-04 anisotropies. 
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The reason is simple. At the same time that quantum fluctuations are induced in the scalar 
field, they are also being induced in the graviton (gravitational wave) field. The amplitude 
of these fluctuations is, 

(47 - v&v) - ( &fyJ 

where h,, is the dimensionless amplitude of the gravitational wave, tL is Planck’s constant/2a, 
and H is the Hubble constant during inflation. The gravity waves, being metric pertur- 
bations, can cause anisotropies directly, producing anisotropies of amplitude N h,, N 
hH/Mplanck at the horizon. Hence from COBE there exists a limit H s 10-5Mpl~ck/~. 
The scalar field, on the other hand, can only create metric perturbations indirectly through 
its stress energy tensor which is quadratic in the amplitude 4. Thus from the limit from 
gravity waves we could conclude that quantum fluctuations in the scalar field during in- 
flation will only produce anisotropies of order (hH/Mp1u~)2 5 10-l’ which is totally 
unobservable. Furthermore the density perturbations induced by such scalar field fluc- 
tuations would be totally negligible in comparison with the observations. Thus accord- 
ing to conventional wisdom we cannot create interesting inhomogeneities in the universe 
via quantum fluctuations induced in massless (non-inflaton) scalar fields during inflation. 
However given the lack of any empirical evidence on quantum production of gravity waves, 
one might imagine that the gravitons are “special”, being part of the rather special force, 
gravity, and are not emitted via the Hawking mechanism. Under this assumption the 
quantum production of density perturbations via a massless, non-inflaton, scalar field 
may be a viable mechanism for the generation of structure in our universe. 

On scales >> 10Mpc the MBR anisotropies in almost all models are primarily due 
to gravitational “Sachs-Wolfe-like” effects which scale as 

With the discovery of the MBR anisotropies an important observational discriminator 
between theories is the proportionality constant in this relationship. We have already 
calculated this proportionality constant for the sinusoidal scalar field in equation (15) of 
this paper. It is interesting to compare this constant with that for other models. We do 
so in Table 1 using various published results to obtain “benchmark” numbers for various 
models. The models of seeded perturbations give significantly larger values than adiabatic 
perturbations. Thus while COBE seems to require a low bias (5 1) for primordial adiabatic 
perturbations such as canonical CDM models (Wright et al. 1992), they probably require 
a larger bias (> 1) for models of seeded perturbations which produce a similar (scale- 
invariant) spectrum of perturbations. 

To summarize, scalar field gradients lead to scalar field oscillations which lead 
to time-varying gravitational fields and finally to MBR anisotropy. Limits on MBR 
anisotropies give us constraints on possible scalar field configurations and thus on various 
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1 model !C&~CC? 1 

cosmic strings 2.5 
I 

Table. Here we compare “benchmark” ratios of MBR anisotropy to matter inhomogeneity 
for various models using various published computations. The first 3 are standard cosmolog- 
ical results and can be found in Peebles (1980). The “scalar field” model refers to this paper. 
The “collapsing texture” compares calculations of Turok and Spergel (1990) to Gooding et 
al. (1991) while the “cosmic string” model compares calculations of Bouchet et al. (1988) 
to Albrecht and Stebbins (1992). The details of the of how these ratios are calculated can 
be found in Appendix B. 

models of structure formation involving scalar fields. We have analytically calculated the 
anisotropies for particular configurations. Our results imply that generating the present 
structure via scalar fields leads to somewhat larger anisotropies than in the standard 
“primordial adiabatic” scenario. The MBR anisotropies reported in COBE92-04 could 
be created by a scale invariant distribution of scalar field gradients, such as predicted in 
nonlinear o-models with Kibble gradients. For N = 4 textures the amplitude of the VEV 
which is consistent with COBE seems to indicate that the model is only viable if galaxies 
are a highly biased tracer of the mass. The analytic results obtained here may provide 
a useful test for numerical calculations of anisotropies and density fluctuations in scalar 
field models. 

