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1 Introduction. The power of dimensional regularization (I] in applied Quantum 
Field Theory is nothing short of miraculous. Its notational and ideological economy makes 
it a perfect tool for a wide range of perturbative calculations’ as well as a convenient 
instrument for theoretical studies of factorization problems*. 

Practical calculations in perturbative QCD typically exploit the presence of a large 
kinematic variable Q and deal with (the leading terms of) the corresponding asymptotic 
expansion of the cross section. Results describing the leading terms of such expansions 
generalize the familiar Wilson short-distance operator product expansion and are known 
as factorization theorems (for a review see e.g. [6]). 

The starting point of the construction of such an asymptotic expansion is a formal Tay- 
lor expansion of the integrand with respect to the asymptotic parameter of the problem. 
Such an expansion typically generates infrared singularities, in addition to the ultraviolet 
divergences of the original diagrams. Even though there exist well-defined prescriptions 
for eliminating the infrared singularities in the (Wilson) coefficient functions of an expan- 
sion, the singularities are important at intermediate stages. 

The main advantage of dimensional regularization is that it simultaneously regulates 
both ultraviolet and infrared divergences while preserving Lorentz and gauge invariance. 
Situations where dimensional regularization works well comprise all expansion problems of 
a Euclidean type [4],[7] and many problems of an inherently non-Euclidean (Minkowskian) 
nature [5]. 

The aim of the present note is to show that there are singularities that arise in the 
asymptotic analysis of Minkowski space problems and that cannot be regulated by dimen- 
sional continuation. We will pinpoint the origin of the difficulties by means of an explicit 
one-loop example: a form factor graph. We will show that the nature of the problem 
is very general so that the same difficulty is bound to arise in many Minkowski space 
situations. 

A subsidiary aim is to popularize the concepts of a new and very general method of 
analyzing asymptotic behaviot of Feynman graphs--the method of the As-operation for 
products of singular functions [7]. The theory of the As-operation has been worked out 
in detail for the Euclidean problems [7], [8], w h ere it provides a simple and clean method 
for treating such problems as renormalization, the operator product expansion, and the 
large-mass expansion. While the principles of As-operation [7] are very general, there are 
several technical problems that one has to overcome before a fully satisfactory extension 
of the method to the most general non-Euclidean situations is achieved. The results we 
describe represent a first step in that direction. 

2 The example. Consider the one-loop diagram of Fig. 1. We will see that neither 
the possible presence of UV divergences nor the structure of the numerator of the cor- 

‘See, e.g., the record-setting 5-loop calculations in the vi=4 model (31; the multiloop calculations in 
QCD [4]; the industrial-scale QCD calculations of multijet hadronic scattering processes [5]. 

2See, e.g., the derivation of the general Euclidean asymptotic expansions of perturbative Green func- 
tions [7]-[a]. 



responding integrand are relevant; only the structure of the denominators is important. 
Therefore, it is irrelevant whether the corresponding particles are scalars, spinors or vec- 
tors. For concreteness, one can imagine that the horizontal fat line is a gluon in Feynman 
gauge while the side lines are quarks, and we will use these names for the lines. We 
consider the asymptotic behavior when Qs s -4s = -(pr - p2)2 gets large with all other 
invariants--p:, pz and the masses-held fixed. 

To focus on the analytical effect we wish to describe, we will choose the quarks to be 
massless, and the gluon to have mass m, s although the choice of masses does not affect 
the general principles of our method. The external quarks are on-shell: pi = pi = 0. 

We assume that the MS scheme [lo] IS used for UV renormalization; the dependence 
on the renormalization parameter p thus introduced is logarithmic and known explicitly 
(the renormalized diagram has the form of p-independent terms plus constant x logp). 
Anyhow, since we will eventually concentrate on studying the integrand prior to loop 
integration, the UV behavior is also inessential. 

