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ABSTRACT 

Unlike neutrino masses, the ratios of neutrino masses can be predicted by up-quark 

seesaw models using the known quark masses and including radiative corrections, 

with some restrictive assumptions. The uncertainties in these ratios can be reduced 

to three: the type of seesaw (quadratic, linear, etc.), the top quark mass, and the 

Landau-triviality value of the top quark mass. 

* Work supported by the U.S. Department of Energy under contract no. DOE-AC02-71% 
CHO-3000. 

3 Operated by Unlvar~itics Research Association Inc. under cantract with the United Stales Department al Energy 



The inconclusive but suggestive results of recent solar and atmospheric neutrino and 

beta decay experiments [I] lead to the possibility of neutrino masses, which additionally 

may have important application to cosmology, astrophysics and laboratory searches for 

neutrino oscillations. The most economical model of light neutrinos is the so-called “see- 

saw” of the grand-unified type, which requires a superheavy right-handed neutrino for each 

ordinary neutrino and arises naturally in partially or completely unified theories with left- 

right symmetry, such as SO(10) [2,3,4]. Th ese g rand unified seesaw models predict smsll 

but non-zero Majorana masses for the ordinary neutrinos in terms of the Dirac masses of 

the up-type quarks (u, c, t) and the superheavy right-handed Majorana masses. These 

predictions are made uncertain, however, by the unknown right-handed masses and by ra- 

diative corrections. But the ratios of neutrino masses are more definite in seesaw models, 

under some neccesary and minimal assumptions (printed below in italics) about the physics 

underlying the seesaw (51. The uncertainties in the mass ratios can then be narrowed to a 

handful. 

The general tree-level form of the seesaw model mass matrix for three families is: 

in the left- and right-handed neutrino basis, where each entry is a 3x3 matrix. We assume 

that the upper left corner is sero, as a non-sero Majorana mass for left-handed v generally 

requires an Sum Higgs triplet, an unnatural addition to the Standard Model in light 

of known electroweak neutral-current properties [6]. The Dirac matrix rn~ is both an 

Sum and an Sum doublet. The symmetric superheavy Majorana mass matrix MN 

for the right-handed neutrinos N violates lepton number, but is a Standard Model gauge 

singlet. MN must be a remnant of a broken Sum or larger symmetry. Assuming 

the eigenvalues of MN are much greater than those of mg, the light neutrinos acquire 

a symmetric Majorana mass matrix my = mgM1;lmg and the superheavy neutrinos a 
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mass matrix MN upon block diagonalization of (1). The superheavy neutrinos have masses 

equal to the eigenvalues (MN,, MN~, MN~) of MN. The matrix MN can have a variety of 

sources [3,5]. In models with tree-level breaking of Sum, the right-handed mass requires 

an Sum Higgs triplet - in SO(10) models, a Higgs 126. In models with minimal Higgs 

content (Su(2),5~ singlets and doublets only, as in superstring models), the matrix MN 

must arise either from loop effects [3,7] or from non-rencnmalizable terms, presumably 

induced by gravity [8]. 

Making predictions from the seesaw matrix my requires additional assumptions. To ob- 

tain simple scaling dependence of light neutrinos masses on the eigenvalues of mg requires 

the assumptions that the malriz mg can be fPeely diagonalized and that the intergenet- 

otional mizinga in MN are no larger than the ralios of eigenvaluea between generationa. 