Acknowledgments: This work was supported in part by the NSF at Amherst and by 
the DOE and the NASA (grant # NAGW-2381) at Fermilab. 
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Appendix A: Exact Solutions 

The integrals of equation (12) are 

3 -720 =- 
5 

- + $10 + 9a + 6~‘) + >(l - a)(1 + 3a + 6u’)) cos(1 - a)x 
X6 

-720 
+ - + $10 - 9a + 6a2) 

X6 
- $(l+u)(l -3u+6a2) 

> 
cos(1 +a)x 

+ ( 1440 
- - $(5 + 3a2) + $(5 + 3u2)) COSUX 

28 

+ -~(5+2u)+~(l+3u+6u2)-~(1-u)2(l+3u+6a2) 
( > 

sin(1 - u)x 

+ -$(5 - 2~) - $(I - 3a + 6u2) + ;(l + a)‘(1 - 3u + 6u2) 
> 

sin( 1 f u)x 

( -28&z 
+ 

X5 
+ $(5 + 3a2) - y(5 + 3~~)) sinux 

+a(1 - c1)~(1+ 3a + 6u2)Ci((l - u)x) 

-a(1 + ~)~(l - 3a + 6a2)Ci((l + u)x) 

+4u4(5 + 3u2)Ci(ux) 
I 

(Ala) 
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and 

I 

I 
1.(x, u) E dx’ D(x’) sin ux 

3 =- - 
5 D 

$(5 + 2u) - $(I + 3u + 6u2) + ;(l + a + u2 - 9a3 + 6u4) 
> 

cos(l - u)~ 

+ 
( 

$(5 - 2u) + $(I - 34 + 6u2) - ;(l - a + u2 + 9u3 + 6a’)) cos(l + a)~ 

+ 
( 

288u 
- - $(5 + 3u2) + $5 + 3al)) cosux 

X5 

+ 
( 

720 
- - $(10+9u+6u2) - $(l -a)(1 +3u+6u2)) sin(1 -a)x 
X6 

( 

720 
- --$(lO-9u+6u2)+s(l+u)(l-3u+6u2))sin(l+u)x 

X6 

+ 
( 

1440 
--$(5+3u2)+$(5+3u2))sinux 

X6 

-u(l - ~)~(l+ 34 + 6a2)Si((l - u)x) 

-u(l + ~)~(l - 3u + 6u2)Si((l +a)~) 

+4u4(5 + 3u2)Si(ux) 
I 

. 

These functions have limiting values 
@lb) 

I=(O,u) = :(1-i-3u2(-1 +8u2)+u(l -u)3(1+3u+6a2)In(l -u) 

and 

- u(l+ ~)~(l - 3u + 6u2)ln(l + u) + 4u4(5 + 3u2)lnlul) 

(A24 

Ic(cqu) = 0 I.(O, u) = 0 I.(‘=,u) = -$a (1 + 15u4 - 2)u13(5 + 3~~)). (Mb) 
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Small Scale Anisotropies 

The angular average of equation (14) is given by the integrals 

(A3) 

which can be performed using 

1 l 107*2 
5 

J 
_ daI~(m,u)=--- 

1 10010 

1 l 
J 

&1,2(0,4) = 
4973920 - 3515x2 - 145116161n2 + 107197441n22 

j _ 
1 300300 (A4) 

1 r 
5 

I 
_ 

1 
daI,(O, u) = 2(43 ;y2) 

which combine to give 

4838356 - 305~~ - 14305696 ln2 + 10719744 ln22 
600600 (A5) 

Eq. 15 comes from 

Large Scale Anisotropies 

We may decompose the anisotropy pattern as follows 

Y(h) = fy k %,4Lo(fd qt,ln, = J d2fq&i) F(h) (-47) 
I=0 m=-1 

where the YCI,,, ‘s are spherical harmonics. Since the anisotropy pattern is circularly 
symmetric around the k direction, if we choose this as the North Pole then a(,,,,, = 0 
for m # 0. With this simplification the dipole and quadrupole moments of the anisotropy 
are given by 

d= g I~o,~~I Q = E l=(2,0~l (A81 

from which follow Eqs (16) and (A9) for Qrm, and d respectively. We know of no analytic 
form for P(x) which appears in Qrm,, or for R(x) which appears in d (see below). 
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Super-Horizon Perturbations 

Now consider the dipole and quadrupole perturbations in the case that ~77~ << 1. 
The dipole is given by 

d = -m&j sin rZ. x, C’(nrj,) + iR(nvO) + 3 
I 

vo 
dy D(Y) R(x - Y) 

I 
(A9) 

0 

where 
x co82 - sinx 

R(x) = x2 = -5x + ;x3 +0(x5). 

In the limit nap < 1 this becomes 

d = -gj& (~To)3 sing-x, +C((KTJ,)~) (All) 

while the super-horizon limit of Q is 

Q = $4; (ST.,)’ cm n’- x, + 0 ((~q,)‘) . (A=) 

Since in this limit Q >> d we can conclude that superhorizon perturbations in scalar field 
gradients do not “tilt” the universe. 