There are two essential dimensional parameters in the problem: Q2 and m*. The third 
parameter is the renormalization scale p. The Sudakov asymptotic regime is Qs + co, 
with fixed ms and Jo. By dimensional analysis this is equivalent to ms, F* -+ 0 with fixed 
Q*. (For definiteness, we will consider the case of a space-like momentum transfer q’.) 
Since the dependence on p is known explicitly, it is sufficient to consider the expansion 
at ms -+ 0 with Qs and p fixed (cf. [12]). Th’ 1s is the most convenient way to proceed 
within the techniques of the As-operation [7]. 

The integrand for the graph is 
1 

I(kPl,P*,m) = k2 _ m2 + in 
1 1 

x (k--p,)2+irl x (k-p#+i7J’ 
Considering contributions to the integral from various regions of integration space is 
equivalent to considering various integrals of the form 

GM; PI, P *,ml= / dDk I(k m,m, mM(k), (2) 

where 4 is an arbitrary test function (i.e. a smooth function which is non-zero only in 
a finite subregion of the integration space). So, one arrives at the basic problem of 
expanding arbitrary integrals of the form (2) in m -P 0 with pl and p2 fixed and light- 
like. This is exactly the same as to say that one has to expand the integrand (1) in 
powers and logarithms of the small parameter m * in the sense of distributions. Since 
such expansions commute with multiplication by polynomials [7], one can forget about 
numerators of propagators as well as possible vertex factors. 

Construction of an expansion in the sense of distributions involves the following steps 
[T]: formal Taylor expansion of the product (1) in powers of m; classification of sin- 
gularities of such a formal expansion; construction of counterterms to be added to the 

3Note that a non-zero gluon mass may have a dynamical origin [9]. G au g e invariance, however impor- 
tant for studying combinatorial properties of entire perturbation series, is of no relevance to the analytical 
problem of asymptotic expansions of individual graphs. If one wishes, one can consider the graph to be 
one in an abelian gauge theory, where the gluon can consistently be given a mass. 
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formal expansion to transform it into a correct expansion in the sense of distributions. 
Construction of counterterms proceeds in an iterative fashion: from singularities of sim- 
pler nature-i.e., to which fewer singular factors contribute-to the more complicated 
ones; construction of counterterms for the latter involves simpler counterterms obtained 
at previous iterations. 

For practical reasons it is convenient, whenever possible, to employ a regularization 
throughout the entire procedure. Dimensional regularization is the prime candidate for 
that role. However, as we will see shortly, it fails to regulate a singular expression at an 
intermediate step of constructing the expansion in the sense of distributions for (1). 

3 Geometry of singularities of the formal expansion. We follow the general 
procedure that gives the As-operation. First we make a formal expansion of the integrand 
in powers of m. This gives a correct leading order expansion of the integral with a test 
function, provided that the test function is zero in a neighborhood of all singularities of 
the expanded integrand. That is 

G[~;PI,P~,~] = I 1 
dDk 4(k) k2 + itl x 

1 

@--p;y+iq x (k-p*y+iq 
+ o(l), if 4 is zero near singularities. (3) 

Here the remainder is a power of m smaller than the leading term. 

To get a complete expansion, valid for all test functions, one should examine a small 
neighborhood of the singularities of the first term on the right of Eq.(3). The principles 
of the As-operation prescribe that we should start with the highest dimension singular 
surface and then treat successively lower dimension surfaces. 

Since the integration contours may be deformed away from the light-cone singularity 
of any single propagator (except at its apex), such a singularity is integrable. Hence the 
only singularities that we need be concerned with are the apexes of the light cones and 
the intersections of the light-cone singularities of different propagators, 

Now, the first denominator in Eq.(3) generates a singularity localized on the light-cone 
kZ = 0. The second factor is singular on (k -PI)* = 0 which is nothing but the light-cone 
k* = 0 shifted so that its apex is at the point k = ~1. Since pl is a light-like vector, the 
two light cones intersect on the straight line 

A = {k = zip,, -cc < zt< +co}. (4) 

This intersection is non-trivial because the light cones are not transverse at the intersection 
points. Similarly, the singularities of the first and third factor overlap on the line 

B = {k = z2p2, --oo < i* < +ca}. (5) 

The singularities of the second and third factors intersect on a smooth manifold and 
are transverse there; this implies that in a small neighborhood of each intersection point 
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the integral factorizes, so that the singularity is integrable and such an intersection is 
harmless. The exception is the point k = 0 where the first denominator is also zero, and 
we consider this point separately. 

