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Abstract 

We present a selfconsistent method for treating nonperturbative effects in inclusive 
nonleptonic and semileptonic decays of heavy flavour hadrons. These effects give 
rise to powerlike corrections cc l/m;, n 1 2 with mq denoting the heavy quark 
mass. The leading correction to the semileptonic branching ratio occurs for n=2. 
It is expressed in terms of the vector-pseudoscalar mass splitting: SB&l/B& N 
Z3Rnl . 6 ((Mj? - M$)/mi) . (I$ - c’_)/2Ne and yields a reduction of B&l. This 
nonperturbative correction contributes to the nonleptonic width with a sign opposite 
to that of the perturbative terms that are non-leading in l/N,. In beauty decays the 
former reduces the latter by 20 % whereas in charm decays they more or less cancel. 
This leads to a reduction of BRal by no more than 10 % in beauty decays and by a 
factor of roughly two in charm decays. We confront these results with those obtained 
from phenomenological models of heavy flavour decays and find that such models are 
unable to mimic these leading corrections by a specific choice of quark masses or by 
invoking Fermi motion. 
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Strong interactions affect weak decays of hadrons in two ways: 
(i) They modify the quark level weak Lagrangian. 
(ii) They introduce bound state dynamics in the initial state and drive hadroniza- 

tion in the final state. 
It is in particular effect (ii) that we are at present unable to treat in a satisfac- 

tory way. Yet it has always been expected that the in&sire weak decays of hadrons 
containing a sufficiently heavy quark Q can be dealt with quantitatively [l]. The in- 
clusive decay widths for heavy flavour hadrons HQ is usually computed by considering 
the decay of a ‘quasifree’ quark Q in complete analogy to the decays of muons and r 
leptons. Such a treatment is refined by computing the ‘ultraviolet’ renormalization of 
the effective ]AQ] = 1 Lagrangian; this will incorporate the main effects listed under 
point (i) above. ( One can also include next-toleading corrections due to perturbative 
gluon bremsstrahlung.) This decay mechanism is usually referred to as the ‘spectator 
ansatz’. Among other things it predicts uniform lifetimes and semileptonic branching 
ratios for hadrons of a given flavour Q. This procedure appears to work reasonably 
well in beauty decays. In charm decays on the other hand the agreement of such 
expectations with the data is much poorer as lifetime ratios of two to three emerge. 
This shows the presence of large ‘preasymptotic’ corrections; yet it is fair to point 
out that even this represents a vast improvement over the situation in strange decays. 
Furthermore some “non-spectator” effects have been identified and were found to be 
indeed of order unity in charm decays and thus in qualitative agreement with the 
pattern in the data; the analogous corrections produce only percent level effects in 
inclusive beauty decays [2, 4, 51. 

There are however serious shortcomings to this simple approach: 
s Bound state effects as well as hadronization - listed above under (ii) - are not 

included in such a simple treatment. This severely limits the accuracy level one can 
hope for. 

s Various phenomenological decay models have been employed to include these 
long distance forces. Yet they invariably introduce new a priori free input param- 
eters that have to be fitted from the data. This limits the predictive power of the 
theoretical treatment considerably. Furthermore it is quite unclear how various sys- 
tematic uncertainties inherent in these models can be estimated in a reliable way. 

The goal of this letter is to outline in some detail a general procedure that 
(a) enables us to calculate inclusive nonleptonic as well as semileptonic decay rates 

in terms of the fundamental parameters like the KM parameters; 
(b) allows for a systematic evaluation of the theoretical uncertainties that can be 

refined successively; 
(c) is intrinsically connected to &CD without having to call upon a phenomena 

logical “dew ez machina”. 
The numbers we are going to present in this paper are intended to illustrate the 

method and show the trend of the effects. They should not be taken as the final 
numerical results. We will discuss how a consistent application of our approach can 
lead to more precise numbers in the future. 

The remainder of the paper will be organized as follows: in Sect.1 we introduce the 
heavy msss expansion we are going to employ in our analysis; in Sect.2 we discuss 



semileptonic branching ratios before presenting our conclusions and an outlook in 
sect.3. 

1 Heavy Mass Expansion 

In our analysis we will follow the general method outlined by Shifman and Voloshin 
in ref.(4]. It was suggested there to obtain the inclusive decay widths of heavy flavour 
hadrons HQ from the absorptive parts of the forward amplitude Q + Q for the heavy 
quark Q to second order in the weak Lagrangian; the simplest such diagram is shown 
in Fig.1. Integrating out the fields in the intermediate state one can expand this 
absorptive part into a series of inverse powers of the heavy quark mass mg. 