Appendix B: Comparison of Anisotropy and Density Production 

Here we use various published results to calculate the ratio the amplitude of MBR 
anisotropies to density perturbations, in particular the ratio 

,J&g 

IN P 
031) 

for various theories. Here @ is the Newtonian gravitational potential of the perturbations 
produced (remember c = 1) which gives the perturbation in density. R, gives the fraction 
of the critical density in the matter which makes the perturbation, hence +/a, gives 
the perturbation in overdensity, 6p/p. If - indicates a root mean square average then 
for adiabatic perturbations this ratio would be unity. For the scalar field configuration 
considered here the universe is CDM dominated and hence R, = 1. Using Eq. 14 and 15, 
a ratio of 4.8 on small angular scales. Now let us consider results from other papers. 

Turok and Spergel (1990) showed that for photon passing by a spherical collapsing 
texture in Minkowski space, the fractional energy shift (E fractional temperature shift) is 
give by 

AT r2 - b2 

T 
= gir2VEV2 

/- r2 + b2 
b<r 032) 

16 



where b is the impact parameter of the photon trajectory from the center of collapse, 7 
is the distance of the photon from the center of collapse at the time of collapse, and we 
have dropped the sign of the anisotropy. Gooding et al. (1991) have estimated the linear 
density profile generated around a collapsing texture in an expanding R = 1 universe. 
Translating this density profile into a gravitational potential, we find 

+ = -0.9;8*‘VEV2 
2 

where T is the comoving distance from the center of collapse and 71; is the comoving horizon 
at the time of collapse. The factor of 0.9 is a correction that was found for the expanding 
universe at small distances. Since there is no correction for expansion in Eq. (B2) we will 
ignore this 0.9 when taking the ratio. To determine the ratio of Eq. (Bl) we should divide 
(B2) by (B3). Here it is natural to identify the two T’S in the two equations. The ratio 
still depends on b and II;. For T < I]i the ratio varies from 0 for b = T to 5 for b = 0, with 
an angle weighted rms of 2.5. This is the number we will take as our benchmark. 

Cosmic strings is a theory of seeded perturbations which does not involve ultralight 
scalar fields. Bouchet el al. (1988) have estimated the mean square anisotropy produced 
by the strings during a logarithmic interval of expansion 

d AT2 

I I 
(6~1)~ -- 

dlna T =ln2- 034) 

Albrecht and Stebbins (1992) have estimated the power spectrum of the density fluctua- 
tions produced in during an interval of expansion in an R = 1 universe. One can translate 
this into an equation for the mean square potential fluctuation produced per unit interval 
of time. Taking the matter-era limit of this equation 

J - 1 
0 7](1+ 2(kX)2)(kZ. + k,2) dk 

1152r2 1 > 035) 
= 25 p2pEg 

t2 kc9 (1+ m&X) 

where x/q, x/l, p2E:, and li,~ parameterize the string network. If we take parameters for 
the “I model”, which is meant to approximate the simulations of Bennett and Bouchet 
simulations we find 

and the ratio (Bl) is 2.5, which is curiously exactly what we got for textures! 

Next consider an open universe with adiabatic perturbations on large scales. On 
angular scales (1 + .z1,)-+ < 0 << n,‘, the anisotropy is given by the usual Sachs-Wolfe 
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formula $@I~, except in this case the gravitational potential decays with time so that the 
value at last scattering, +I~, is not the value today, aO. Using the formulae of Peebles 
(1980) $511 we see 

6 o( 2s1+ 1 + 3R (In(1 - m) - ?j logo) 
1-R (1 -q+ 

am= 
cl (B7) 

and since the gravitational potential decays as @ o( S/a we find that the ratio (B.l) is 
given by 

2 (1 - no)+ 
S (20, + 1) Jm + 30o (ln(1 - &XJ - $lnn,) 

which varies from unity when R, is near unity to f for a,, < 1. For R, = 0.2 we find the 
value 0.6. 

We may also consider an expanding closed universe on angular scales (1 + zr,)-i << 
0 < 0;‘. In this case (Peebles (1960) §$ll) 

6oc 2R+l 30 tan-l JET 
R-l - (s-l - l)j 

acr:fi 
R 

so the ratio of (Bl) is 

2 (52, - 1): 

5 0, ((2% + 1) dT 3R, - tan-’ Jm) 

W) 

which varies from 1 to 5 as R, varies from 1 to 00. Note that R, > 1 is not currently 
popular because it gives a very small age for the universe. 
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