There are three points-namely, k = 0, k = pl, and k = ps-where the analytical 
nature of singularities is more complicated than at the generic points of the lines (4)-(5). 
In particular, the singularity 

S = {k = 0}, (‘5) 

is where the effect we are after takes place. 

The geometrical pattern of singularities can be visualized as in Fig. 2. 

4 Structure of singularities at k 0: p,. Consider singularities near a generic point 
on the line A, (4). Fix z # 0.1, and consider a small neighborhood 0 of the point rp,. The 
third factor of the integrand is smooth in 0 and, therefore, can be effectively relegated 
to the test function. So, within 0 it is sufficient to study the expansion of the product 
of only the first two factors that contribute non-trivially to the singularity in 0. It is 
convenient to choose light-cone coordinates, k = (k+, k-, kL), so that pl = (p,+,O,O1), 
pz = (O,pz-,Ol). Our conventions will be such that k2 = k+k- -k:, 2k.p, = p,+k-, and 
dDk = ‘dk+dk-dD-=kL. 2 

Then the formal expansion of the first two factors takes the form: 

1 1 
zpt+k- - kf - ms + in ’ (z - l)pr+k- - k: + ir) 

1 1 zz 
zpl+k- - kf + iq ’ (z - l)pr+k- - ki + in ’ O(l). (7) 

One can see that the singularities of the product on the r.h.s. are localized at the origin 
of the space of the variables k- and kl. This means that (7) hol.ds in the sense of 
distributions on test functions that are zero near k- = kL = 0. The sit,uation here is very 
similar to what one has in the case of a single Euclidean propagator treated in section 
7 of [7]-see especially eqs. (7.25) and (7.26). The only important difference is that the 
singular functions on the r.h.s. are not homogeneous. This is remedied by the change of 
variable k- = ft* after which the expressions on the r.h.s. of (7) become homogeneous 
with respect to simultaneous scaling in t and k A, and simple power counting shows that 
the singularity is logarithmic (at D = 4). 

This allows one to repeat the reasoning of section 7 of [7] to write down the following 
analogue of eq. (7.25) of [7]: 

The 1.h.s. of eq.(7) = 
zPl+k- 1 k: + iq ’ (z - l)pl+i- - k: + iv 

+ ca(m2,-)~E(k-)6(D-2)(kL) + O(I), (8) 
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with 

ca(d,z) = p,+ dk-dD-2kI J 1 1 

zpl+k- - k: - mz + iv ’ (z - l)p,+k- - k: + iq 

1 1 - 
zpl+k- - kf + irj ’ (z - l)pI+k- - k: + iv 1 

= p,+ 
J 

dk-dD-2kl 
1 

zp,+km. - k; - m2 + iv x (z - l)p,+k- - k: + iv’ (‘) 

In the second form of this integral we have used the fact that the integral of a homogeneous 
function4 is zero within dimensional regularization. 

At this point dimensional regularization works. Recall [7] that the role of the coun- 
terterm CA is two-fold: first, it cancels the divergence of the first singular expression (after 
integration with test functions); second, it ensures that the expansion is asymptotic (o(l)) 
on any test function. The expansion (8)-(g) h o Id s in the sense of distributions on any test 
function (in the variables k-, kl). The simplification gained is that, whereas the 1.h.s. of 
(8) has a complicated dependence on n, the first two terms on the right have a simple 
power dependence, which becomes logarithmic at D = 4. This we will verify from the 
explicit calculation of CA in the next section. 

5 Explicit expressions for counterterms. It is not difficult to perform the inte- 
grations in (9) explicitly’ to obtain 

ca(r2,z) = 2i8(0 <t < l)r(c)xZ-’ [(l- r)m2]-e, (10) 

where E = (4 - D) 12. 

