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Real Time Track Finding in a Drift Chamber with a 
VLSI Neural Network 
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P.O. Bo+ 500 
Batavia, Illinois 60510 USA 

b University of Arizona, Dept of Physics, Tucson, Arizona 85721, U.S.A. 

ABSTRACT 

In a test setup, a hardware neural network determined track parameters of 
charged particles traversing a drift &amber. Voltages proportional to the drift 
times in 6 cells of the 3-layer chamber were inputs to the Intel ETANN neural 
network chip which had been trained to give the slope and intercept of tracks. 
We compare network track parameters to those obtained from off-line track 
fits. To our knowledge this is the first online application of a VLSI neural 

network to a high energy physics detector. This test explored the potential 
of the chip and the practical problems of using it in a real world setting. We 
compare chip performance to a neural network simulation on a conventional 
computer. We discuss possible applications of the chip in high energy physics 
detector triggers. 

1. Introduction 

Determining track parameters from drift chamber signals with feed-forward 
neural networks has been discussed previously.‘-3 Neural networks have also been 
studied for other high energy physics detector applications such as particle iden- 
tification in Cerenkov counters,4 . jet identification and background rejection with 
calorimeters,5-7and vertex finding in silicon detectors.* Those studies were done with 
neural network simulations on conventional computers and generally performed sat- 
isfactorily. The goal, however, for most of these efforts is eventually to use actual 
h~ardware neural, networks in an on-line environment. Hardware networks should be 
fast because of their highly pa.rallel a.rchiteci;ure and therefore useful in the trigger 
systems of high energy physics experiments. Recently, neural networks in VLSI chips 
became available. These hardware neural networks, some of which are digital and 
obhers analog, have various limitations and tradeoffs which do not occur with simu- 
lations. Depending on the pa.rticular chip, there are limits on the numbers of neurons 
and synapses, on precision of the weights, in the magnitude of the maximum weight 

* Fermilab is operated by the Universities Research Association under contract with the Department 
of Energy 
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values, in maximum gains of the neurons, in processing speeds, etc. Here we give a 
report on initial test results of one such chip in finding tracks from drift chamber 
signals. 

2. Drift Chamber 

Figure I shows schematic drawings of the drift chamber used for this study. 
The chamber is a. prototype of the wide angle muon chambers for the DO detector 
at the Tevatron.gvlo There are both 3 layer and 4 layer chambers in the DO muon 
chamber system. The prototype here had 4 layers but the extra layer was ignored 
for these tests to study tracking with only three layers. 

The sense wires are inside of extruded aluminum channels. Figure l(a) shows a 
single cell. The cells are 10.15 cm wide. The wall thickness is 0.25 cm. The maximum 
drift distance in the plane of the sense wires is therefore 4.97 cm. Due to the trigger 
timing used for t,he t,est here, there was some additional dea.d space resulting in an 
effective maximum drift distance of about 4.50 cm. Figure l(b) shows a cross-section 
of the 6 cells of the prototype chamber. (Actual three layer DO muon chambers have 
up to 72 cells.) The 3 cells on the right hand side in figure l(b) were similar to the 
cells at the side of a large chamber in that the right hand walls were flush rather 
tha.n staggered as in all other cells. The dashed lines show the position of the walls 
for normal cells. The different wall positions causes the time to distance relationship 
for the right side of these cells to differ somewhat from that for normal cells. 

As shown in figure (lc), the sense wires a.re connected in pairs. The sense wire 
signal from one cell goes to the start input of a time to voltage converter (TVC) 
whose stop comes from an external trigger signal. This TVC signal provides the drift 
time. The output of the same wire also goes to the sta.rt of another converter (dTVC, 
not shown) whose stop comes from the other cell signal. This dTVC signal provides 
the signal transit time to indicate the cell and the position along the wire where the 
ionization occured. A further improvement in this longitudinal measurement comes 
from signals in metal pads above and below the wires (see figure l(a))where signals 
a,re induced on the pads by the ionization avalanche at the wire. These pad signals 
iLlso set latches. 

The drift resolution of the chamber in this test is about 5OOpm. The drift 
velocity is roughly linear (about 5cm/p s over the distance from the sense wire to ) 
the walls on each side. The fitting a.lgorithm assumes the drift distance represented 
l.he dist,ance from the sense wire to the crossing point of the track in the sense wire 
pla,nc rather than to the distance of closest approach. No attempt here was made to 
determine the track parameters in the direction alon~g the wire by using the dTVC 
or pad analog volta.ges. Instead, the pad latch voltages simply indicate which cell of 
the pair contained the hit. 