We then need to know the eigenvalues of rn~ : here the simple grand-unified seedam is 

a.wumed, JO that mg 0: m,, the up-type quark mass matrix. t For predictiveness, the 

eigenvalues of MN are assumed proportional to a power p of the eigenvaluea of m,,. The 

p = 0 and p = 1 cases are the “quadratic” and “linear” seesaws, respectively, because of 

the dependence of m,,i on m,,; [4,5]. $ 

The family kinship of quarks and leptons in order of ascending mass is assumed; a 

different kinship merely requires relabelling the neutrinos appropriately. Forming the ratio 

of any two light neutrino masses, 

2 
m,i mui MGj 
-=ypgi’ (2) 
m5j 

t The Dirac mass matrix for the charged leptons ml is proportional to the down-type 
quark (d, s, b) mass matrix rnd in the simplest grand unified seesaw models. The matrix 
proportionalities of mg and m ,,, and ml and md, require that each pair of Dirac masses 
be generated by only or mainly one Riggs representation. Otherwise, a specific ansatz of 
Dirac masses is needed. 

1 If the eigenvalues of MN increase no more than linearly with the hierarchy of eigenvalues 
in mt, (p < 1 for a simple power law), and ml o( md, then, additionally, the neutrino mixing 
matrix is identical to quark CKM mixing matrix, at least at the putative unification scale. 
For reasonable values of the top quark mass, this equality approximately holds at low 
energies [4]. 
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we obtain the power-law dependence of the seesaw, with exponent 2 - p. Taking the ratios 

of neutrino masses eliminates the overall unknown scale in MN. However, the form (2) 

requires radiative corrections to the fermion masses to arrive at predictions. The tree-level 

result (2) is taken to be exact at some scale p = Mx, typically the grand unification scale; 

the masses my(p), mu(p), and MN(P) are then run down to low energies and related to the 

physical masses to yield radiatively modified seesaw predictions. The leading logarithm 

approximation is sufficient for our purposes and is evaluated here in the MS scheme. As a 

number of authors have noted, much of the uncertainty in these corrections cancels out in 

fermion mass ratios, if some general conditions hold about the physics that produces the 

corrections [5,9]. 

Corrections to the fermion masses are assumed to come from two sources, Higgs-Yukawa 

couplings and gauge couplings. A generalized family symmetry id addumed for the gauge 

interactions, do that, apart from differencea in maw thresholds, the gauge correclions are 

“family-blind”. The mass matrices can then be diagonalized and corrections applied to 

individual eigenvalues. Higgs corrections to the masses are proportional to their underlying 

Yukawa couplings. For the light Y, these are negligible, as they are for the up-type quarks, 

except for the top quark.* For the superheavy N, the eigenvalues MN,;(X) are proportional 

to the power p of the eigenvalues m,,i(X). 

Considering only gauge corrections first, the m renormalization group equations for 

the fermion masses and gauge couplings l...n... are standard [IO]: 

dlnmb) 
dlnp = T bk) . s;b), 

with the general solution 

ddbL) - = -2bn .g;t(p), dlnp 

m(P)/m(wo) = ~I[gR(~)Ign(~O)I-b~‘nbn. 
n 

(3) 

* The large top quark Yukawa coupling also leads to renormalization group corrections to 
the first-third and second-third family CKM quark mixings. 
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The v mass ratios at the scale MX are the same as the physical ratios: 

mv,i(X)lmv,j(X) = mv,ilmv,j. (5) 

The equality holds because the known and unknown gauge corrections to light neutrino 

masses are due to heavy, flavor-blind interactions that begin to run only at the W boson 

mass, far above any neutrino mass. The gauge corrections to the up-type quark mass ratios 

are substantial, because they partly arise from QCD and because the quark masses have 

a large hierarchy in the presence of massless gauge bosons. To evaluate these corrections 

completely requires the assumption that there are no neul particle8 of maa between the Z 

bown and top quark rna~~e~ with Standard Model gauge couplings. The gauge cornctiona 

require the top quark mau to logarithmic accuracy, which we take from the best neutral- 

current data to be mt = 160 GeV [6]. (P owers of the top quark mass are left explicit.) 