There are a few points worth making here. First, the counterterm is zero for .z > 1 and 
z < 0. This agrees with the fact that according to the Landau equationss the singularities 
at those values of z are not pinched. In the language of distribution theory, this says that 
for z < 0 and I > 1 the product in the first term of the r.h.s. (8) is (i) well-defined in the 

4Recall that the reasoning that leads to this expression is, strictly speaking, done in the “straightened” 
coordinates (t, kl) with homogeneous functions. 

SFtecail that the definition of dimensional regularization [l] prescribes that we should perform the 
integrations over the transverse components first. In the present case, however. the same result is re- 
produced in a slightly easier way if one first performs integration over k-. At this point one should be 
aware of the fact that the underlying definition of the integral is in terms of the homogeneous coordi- 
nates, and the cutoffs that are present at intermediate stages (cf. [7]) are symmetric with respect to the 
homogeneous coordinates and become asymmetric in the coordinates k-, kl. Such subtleties stress the 
need for a meaningful rigorous definition of dimensional regularization in momentum/coordinate space 
representations. Some of the issues involved will be discussed in a forthcoming publication [15]. 

6See e.g. [ll]. Note that the Landau equations are usually associated with studying analyticity prop 
erties of Feynman diagrams. Finding cuts etc., however, is equivalent to determining when an expansion 
near the corresponding value of external momenta and masea contains non-trivial (i.e. non-analytic) 
contributions. In the context of the expansion problem proper this issue was reconsidered by Libby and 
Sterman [12]. A reinterpretation of the Landau equations from the point of view of asymptotic expansions 
of distributions is presented in [13]. 



7 

sense of distributions and (ii) does not require additional counterterms to approximate 
the 1.h.s. in the sense of distributions to o(l). (In general, (ii) does not necessarily follow 
from (i).) 

Second, the counterterm (10) is the only term in (8) that contains a non-analytic de- 
pendence on m (cf. the discussion of the role of such counterterms in [7]). After expansion 
in E the dependence becomes logarithmic.’ 

Third, the expression (10) and all its derivatives in z have well-defined limits as 
.Z -t $0. This conclusion does not change if the second (quark) propagator in (1) and, 
correspondingly, in the first term of (7) contains a non-zero mass, say, ml, because then 
the last factor in (10) will simply be replaced by [ srnf + (1 - t)m’]-‘. Note, however, that 
the presence of mass in the first factor (the bottom line or gluon in Fig. 1) is important. 

Finally, it is not difficult to rewrite the above expansion in an explicitly covariant 
form: 

1 1 

k*-mZ+iqx (k-p,)2+itl 
1 1 

= k2+iq ’ (k-pl)2+it) 
+ /oldzdD)(k - zpl)c~(m~,t) + o(l). (11) 

We have explicitly taken into account that CA vanishes outside the interval 0 < z < 1. 
Note that the J-function on the r.h.s. is D-dimensional. This expression represents the 
leading power term in a correct asymptotic expansion in the sense of distributions on test 
functions that are zero in small neighborhoods of k = 0 and k = pl. Note that a similar 
expansion is obtained for the expansion of the product of the first and third factors of (1) 
(with pr replaced by ~2). 

6 Taking into account the third factor. Let us now consider the entire expression 
(1). In order to transform its formal expansion, the integrand of (3), into a well-defined 
expansion in the sense of distributions, the general recipe of the Extension Principle of 
[7] tells to add counterterms localized at singular points of the formal expansion in (3) 
with properly chosen coefficients. Let us show that the expansion that is valid on the test 
functions that vanish in neighborhoods of the points k = 0, k = p1 and k = pz is given 
by the following formula: 

1 1 1 

k* - m2 + iq ’ (k - PI)* + iq ’ (k - p2)z + iv 
1 1 1 

= k2+iq ’ (k-p,)2+iTx (k-p,)*+iq 
1 J 

1 
+ (k-p$+ir/ x o 

dz bcD)(k - tp,) ca(mz, z) 

’ (k-~:)~+iq ’ o1 J dzbcD)(k - tp2)cg(mZ, z) + o(l). (12) 