3. Neural Network Architecture 

Figure 2 illustrates the network architecture for determining trxk parameters 
from the drift chamber signals. The three TVC voltages and three pad latch voltages 
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(from the right hand cells as seen in figure lb) are inputs to the net. The set of three 
TVC voltage inputs are actually repeated four times here to overcome the limitation 
of the m&mum weight of 2.5 for the chip ( see section 4). There are 64 hidden and 
64 output units. The output units are divided into two sets of 32 units, with one 
set providing the intercept of the track in the plane of the middle layer of wires 
and the other set giving the slope of the track. Each output neuron corresponds 
to a bin in intercept or slope. The intercept neurons span 20 cm in 0.625 cm bins. 
In figure lb the 20 cm spans the range from the left wall of the middle layer to 
the right dashed line (ignoring the extra drift distance for the edge cell). The slope 
(given in terms of angle from vertical as shown in figure 1) ranges from -0.8 rad 
(-45”) to +0.8 rad (45”) in bins of 50 mrad (2.9’). The net is trained to excite only 
those output neurons which correspond to the slope and intercept of the track. The 
target patterns are given as Gaussian distributions (sigma = 0.5 cm for intercept 
and 40 mrad for slope) a,cross 3 or 4 neurons so that the slope and intercepts can 
be ca.lcula.ted more precisely than the wi,dth of a single bin (see figure 2). Finding 
the bin with the maximum output and then calculating the average over f2 bins of 
the maximum gives the network intercept and slope. 

An alternative out,put architecture would have two output neurons, one of 
whose activation is proportional to the intercept position and the other’s activation 
proportional to the slope. However, the jitter in the electronics for the chip used here 
causes a percent or so variation in the output of a given neuron for repeated presen- 
tation of the same input pattern. This alone would give about factor of two worse 
intercept resolution than what was achieved with the multiple output distribution 
method used here. The averaging around the maximum output neuron reduces the 
effect of the jitter. Also, for cases with ambiguities where more than one possible 
track choice is possible (at least within the resolution of the network), there can be 
activations for more than one intercept or slope. This ability to provide secondary 
answers could be useful if, for example, a trigger system combined the network out- 
put with other tracking information, perhaps from another chamber. The secondary 
a.nswer might be found to be more consistent with this other information than the 
primary answer. (Reference 2 discusses a simulation where multiple network outputs 
were combined to find the event vertex.) 

4. Intel ETANN Chip 

The Intel ETANN (Electrically Trainable Analog Neural Network) cllip1z-‘4 
uses EEPROM tech,nology to make modifiable, but non-volatile, synapses or weights. 
Two floating gate pairs make up a synapse differential amplifier (similar to a Gilbert 
multiplier circuit) such that the relative thresholds between the gates determines the 
output current for a given input voltage. Altering the charge on the floating g&es 
a,lters these thresholds. The floating gates thereby provide the variable weights. 
With respect to a given reference voltage, both inputs and weights can be positive 
or negat,ive and so provide full 4quadrant multiplication. The effective precision of 
the weights are 6-7 bits and range between f2.5 in magnitude. The input voltage can 
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be from 0.0~ to 3.5~. The chip has 64 inputs and 64 neurons, plus 16 bias voltages. 
There are two sets of 80x64 weight arrays. The 64 input voltage signal vector makes 
dot products with each column of the first weight set and the resulting current sums 
feed into the corresponding neuron, which consists of a threshold a,mplifier with a 
sigmoidal transfer characteristic. The sigmoid tra.nsfer function (for reference voltage 
of 1.6~) is roughly: 

fjCxj) = 

3.ov 

l.O + eXp(-Zj) 
t O.lv 

where zj is 

“j = G C”‘jk(K - 1.6~) t Cwja(Vb ~ 1.6~) 
k 6 1 

Here 1i is the input voltage for the first layer or the output of the first layer neurons 
going into the second la.yer, and wjk is the weight for the connection between units 
j and k. Seven bia.s neurons of voltage l;b ‘v 4.0~ are provided. The gain G can be 
varied’s but here was set near the maximum of about 1.0. 

After the first layer processing, the neuron outputs can be clocked back through 
t,hr second weight set to get two layer performance. So a single ETANN can imple- 
ment a net with up to 64 inputs, 64 hidden units, and 64 output units. (An option is 
to clock in two sets of 64 inputs to make a net with 128 inputs and 64 output units.) 
The processing time depends somewhat on the number of inputs and neurons used. 
The first layer processing takes a maximum of 3~s and the second layer a maximum 
of 5~s for a total of 8~9 for 2 layer performance. 

