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Abstract 

An analytic approach is developed for solving the inhomogeneous diffusion 
equation with the diffusion intensity being a fast-growing function of the betatron 
energy. When applied to the survival data of particle tracking for LHC and SSC, 
the method shows that these data are inconsistent with (any) diffusion 
phenomenology. A similar inconsistency is observed in the data from CERN 
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1. INTR~DIJCTI~N 

Understanding the limits of the stability of particles at large betatron amplitudes presents 
one of the major accelerator physics challenges in the design of new supercolliders such as SSC 
and LHC [ 1,2]. The reliability of the tracking codes that are used for this purpose needs to be 
checked in experiments with the existing colliders. In this conjunction it is also important to 
understand the nature of the slow transport of particles below the dynamical aperture due to 
lattice nonlinearities and/or power supply ripples. The natural description of such transport is 
the diffusion process with amplitude-dependent diffusion coefficient, as used in the Fermilab 
[3] and CERN [4] diffusion experiments. 

In the present paper, we analyze the properties of this diffusion model as applied to three 
different studies: 

I) density profiles measurements in Fermilab experiment [3], 
II) beam intensity time dependence in CERN scraper retraction experiment [4], 

III) escape time spreads versus initial amplitude as produced in tracking for SSC [5] and 
LHC. 

The basis of the analysis is the strong inhomogeneity, i.e. fast growth with the amplitude, 
of the diffusion observed in I and III. 

2. ASYMPTOTIC ANALYSIS OF INHOMOGENEOUS DIFFUSION 

The diffusion model that was used for the data analysis of the Fermilab diffusion 
experiment and which we will use to model both the, tracking data and CERN scraper retraction 
data, has the following form. [3]: 

g=-$ D(I)% ( 1 (1) 

where I is the betatron action (energy) I = (x2/2) + (x12/2), D(I) is the action-dependent 
diffusion coefficient, and p is the density distribution function. We will develop now an 
asymptotic approach to solving the diffusion equation (1) when the diffusion is strongly 
inhomogeneous, i.e. grows very fast with increasing I : D’/D --f oa*. Apart from assuming 
that (D/D) is large, we will consider only the case when the logarithm of D’(1) does not change 
much over the range of I, corresponding to one decade of variation of D. This restriction, 
which can be explicitly written as ff’ <f (f)* (where f(1) = In D(I)), is quite mild and as we 
will see in a number of examples later, is usually satisfied quite well. Within the class of 
functions D(1) thus defined we can always use the “local exponential approximation” 

D(I,, + AI) - D(I,)exp 

which corresponds to the linear term of the Taylor expansion of the function In D(I), implying 
AI 5 (D / D’). In the reference example D = AF with n )> 1 that roved to provide a good 
model for the Fermilab diffusion data [3], one gets D n AI; exp 

i “I 
+!-M . 

The basic idea in the solution of the diffusion equation (1) ior the class of functions D(1) 
(2) is that for the fast growing functions D(1) and at each given moment of time, the particles 
with initial conditions above a certain value I&t) are all lost at the absorbing boundary Ian > Ie 
(t), while those below the value I, (t) are not affected by diffusion at all. The distribution 

* In the following, we reserve the prime for differentiation by action I. and the dot. for differentiation by time t 



function in the transition area should have then some universal properties due to the narrowness 
of that region. Thus, we will seek the general time-dependent solution in the form: 

where pO (I) is an (arbitrary) initial distribution p (I, o) = p,, (I) and g is a fixed function of 
one variable S = (I - I,(t))/h(t) qualitatively shown in Fig. 1. We expect ?. to be 
asymptotically small when D/D tend to infinity. 

Fig. 1 

Qualitative sketch of the function g in the solution (3). 

The distribution (3) therefore is a product of initial distribution pO and the “kink” function 
g, with moving center I&) and varying width h(t). 