The leading contribution is obtained from the absorptive part of the two-loop 
diagram in Fig.1: it is given by an effective operator of the form 

i!, = &. N,. II(M12~ m:, QQ 

NC denotes the number of colours and KM the appropriate KM factors; the masses 
of ql, 92 and ~7s have been ignored here for simplicity. The standard quasifree decay 
width alluded to above is obtained when one evaluates the matriz element of this 
operator between nonrelativistic (with respect to Q) hadronic states that contain the 
heavy quark Q [4, 51; this is explained in somewhat more detail later on. 

When the intermediate (anti)quark lines are cut and treated as ezternal quark 
fields - see Fig.2 a,b - one obtains contributions that are non-leading in l/mq. This 
procedure generates SU(2) and SU(3) non-singlet operators that create lifetime dif- 
ferences between the different kinds of mesons HQ with a given heavy flavour Q, 
namely &u, @I and 0s. The diagram in Fig.2a [2b] is usually referred to as ‘Weak 
Annihilation’ or ‘W Exchange’ [‘Pauli Interference’]; similar diagrams also describe 
‘Weak Scattering’ in baryons. Attention in the literature has so far focused on these 
kinds of preasymptotic effects [6, 7, 4, 5, 8). 

At tree level one obviously obtains four-fermion operators of dimension siz in this 

way 

&VA, PI 0: 2 . I~~# m; (&rQ) (Cq) 

where q is one of the light quark fields and F denotes a combination of r-matrices. 
These operators thus yield a contribution of order l/m; relative to the spectator result 
stated in eq.(l). In ref.[2] this classification was justified for inclusive transitions also 
in the presence of gluon emission and it was shown that the latter merely renormrdizes 
- in a calculable way - the coefficients of these operators. 

The l/mq expansion enables us to incorporate successively all possible nonpertur- 
bative corrections to the decay widths. There are also preasymptotic contributions 
that affect uniformly all hadrons HQ of a given heavy flavour Q, at least within an 
isomultiplet; they lead actually to larger corrections than those stated in eq.(2) as 
will be shown now. These contributions come from the quasifree two-loop amplitude 
of Fig.1 albeit with the interaction of quarks with soft gluons included. Those effects 
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are most conveniently dealt with by calculating the Q + Q amplitude in the back- 
ground gluon field: the inclusive width is then obtained as an expansion in terms of 
local operators that contain QQ and the gluon field. As the first byproduct one sees 
that there cannot be terms linear in l/m*. For only operators of dimension four that 
contain QQ could induce them. Yet such an operator is either a total derivative and 
thus has to vanish; or it can be reduced - via the equations of motion - to the original 
quasifree operator QQ thus merely redefining the overall coefficient entering eq.(l). 

The first nonleading operator in this expansion carries dimension five and is the 
chromomagnetic dipole operator for the heavy quark Q: 

DC = Q ioIIvfi,,v Q (3) 

where I?,,” = gG&X”/2. It is interesting to note that the same operator was used 
in ref.[9] to determine the leading corrections to the factorizable amplitude for the 
ezclusive decay B + Dn. 

As already stated there are dimension sir four-fermion operators that appear ex- 
plicitly by cutting one of the light quark propagators. We would like to add here that 
dimension six operators that do not contain light quark fields as ester& legs (and 
hence cannot cause a splitting among the decay widths of hadrons within the same 
isomultiplet) are in general of little practical relevance. For such operators can arise 
only by embedding the light quark lines into a vacuum condensate. Yet for purely 
left-handed weak vertices such effects are proportional to the current quark masses; 
thus they will be small and in general insignificant (unless one studies the question 
of SU(3) breaking). 

Operators containing additional gluon fields appear on the dimension seven level 
and thus can give corrections of order l/m6 only. Calculating them is in principle 
straightforward, yet probably of little practical value since their matrix elements are 
mostly unknown. Furthermore there are quite a few of them and for this reason it 
is unlikely that they can be directly related to observable quantities. These contri- 
butions could therefore well represent the intrinsic limit on the numerical accuracy 
of our approach. Yet since they are of order l/m; they are expected to induce only 
rather small corrections. A presumably conservative estimate of the accuracy of the 
expansion described here could be obtained by considering only the factorizable con- 
tributions which are expected to be dominant. It should be possible to estimate their 
impact since there are fewer operators that contain them and these contributions have 
a simpler structure. 