‘It is possible to avoid the use of dimensional regularization in expressions like (8)-(9)-cf. [14] where 
the results of [7] are presented in a regularization-independent form. 
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Indeed, any test function p(k) that vanishes in small neighborhoods of the points k = 0, 
k = pi and k = pz, can be represented as a sum qr + (~2 where +q is zero around the 
line k o( ps and ‘ps is zero around the line k cx pi. On ‘pr, the second counterterm 
vanishes and we are left with the product of the expansion (11) times the third factor. 
Since the product of the third factor and 1pi is a valid test function +r, one arrives at a 
correct expansion to o( 1). A similar reasoning is applied to ~2 (note that the function cg 
coincides with CA in our example). 

It follows that the expansion (12) is actually correct for all test functions that vanish 
in small neighborhoods of the points k = 0, k = pr and k = ps. To make the expansion 
valid on all test functions, one has to add appropriate counterterms localized at the points 
k = 0, k = pi, and k = pz. Such counterterms are, in general, linear combinations of 
&functions and their derivatives localized at those points with coefficients depending on 
the expansion parameter in a non-analytic (logarithmic) manner (71. 

To construct the additional counterterms, one must (i) perform an appropriate power 
counting in order to determine the strength of the singularity; (ii) introduce an interme- 
diate regularization to make the singularity manageable (in Euclidean problems [7] di- 
mensional regularization automatically regulates all singularities) or perform an explicit 
subtraction (as in [14]); (iii) d e ermine an explicit form of the counterterms that need to t 
be added in order to ensure the approximation property of the resulting expansion. 

It will be at step (ii) that dimensional regularization fails in our example. 

7 Singularity at k = 0. Let us focus on the point k = 0. One has to study the 
singularity of the entire r.h.s. of (12) at k + 0. The r.h.s. of (12) contains contributions 
that are analytic in m, and those that are not. It is sufficient to consider the latter 
since they cannot be affected by how the analytic contributions are treated, and it is the 
non-analytic terms that will exhibit the failure of dimensional regularization. 

The terms with non-analytic dependence in m are known explicitly in our case: 

1 
(k - p*)l + i’l x / 0 

‘dd’)(k - zp~)ca(mZ,r) + (1 +, 2) 1 
dD)(k - zp,) ca(m’, z) + (1 ++ 2) 1 (13) 

One can immediately see that: 

(a) One has to deal with the product of a one-dimensional distribution l/(z - iv), 
which itself is well-defined if integrated with smooth test functions, times 6’(z). The 
resulting expression is singular and ill-defined at t = 0. The distribution l/(z - in) 
is generated from the propagator l/[(k - ~2)’ + in] when we set k = zp,. 

(b) Dimensional regularization does not regulate this singularity because the form of 
the product is independent of e and there remain no “unused” extra dimensions. 
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(c) There are no cancellations at k = 0 between contributions from the two counterterms 
corresponding to the two singular lines. 

It remains to note that the effect of breakdown of dimensional regularization in the 
above example persists (even if the formulas become more cumbersome) if one introduces 
masses of order m-say, ml and mz-into the two quark propagators, or allows the 
external quarks to be off-shell by O(rr?). 0 ne can also see that the same configuration 
of singularities emerges e.g. in the studies of the large-s limit (see Fig. 3). All this points 
to universality of the phenomenon of the breakdown of dimensional regularization in 
expansion problems in non-Euclidean asymptotic regimes. 

8 Conclusions. We have considered a rather typical non-Euclidean expansion prob- 
lem (a one-loop form factor graph in the Sudakov asymptotic regime) within the frame- 
work of the theory of As-operation, and we saw some significant differences from Euclidean 
problems. In particular, we have discovered a class of singularities which are not regulated 
by dimensional regularization. 

The origin of the dimensionally-nonregularizable singularities in non-Euclidean asymp- 
totic expansion problems is completely general: 

First, the non-trivial (“pinched”) singularities of the expanded integrands in the case 
of non-Euclidean asymptotic regimes may be localized on manifolds with boundaries 
(which is never the case for Euclidean regimes, where singularities are always localized on 
linear subspaces of the space of integration momenta). 