To find the three unknown functions g(s), It(t). h(t) we plug the ansatz (3) in the equation 
(1). using the local approximation (2) with Io = Ie(t) and do not differentiate the slow-varying 
function g (I). The resulting equation is: 

-p’(S)[Sji(t)+ic(t)+D1(I.(t)) exp (k(I.(t))L(t)s)]= D($t(jt)) exp(k(I,(t))h(t)s)g”(s) (4) 

where we introduced the notation k(L,) = D’(Io)n>(Ia) 

Looking at equation (4) more closely, it is not difficult to realize that the only way of 
“untangling” the variables s and t and obtaining separate equations for the functions of different 



arguments is to assume that h(t) = l/k&(t)). Note that an arbitrary constant that can be put in 
the denominator can be shown to simply rescale g and thus disappears from the final result. 
Having this expression for L(t), one immediately realizes that the first term in the square 
brackets in equation (4) is much smaller than the second one. This follows from the inequality 
k’/kz << 1 that is equivalent to the condition of applicability of the “local exponential 
approximation” (2) ff’ (< (f)2. Dropping thus that term, we arrive at: 

g”(s) io(t) 
-- = 1+ D(I&)) c g’ 6) (5) 

The final untangling of variables s and t can be achieved now only through the choice of the 
function k(t) to satisfy the equation I.(t) = -D’ (I.(t)) An arbitrary constant that could be 
multiplying the right-hand side can be shown to disappear from the final result. The initial 
condition for that equation is I&o) = I& 

The function g is found then to be 

g(s) = 1 - exp[-e-‘1 (6) 

Thus, by determining the functions g, I, and h we completely defined the solution (3). 
Due to the smallness of h, the qualitative image of that solution is that of moving boundary 
L(t), with the distribution p0 vanishing above this value. 

3. MEAN ESCAPE TIME ANALYSIS 

One of the common ways of representing the tracking data for long-term stability of 
particles is through so-called “survival plots”, where escape times to a certain boundary for 
particles started at different amplitudes are shown. One example of “survival plots” for the 
tracking study of SSC [5] is shown in Fig. 2. We wtll address the issues of whether such 
distributions of escape times can appear in the diffusion model (1) and how to extract the 
diffusion intensity D(I) from the survival data. The idea of using the magnitudes of the spreads 
of escape times in the survival plots as a compatibility test with the diffusion model was 
originally introduced by J. Cary [7]. Our approach to the realization of this idea differs though 
from that of J. Gary [S]: we take advantage of approximately ‘locally exponential’ character of 
the escape time dependence on the action z (I) and employ the analytic method of Section 2 to 
calculate the escape time spreads. 

According to the more general theory of escape in diffusion processes with drifts [6], the 
probability G(1.t) of surviving, or not escaping to an absorbing boundary, within time t starting 
from the initial condition I for the diffusion process (1) satisfies the diffusion equation: 

with the initial condition G(I,O) = 1 and boundary condition G(I,b,t) = 0 at the absorbing wall. 
The mean escape time defined as T(I) = - (t@G / at)) = (G) (average is over t). can then be 
shown [6] to be the solution of the equation: 

+ D(I)% =-1 
( 1 

with the boundary condition T&b) = 0. 

(8) 
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Fig. 2 
100.000 turns survival plots for 2 TeV SSC injection lattice /5/. 

The second boundary condition at I = 0 in our case of positive-definite coordinate I is that 
of a reflective wall yielding [6] D(1) (dT/dI)II = 0 = 0. 

The escape time is found then to be 

T(I)=~;* “r& . 
1 

(9) 

The escape time data in the survival plots provide the dependence of the escape time on 
the action T(I), which defines thus the diffusion intensity D(1) = - (I/(dT/dI)). An important 
question then is to understand whether the observed spreads of escape times, which ate quite 
large (Fig. 2). are compatible with the diffusion model as deduced from the mean escape time. 



The natural measure of these spreads is the r.m.s. width of the escape time distribution 
While the first moment (t) is just T, the second moment T, = (t’) 

is known from the general theory [6] to satisfy the equation: 

(10) 

with the same boundary conditions as for T(I). The second moment thus is explicitly found to 
be 

Tz(I) = I F 1 & jirT(Id6 

where the reflecting wall was artificially placed at I = 6 rather than at I = 0. 