Once the operator product expansion has been obtained up to a certain order one 
has to address the delicate question of how to evaluate the math elements of the 
various local operators. For even the quasifree operator QQ receives nonperturbative 
contributions. This is most clearly seen by again employing a heavy quark expan- 
sion. The situation here is actually simpler than the one encountered in a general 
application of Effective Heavy Quark Theory [IO] (hereafter referred to as EHQT): 
for we are here interested only in ‘zero recoil’ amplitudes. We can then simply use a 
nonrelativistic expansion 

QQ = %&x& - l/4& Q iaGQ - I/2& & (0’ - (v,D,)‘) Q + 0(1/m;) (4) 
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As before, linear terms in l/m* vanish due to the equation of motion. 
Concerning the matrix elements three observations can be made: 

(i) The first operator on the right hand side of eq.(4) is the generator of the conserved 
charge that is associated with the heavy flavour Q. Its matrix element taken between 
heavy flavour hadrons H,J therefore yields ezactly unity. 

(ii) The matrix elements of the second operator between meson states can be directly 
expressed in terms of the mass splitting between the vector and the pseudoscalar &q 
boundstates; it is thus extracted from the data. The matrix element between the 
heavy flavour baryon 11~ on the other hand vanishes. 

(iii) The third term represents the kinetic energy of the heavy quark in the presence 
of the gluon background field. Its matrix element is quite possibly different when 
taken between baryon rather than meson states. So far we have not found a reliable 
way for extracting the size of these matrix elements from a direct phenomenological 
analysis. This operator enters the subleading l/ma corrections to the masses of 
hadrons HQ: 

Mw, = mQ + p. + pi/q + . . . 

Therefore one piece of information can be gained here by considering the masses of 
charm and beauty hadrons and actually that combination from which the chromo- 
magnetic contribution drops out: 

(~MD + MO. - 4M,,,) - (~MB + MB. - 4M,,,) N 

N 2(1/Mn - ~/MB). ((baryonIQ$Qlbaryon) - (meson~Q~*Q~meson)) . (5) 

(The vanishing of the anomalous dimension for the kinetic energy has been taken 
into account here). Once a precise value for the Ab mass has been obtained, we can 
then extract one combination of matrix elements for the ad*Q operator; the typical 
scale here however is probably only about 50 MeV . We believe that an analysis based 
on &CD sum rules could be developed to estimate this term both in mesons and in 
baryons or at least a complementary combination of matrix elements. 

Fortunately many interesting quantities do not depend on this operator. For 
it appears only in the nonrelativistic expansion of the operator QQ and as such 
contributes with the same weight to all decays of a given hadron HQ; accordingly it 
will not affect the semileptonic branching ratio which will be discussed next. 

2 Semileptonic Branching Ratio 

As a topical application of this general approach let us consider the semileptonic 
branching fraction for beauty hadrons. As explained before the l/m; nonperturbative 
corrections to this quantity are given by the matrix element of the chromomagnetic 
operator. A rather straightforward calculation yields for nonleptonic transitions in 
the external gluon field (hereafter we omit the obvious KM factors) 

fn, = G$mi iijg+CIA oz,.@b - -$biaGb) - Azr2.&bioGb)} (‘3) 
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where Ao, AZ denote colour factors 

Ao = c: + ci -f- $1’2 + o(a,(mt)) , A2 = &c, + o(~,(~;)) (7) c c 

Cl = (c+ + c-)/2 ( c2 = (c+ - c-)/2 (8) 

and zs(m~/m~), zz(mf/mt) represent phase space factors that reflect the sizeable 
mass of the c quark: 

z~(~)=1-8~+8r3-~+4-12~210g~, z*(z) = (1 -z)” . (9) 

Obviously .zs(O) = z*(O) = 1 holds. 
As stated before these calculations are most conveniently performed by using the 

explicit expressions for the intermediate quark propagators in the presence of a gluon 
background field. Employing specifically the Fock-Schwinger (fixed point) gauge for 
the gluon field (see ref.[ll] for details) fucther facilitates such computations. The 
operator that emerges there is actually p,G,,yuys; this expression is reduced to the 
chromomagnetic operator by applying the equations of motion to the b field (or by 
confining oneself to nonrelativistic beauty fields). 