Apart from differences in mass thresholds, the gauge corrections from QCD, QED and 

the hypercharge U(l)y are the same for all up-type quarks. The weak isospin SU(Z)L 

corrections to the quark masses are zero, since these masses are of the Dirac type, mixing 

left- and right-handed fields. Corrections due to new gauge couplings would begin at scales 

above mt and would cancel in the ratios. With n = 1 GeV and taking m,(n) = 5 MeV, 

m,(n) = 1.35 GeV [lo], and mt as free if it occurs as a power, 

mc(X)/mlL(X) = m,(n)/m,(n) = 270 

mt(X)/m,(X) = (l.90)m~/mc(n) = 140(mt/lOOGeV) (6) 

w(X)/m,(X) = (1.90)ml/mu(n) = 38000(m~/lOOGeV). 

The top quark mass is defined by mt = mt(mi). Since MN,t(X) 0: m$(X), the gauge 

corrections to MN are accounted for in the gauge corrections to m,(X). Any corrections 

to MN due to neu, gauge interactions either cancel in the ratios or are aaaumed to be weakly 

coupled and thus small. 

The other set of corrections are due to the fermions’ couplings to the Higgs sector. The 

Yukawa couplings and fermion masses are simultaneously diagonal. In the neutrino mass 
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ratios, under our assumptions, only the Yukawa coupling to the top quark is important. 

The renormalization group equation for the top quark mass is modified from (3) to 

dlnmt(P) dlnp = Fbk’ .db) + bz. h(cl)lWv12, 

where the factor b$ depends on the Higgs sector. The solution to (7) can be written as 

mt(P) = f(P) . mi(p)o, where mt(p)o is the solution to (3). Taking f(ml) = 1, 

Mx dp m&lo 
l-&=,bii mt ;’ M& J 

The numerical evaluation of f(X) re mres the function rni(p)o over the full range from q 

the top quark mass to unification. However, our ignorance of this function and of the 

Higgs sector can be collapsed into a single number, the Landau-triviality value of the top 

quark mass, rntL. This is the top quark mass for which, with a fIxed Mx, the right-hand 

side of (8) is unity and f(X) diverges. That is, f(p) diverges before p reaches Mx, if mt 

exceeds mlL. The triviality value rntL is the upper limit of the top quark mass: 

1 
-zz 2b: 

I 
Mx dp mz(pL)o 

4 m, F ’ M&m:’ 

with the presence of the unknown ml as the lower bound inducing only a small logarithmic 

error. (The r.h.s. of (9) contains no powers of the top quark mass.) Then 

fZ(X) = l 
1 - rnf/rniL ’ 

For example, in the minimal Standard Model, with &lx = Mp[ z 1~10~’ GeV, mtl; E 

760 GeV; in the supersymmetric (SUSY) case, with the same Mx, mtL N 190 GeV. Of 

particular interest because of its successful prediction of the weak mixing angle, the SUSY 

SU(5) grand unified model yields rntL N 180 GeV, with ~%fx 2~ 2~10~~ GeV. The non- 

SUSY SO(10) model, breaking through an intermediate left-right model, gives rnlL N 380 

GeV [4,6]. 
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With the aforementioned assumptions, the final mass ratios for the light neutrinos are 

my, /me = (270)+ 

m~,fm, = 
1 

(1 - m:/m$)1-P/2 
.[140. m~/100GeV]2-P 

m,/m. = (1 _ mz,~iL)l-p,2 . [38000 ~w/~OOG~VI~-~. 

(11) 

For a given v, or v,, mass, the I+ mass can be sensitive to the top quark mass beyond the 

naive seesaw dependence, because of the triviality factor. 

It would be interesting to check how varying these assumptions changes the neutrino 

mass ratios. Unfortunately, most of the assumptions cannot be changed without losing 

predictiveness. The flavor-blindness of the gauge interactions is especially crucial. How- 

ever, switching to a leptonic seesaw, with mg m ml, does lead to predictive neutrino mass 

ratios, if the eigenvalues MN,~(X) 0: m[i(X) and all neutrino3 and charged leptons are 

subject only to family-blind, weakly-coupled gauge interactions. Then 

is a good approximation. 
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