Let us uy now to extract the quantity Ta(1) from the survival plots of Fig. 2. The mean 
escape time T(1) on this plot decreases (with an increasing I) exponential-like, so that the 
dominant contributions to both internal and external integrals in (11) come from the lower limits 
of integration. It appears also that the function T(1) and the corresponding diffusion intensity 
D(I) = - (I/(dT/dI)) satisfy the “local exponential approximation” (2), since the slope of the 
curve f(1) = In T(1) doesn’t change much when f changes by about unity. From this 
approximation, one can explicitly find the quantity T2 (11) to be 

1 T*(S) T(I) T%) T,(I) =,-D’(I)* = --. - 
I T’(6) 

(12) 

where the condition of the distances I-Iab and It-6 being large relative to the characteristic scale 
T(I)/I*(I) was used. This formula indicates that the second moment T2 at the point I is very 
sensitive to the behaviour of diffusion intensity at small actions. In particular, the quantity Tz 
(I) diverges whenever the escape time Ta (It) behaves at small It + 0 as T(I1) - 1 /I: with any 
k > 1. 

The quantity Tz is thus inconvenient for comparison with the “survival plots” since large 
T2 in many cases can (and in fact does) account only for the long “tail” of the distribution of 
escapes times f(I,t) = - (dG(I,t)/&). The preferable quantity of choice then is the width of this 
distribution A defined as the half-max width. To find it, one can use the same asymptotic 
approach of Section 2 for the solution of the diffusion equation (7) for the function G(1.t). The 
estimates of the half-max width then can be obtained by requiring that the argument of the 
function g in the solution (3) change by unity, yielding 

VI) D(I) T’(I) 
‘(I)-D.2(I)=D.Z(I)= I(dT/dI(I))’ 

The dimensionless quantity &T = 1, (I)/I (where I is the characteristic scale of growth of 
the function T(I): h = T/r) for the curve T(1) in Fig. 2 can be easily seen then to be much 
smaller than unity. This clearly contradicts the wide spreads (over one decade at least) of the 
escape times observed in the survival plot in Fig 2. 

Thus, we arrive at the negative and conceptually important conclusion: the statistics of the 
escape times as observed in tracking simulation is not compatible with any diffusion process. 
Therefore more refined models are needed to describe the dynamical processes involved. 



4. SCRAPER MANIPULATION ANALYSIS 

The measurements of the transport of the particles in CERN SPS were performed [4] by 
kicking the beam to rather large amplitudes, moving the scraper in to the edge of the core of the 
beam, and retracting it in a short time by just a millimeter or two. The subsequent evolution of 
the beam intensity was observed over a period of time of about 10-20 minutes. 

The characteristic result of such measurement appears as shown in Fig.3. The basic 
features of this curve are: 

1) the presence of a flat section with zero loss 
2) rather sharp shoulder of transition to non zero loss 
3) quite linear behavior after the shoulder for the time at least just as long as the length of the 

flat section. 

9 Hz Ripple 

AQ = 1.1 x 10-r 

Time 

Fig. 3 
After the retraction of both scrapers in the horizontal aad vertical plane the particles 

need 6.7 minutes to reach the ftrst (vertical) scraper. Thereafter a constant loss in 
intensities sets in. 



The question then is whether these features can be accounted for in a diffusion model. 
The setup of the initial distribution in the scraper retraction experiment is shown in Fig 4. I, is 
the position of the scraper as it was moved in. and I, is where it was retracted to. 

P 

Fig. 4 

Initial distribution after the scraper retraction. 

We will consider the loss of particles at the wall I = I, in two extreme situations: fmt, 
when the diffusion intensity D(I) changes very little at the distances of the order It-Is around the 
point I = Is and second, when it changes by several decades, so that h = D&)/D’&) << I, -1,. 

In the first case, one can obtain an explicit solution of the diffusion equation with a 
constant diffusion coefficient if one assumes a simple initial distribution that equals unity for I < 
I, and zero for I > I, 

P(l.t~=$J;- s2 I2& 

-k 

(14) 



The total “intensity of the beam” to be compared with the experimental curve of Fig.3 can 
be calculated (apart from the irrelevant constant contribution) as 

L(t)=12 (p(I,t)-l)dI 
(15) 

and is explicitly found to be proportional to -6 

The intensity L(t) for the realistic initial distribution, which equals unity for I < Is and 
zero for I > Is, will naturally have a transient with characteristic time scale At - (I, -Is)2/D(Is) 
and then approach the asymptotic behavior AL - -6 as shown in Fig. 5. 