The two terms in eq.(6) with coefficients A,, and Al show that there are two 
distinct sources for the dimension five operator DC: 

(a) The first emerges from the quasifree diagram of Fig.1 upon rewriting ?I (;iQ)” b 
in terms of covariant derivatives b(iq)5 b th a are simplified due to equation of mo- t 
tion; the DC operator is then induced by Dirac commutators and thus reflects the 
conservation of colour. 

(b) The second term represents the chromomagnetic interaction of the various quarks 
in the internal lines in Fig.1 with the external gluon field. It can actually be proven 
in general that only the antiquark, but not the quarks can contribute here when both 
weak vertices are purely left-handed. 

For semileptonic transitions on the other hand one obtains 

zo.(6b- hiaGb) 
4 

(10) 

i.e. there is no overall colour factor NC, c+ = c- = 1 applies here and the second 
term on the right hand side of eq.(6) is absent. 

It is thus the operator biaG b that can generate a shift in the predicted semilep- 
tonic branching ratio. Its matrix element between the A* baryon vanishes. For B 
mesons on the other hand it does not vanish; it can actually be expressed in terms of 
the mass splitting between B and B’ mesons according to the following relations: 

(Bl6iaGbIB) = -3(B*Ii;ioGblB’) (11) 

(M& - Mi)(BlbbJB) = -1/2((B*I&iaGblB*) - (BlbiaGblB)) (12) 

(it should be noted that eq.(12) does not depend on the normalization of the operators 
and states.) The modification of the nonleptonic width is then given by the following 
factor: 
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TN1-6M&-M; AZ zz 
4 

.-.- 
Ao .a (13) 

Since the colour factor cs and thus also A2 are negative this nonperturbative correction 
actually enhances l?“r and thus decreases the semileptonic branching fraction. The 
scale for the reduction of B&l(B) is set by the factor 6(M& - Mi)/mi ci 15%; 
that would translate to a reduction in B&l(B) by about 1.5 percentage points, i.e. 
from, say, 12-130/o (see e.g. ref.[l2]) to 10.5-11.5% -if the remaining factor A~z~/Aoz,, 
equaled unity. 

The ‘kinematic’ ratio .zs/.ze must actually exceed unity as seen from the following 
semi-quantitative argument: consider the limiting case when the mass of the charm 
quark approaches that of the beauty quark; the mass scale that in this case enters 
into the denominator of the chromomagnetic term will be the energy release mb - m, 
rather than mg. Numerically we obtain from eq.(S): zs/zs N 1.5. The ratio of colour 
factors AJAo on the other hand will reduce the size of the effect. For the antiquark 
can interact with the external gluon field in the linear approximation only if the colour 
flow through the two weak vertices is different. This leads to a reduction factor l/NC 
and also makes the effect proportional to the coefficient cs. Its size is small in beauty 
decays and one obtains on the leading log level A2/Ao N -(0.15 - 0.2). Combining 
all these factors we obtain 

GBR,,/BR,, N BR,l . (I- T) N 3 - 4% 

It is quite conceivable however that the subleading perturbative corrections - namely 
those due to the emission of hard gluons with ]c] - rnb - will increase this ratio fur- 
ther and thus soften colour suppression. For the presence of such gluons immediately 
invalidates both reasons for the suppression of the ‘leading’ correction: it enables all 
fields in the loops to contribute to the operator Do and it can change the unfavorable 
colour flow. Such effects are only of order CI, and cannot bring any log enhancement. 
Therefore it is unlikely that they can completely eliminate the suppression; neverthe- 
less it is conceivable that the next-to-leading perturbative correction to the coefficient 
function may essentially change the numerical result. 

Two general remarks are in order here: 
(i) It would not invalidate a perturbative treatment of the problem at hand if these 

higher order corrections indeed turned out to be larger than the lowest order one: for 
the suppression of the lowest order result is due to the specific structure of the weak 
interactions, namely their purely chiral nature, and has nothing to do with the strong 
forces. 

(ii) Since the mass difference mb - m, is still large compared to typical hadronic 
scales one can calculate the coefficient of the chromomagnetic operator DC within 
perturbation theory; such a computation thus presents only a technical challenge, but 
not one of a principal nature. 