Second, construction of a complete expansion requires introduction of counterterms 
that contain the non-analytic dependence on the expansion parameter and are localized 
on such manifolds; such counterterms may have coefficients that, together with their 
derivatives, possess finite non-zero limiting values at the boundaries of such manifolds 
when the boundaries are approached from within the manifold (z ---* +0 in our case) 
while being identically zero outside the boundary. In other words, if the boundary is 
described by the equation z = 0 in local coordinates with z > 0 corresponding to the 
pinched submanifold, then the coefficients near the boundary have the form 0(z) x (a 
smooth function of z)-even for D # 4. 

Third, light-cone singularities of the factors that do not contribute to such countert- 
erms may pass over the boundaries of the corresponding manifolds; when projected onto 
such manifolds (which is exactly what happens when one introduces the counterterms 
into the entire product-cf. (13)), they take the form l/(z Z+Z in). 

Fourth, such manifolds may be geometrically positioned so that the extra dimensions 
that are instrumental in the mechanism of dimensional regularization are “used up” in 
the counterterms and do not provide any suppression for the resulting singular product 
of the type O(Z) x l/(r *iv). 

It should be emphasized that the problem here is not an ambiguity as in the case 
of ys, but a failure of dimensional regularization to regulate a particular class of infra- 
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red singularities. Moreover, since expansions in the sense of distributions in powers and 
logarithms of the expansion parameter are unique, one has to conclude that it is impossible 
to get rid of the problem by choosing a different “factorization scheme”. 

The problem is certainly associated with our insistence on strict power-and-logarithm 
expansions: The l/z singularity gives a problem because we have expanded everything 
else in the integrand in powers of a small variable. However, the requirement that the ex- 
pansions to be constructed run in powers and logarithms of the expansion parameter (the 
requirement of “perfect factorization” [7]) cannot be relaxed for both phenomenological 
and technical reasons. In particular, such expansions possess the property of uniqueness 
which greatly facilitates iterative construction of the expansions, relieving one of having 
to worry about unitarity and gauge invariance of the final results etc. [7]. This is partic- 
ularly true in non-Euclidean problems, since it is only at the leading twist level that we 
get simple factorization the0rems.s 

On the other hand, the existence and nature of the anomalies one may have to deaf 
with as a result of the effect we have described is not obvious. One thing is clear, how- 
ever: whether one opts for other regularizations (e.g. analytic regularization which would 
replace l/(z f iv) in the above expressions by (z rt in)-‘), or chooses to combine di- 
mensional regularization with a formalism involving direct subtractions as in [14]--or 
to forgo dimensional regularization altogether in favor of the latter-the consequences 
may be rather unpleasant both for practical calculations and for the general theory of 
higher-twist factorization. 

Acknowledgments. One of the authors (F.T.) is grateful for hospitality to the Physics 
Department of Penn State University and to the Theory Division of Fermilab where parts 
of this work were done, and to A. V. Radyushkin for an illuminating discussion. This 
work was supported in part by the U.S. Department of Energy under grant DE-FG02- 
90ER-40577, and by the Texas National Laboratory Research Commission. as part of the 
CTEQ collaboration. 

*In the method one of us has given [16] for treating the Sudakov form factor at the complete leading 
twist level, non-dimensionally-regularizable singularities are avoided either by the use of axial gauge or 
by the use of an equivalent trick in Feynman gauge. One consequence of the resulting lack of “perfect 
factorization” is an annoying proliferation of remainder terms in Ward identities. These are especially 
tricky to handle in a non-abelian theory. 
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Figure captions. 

Fig. 1. The triangle graph corresponding to our example (1). The bottom line corresponds 
to a gluon with non-zero mass m, and the side lines to massless quarks. 

Fig. 2. The geometrical pattern of singularities due to the three denominators of the formal 
expansion, (3). 

Fig. 3. A configuration of propagators (and singularities) essentially similar to that in Fig. 1 
emerges in the large-s small-t problem. 
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