L 

t 

Fig. 5 
Qualitative dependence of beam intensity L (15) on time in diffusion model. 

Dashed line is l/t. 

This type of behavior obviously does not possess the most important feature, a sharp 
shoulder, of the experimental graph of Fig. 3. 

In the second case P. = D(I,)/D’(I,) >) I, we will assume again that the diffusion 
intensity D(I) satisfies the “local exponential approximation” (2) in the range II - IsI - Ir - Is. 
The motion of the centre of the “kink” g in the solution (3) then is L(t) = Is - lcln (tDoA*) 
(where De = D (Is)). Since the initial condition p. of Fig. 4 is not smooth as it was assumed 



in the derivation of Section 2, the beam intensity dependence on time will have some transient 
over time of the ord:r ta = X2/D, after which the loss rate r(t) will approach its asymptotic time 
dependence r(t) = I&t) - (l/t). 

Since the only time scale involved is trr, the presence of a “shoulder” as in the experiment 
graph of Fig. 4 is not possible, and qualitatively the beam intensity dependence on time will be 
similar to the one shown in Fig. 5. Thus, in the second case as well as in the first one, the loss 
of particles in the diffusion process is distinctly different from what is observed in the 
experimental graph of Fig. 3. 

5. DISCUSSIONS AND CONCLUSIONS 

The results of the Fermilab diffusion [3] experiment indicate that the diffusion intensity is 
a fast growing function of betatron energy that can be locally approximated by an exponential 
function. The same property is observed in the survival plots in particle tracking for LHC and 
ssc. 

We presented an analytic approach to describing the evolution of the distributions of 
particles in the presence of absorbing walls in the case of such fast-growing diffusion 
intensities. This evolution demonstrates a major degree of universality: the initial distribution 
remains unaffected for betatron energies I less than a certain time-dependent value It(t) while 
the density is completely depleted from the energies I larger than La(t). The transient region of 
energies around Ic is narrow and the distribution function there is also universal (does not 
depend on initial distribution except for the normalization). 

Asymptotic analysis of density evolution was applied to the “survival data” from particle 
tracking for SSC and LHC and it was demonstrated that the observed spreads of survival times 
are much larger than what they should be from the diffusion model. That proves that this 
survival data is not compatible with any diffusion model, and more refined statistical models of 
dynamics are required. One candidate for such a model can be the more general Markov process 
with jumps, where the evolution of the density distribution is defined by [6] 

$=-$(D(I)$)+]dI’[p(I’)W(I’,I)-p(I)W(I,I’)] 

The last term in the right-hand side describes the effect of jumps with the probability 
W(I,I’). The idea of including jumps in the statistical description seems appealing also because 
of the commonly observed “intermittency” of slow and fast motion in tracking [2]. It would be 
interesting to try to tit the statistics of trajectories in tracking into some jump and diffusion 
model (16). 

In Section 4, we discussed the character of particle loss in the scraper retraction diffusion 
experiment at CERN. Simple qualitative-type considerations also indicate the incompatibility of 
the observed decay of the beam intensity with that of diffusion models in the same setup. 

In view of the incompatibilities of the diffusion models with the CERN diffusion 
experiment data and tracking “survival” data one could naturally ask why the Fermilab diffusion 
experiment data /3/ was basically quite successfully fitted with diffusion models. The answer to 
that question can be conjectured to be the somewhat different quantities analyzed in these 
different approaches. Indeed, in the Fermilab experiment, the measured quantities were the 
substantial changes of the density distribution (corresponding to the intensity loss of 20 to 80 
per cent) as obtained by “flying wire” monitors. In the CERN diffusion experiment, the beam 
intensity changes very little, so the measured loss rates are defined by the small probability of 



escape to the retracted scraper. Similarly it is the escape process characteristics that are 
represented in the “survival plots” of tracking. It may very well be that the major changes in the 
density distributions are accounted for by the diffusive part of the random process, while the 
escape processes with sufficiently far removed boundaries are dominated by other properties 
like jumps in the model (16). 
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