It is quite intriguing to extrapolate this analysis down to the case of charm decays: 
since 6(M& - MA)/m,2 N 2 and colour suppression is less severe there we find that a 
very large nonperturbative reduction arises here for the semileptonic branching ratio 
of charm mesons. In addition the dimension six four-fermion operators produce a 
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large decrease in the width of D* through Pauli Interference [2, 51. This yields the 
correct pattern as observed by experiment, however definite quantitative predictions 
seem to be unreliable here. 

There is another semi-quantitative observation that should be noted: the nonper- 
turbative term in eq.(6) that is responsible for increasing the nonleptonic B decay 
width is - through A* - suppressed by l/N,; there is also a l/NC term - due to Ao 
- appearing in the first quasifree term and it enters with the opposite sign there. 
Thus the two terms that are non-leading in l/N, tend to cancel each other. This 
provides another illustration of preasymptotic &CD corrections tending to dynam- 
ically suppress non-leading corrections in l/N, [2, 13, 91 and thus to imitate the 
phenomenological prescription of retaining only the leading terms [3]. It also shows 
on the other hand that such a recipe cannot be viewed as a fundamental and universal 
rule. This cancellation is relatively mild for l?,,(B) - say up to 20%; for the non- 
leptonic width of D mesons on the other hand it could be complete. The situation 
here differs from what was found in ref.[2] for flavour-dependent effects: there the 
cancellation was due to perturbalive corrections and for this reason it was strong both 
in charm and in beauty; in the present case the corrections are nonperturbative and 
their role decreases significantly from charm to beauty. It should also be noted that 
the authors of ref.[9] found that the terms that are non-leading in l/NC cancel almost 
completely for the exclusive mode B --t D?r; as we have seen here this is not the case 
for the inclusive width. 

Similar considerations can be applied to the inclusive width for b -+ CES transitions, 
The relative weight of the nonperturbative corrections could be quite sizeable there 
due to the small amount of energy release that is available. Of course the overall 
size of this width is also suppressed by phase space. We can also expect here even 
more important modifications to the corresponding colour factor AZ in eq.(7) coming 
from the subleading perturbative corrections than we discussed for b + ctid. Yet 
these are ‘just’ technical problems that can and will be addressed in future work. 
Lastly forthcoming experimental studies will allow the reliable isolation of this class 
of transitions. 

The approach presented here can also be applied to the lepton spectra in semilep- 
tonic beauty decays. The relevant operator expansion is then given in terms of in- 
verse powers of (pb - pr)’ with pb [pr] denoting the momentum of the b quark [lep- 
ton]. Thus the series blows up near the endpoint in the lepton energy spectrum. 
Yet there one can rely on the results obtained from the EHQT approach. Since 
mb > mc > PM , mb - m, >> nhad hold there exists a regime for the lepton energy 
where both expansions are valid simultaneously. This argument is actually rather 
similar to the discussion of ref.[14]. 

To summarize: we have identified a correction to the inclusive nonleptonic decay 
width that has no counterpart in the semileptonic width. It may account for up to 
15% of the total beauty width. The lowest loop estimate though yields only about 3%; 
this is roughly similar in size to the effect of interference coming from four-fermion 
operators of dimension six. That a dimension five and a dimension six operator have 
a similar impact here is due to two factors: the colour suppression of the dimension 
five operator as well as the fact that it appears in the two loop diagram and thus 
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contains an extra factor of l/s s. Basically the same reason [7] enhances the weight of 
the standard corrections to the lifetimes. A more exact estimate requires calculation 
of the O(o,) corrections; still it seems unlikely that in the Standard Model it could 
by itself shift the semileptonic fraction by more than 1% per lepton flavour. 

3 Summary and Outlook 

We have outlined here a general method that allows to calculate the inclusive transi- 
tion rates for the weak decays of heavy flavour hadrons. It consists of four elements: 

(i) The forward amplitude Q + Q (more exactly its absorptive part) is expanded 
into a series of local operators of increasing dimension whose coefficients are pro- 
portional to powers of l/mq. This operator expansion depends on the intermediate 
state, namely whether one is considering nonleptonic or semileptonic transitions, i.e. 
Q -, q&a -, Q or Q .+ q1Gl -+ Q; it is also sensitive to the masses of the quarks 
qi. On the other hand it is universal for all hadrons carrying the heavy flavour Q. 

(ii) A nonrelativistic expansion is given for these local operators, again in powers 
of l/m*. 

(iii) The inclusive decay rate is obtained from the matrix element of this operator 
expansion taken between the decaying meson or baryon state. 

(iv) The matrix elements for the operators that appear in this final expansion are 
determined by symmetry arguments and/or by relating them to other observables 
like the masses of heavy flavour hadrons. The size of these matrix elements in general 
depends on the type of HQ, i.e. whether it is a meson or a baryon, whether it is 
charged or not, whether it carries strangeness etc. 

Our approach allows to incorporate nonperturbative effects in a selfconsistent way 
as corrections in a I/mg expansion. We find: 

l There are no corrections to the quasifree picture of order l/m*. 
. The leading nonperturbative corrections arise on the l/m$ level. They are 

SU(3)n invariant, i.e. affect the heavy flavour meson decays in a uniform way inde- 
pendent of the flavour of the light antiquarks. They enhance the nonleptonic decay 
width in mesons and lead to a corresponding reduction in the semileptonic branching 
ratio. 

s The nonperturbative corrections that appear on the l/m; level are not SU(2) 
and SU(3) invariant; thus they generate differences in the lifetimes and semileptonic 
branching ratios among all heavy flavoured hadrons. 

l Due to the powerlike scaling behaviour in l/mg all these preasymptotic effects 
are much larger in charm than in beauty decays. 

l We have found some cases where nonperturbative and perturbative corrections 
that are non-leading in NC contribute with the opposite sign and thus tend to cancel 
each other. This provides a dynamical explanation for some of the successes of the 
phenomenological prescription to drop terms that are non-leading in NC. Yet it also 
shows that such a procedure cannot be expected to be of universal validity. 

These findings can be stated in a more quantitative manner: 
(1) As previously shown [2] lifetime differences in B meson decays cannot be ex- 

pected to exceed the percent level while lifetime ratios of two emerge naturally for D 
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meson decays. 
(2) Nonperturbative corrections may reduce the semileptonic branching ratio uni- 

formlyin B decays by up to 10% relative to the value inferred from the naive spectator 
ansatz. For D decays they could well reduce it by a factor of two! 

Point (2) is quite intriguing when comparing our approach with the usual one 
that involves modifying the quasifree result with phenomenological models. The one 
class of parameters that is quite uncertain there is the mass for the final state quarks, 
i.e. whether the small ‘current’ values should be adopted or the higher ‘constituent’ 
values. Yet increasing the final state quark masses over their ‘current’ values will 
necessarily enhance the semileptonic branching ratio! The &CD approach presented 
here on the other hand demands that it is the current masses that must be used 
in the calculations. Powerlike nonperturbative corrections for the colourless quark- 
antiquark loop itself in Fig.1 are known to increase the hadronic width. Some of 
these corrections could indeed effectively mimic the insertion of constituent masses 
into the propagators; yet being of order l/m: they are in fact strongly suppressed. 
The corrections to the quark loop discussed in ref.[4] f or charm decays are subleading 
contributions resulting in terms that start with l/m:. The leading effects are actually 
due to the interaction of the decay quarks with the light degrees of freedom present 
in the initial hadron. They induce l/m6 corrections that are explicitly calculable and 
in principle depend on the nature of the spectator (but not on its flavour). 

We have outlined here a general procedure. It will be improved and extended in 
the future in four respects: 

(i) Some of the numerical predictions stated above were somewhat tentative since 
not all the relevant calculations have been performed yet. Since the ‘missing’ com- 
putations involve perturbation theory this presents just a technical delay and not a 
stumbling block in principle. 

(ii) The real accuracy that can be obtained in this approach is to be determined 
by calculating terms of order l/m: and estimating the size of the relevant matrix 
elements. 

(iii) The case of heavy flavour baryons can be and will be incorporated in a sys- 
tematic way [15]. 

(iv) A natural approach to the problem of SU(3)g breaking in heavy flavour decays 
emerges from our treatment. It can be expected quite generally from the Heavy 
Quark Expansion outlined above that the apparent size of SCr(3)n breaking scales like 
r&/&d. l/m;; in other words SU(3)g b rea m is expected to amount to no more k’ g 
than a few percent effects in beauty decays [15] - whereas a conventional application 
of SU(3) arguments can do no better than allow for the usual 20-30% breaking effects. 
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Figure Captions 

Fig.1 Simplest two-loop diagram describing the total decay width Q -+ qi qs qs 

Fig.2 Diagrams representing flavour-dependent corrections to widths: 
a. “Weak Annihilation” in heavy meson decays 
b. “Pauli Interference” effects in heavy meson decays 
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