In addition to the chip, a PC based development system” is available. The 
chip is connected to an external trainer box which provides communication between 
the PC and the chip and can also generate the large voltage pulses needed to alter 
the floating gate charges. With the trainer we can (1.) test and initialize the chip; (2) 
emulate the chip; (3) write or read weights to and from the chip; (4) do chip-in-the- 
loop (CIL) learning. The latter is required because the chip does not have a built-in 
learning algorithm. For CIL, a voltage p&tern is presented to the chip, the chip 
ont,put voltages digitized and compared by the PC to target outputs. The PC then 
does back-propagation using the emulation sigmoids and derivatives to obtain the 
necessary weight changes. The new weights are then down-loaded to the chip. This 
process is repeated over many patt,erns until the average difference in the outputs 
and targets is small enough to judge that the chip has learned the training set. 

5. Chip Training and Testing 

To tra.in the chip the following procedure was carried out. Training sets of 10000 
track patterns were made with a simple Monte Carlo simulation of the chamber. 
Montr Carlo tracks traversed the cells at random intercepts and slopes. The drift 
dista,nces (distance to the sense wire in the plane of the wires) for a given track were 
smeared with a. Gaussian of 500pm sigma to simulate the chamber drift resolution. 
IJsing these smea.red drift distances, the target slopes and intercepts were calculated 
with a least squares fit. The drift distances were converted to TVC voltage values. 



Each p&tern consisted of the 3 input TVC voltages (repeated 4 times, see figure 2) 
and 3 latch pad voltages for a total of 15 input values, plus 64 target values (32 for 
in,tercept and 32 for slope, see figure 2) for the output neurons. The TVC voltage 
is 3.2~ if the track passes right at the sense wire and is 0.0~ for the maximum drift 
distance of 4.5cm. The pad latch voltage is 0.1~ if the track is in a left hand cell (as 
seen in figure lb) and is 3v if track is in a right hand cell. Output target voltages 
were set from O.lv to 3.ov. 

A back-propagation’l program (the standard back-propagation a,lgorithm was 
modified to limit weights to a maximum of 2.5 in magnitude) processed the training 
set for several million iterations on a fast workstation. The resulting set of weights 
was then downloaded to the PC emulator. The emulator does a better simulation of 
the chip but the PC is much slower and the number of patterns that can be stored 
in memory is smaller. The emulator, in stand-alone mode, did back-propagation for 
several hundred thousand iterations on several files of 2000 patterns each. Firmlly, 
the emulation weights were downloaded into the chip. Chip-in-the-loop (GIL) bxk- 
progation was then carried out for a few thousand iterations on several sets of 600 
patterns. It is advantageous to do the preliminary training in software because the 
CIL training takes several hours to approach the performance of the emulator (even 
though the initial weights are from the emulator) and because the manufacturer 
recommends minimizing the number of CIL iterations. Apparently, the large voltage 
pulses required to alter the floating charge on the gates eventually degrade their 
performance. 

With the chip connected to the trainer, we present new pattern sets not used 
in the training to test how well the chip genera,lizes. Figures 3 through 6 show results 
of tests with the chip in the trainer. Figure 3 illustralies four events presented to the 
chip. Ea.& frame shows the target track and the network track and the activations 
of the output neurons. The target parameters a.re shown as plus signs on the same 
distribution~s. Figures 4a and 4b show distributions of the target intercepts and 
slopes of trxks as compared to what the chip gives. The intercept distribution 
was generated roughly flat across the 20 cm range. The gap in the middle of the 
distribution in figure 4(a) is due to the dead region at the wall separating the cells. 
The slope distribution is not flat because of the staggering of the layers and the 
requirement that one cell of each pair of each layer have a hit. Figure 4c and 4d 
show distributions of the differences in the target and chip intercepts and slopes. 
Also, shown are the sane distributions for the workstation simulation. Fitting to 
Gaussians, the workstation simulation sigmas are 0.51 mm and 6 mrad (0.34’) for 
intercept and slope respectively, wherea,s for the chip the values are 0.90 mm and 
16 rnrad (0.92”). This indica,tes that the limited precision of the chip, as well as 
the inability to train on large pattern sets for millions of iterations, does degmde 
the performance compared to a simulation. The workstation simulation had the 
requirements of maximum weights h2.5 and gain of 1.0, but it had the precision of 
32 bit floating point numbers and the arithmetic operations were exact. The chip has 
about G-7 bit precision plus non-linearities in the the input-weight multiplica,tions. 



The network does not always find the correct track. This is caused primarily 
by patterns with ambiguous tracks, which occur easily for a three layer chamber 
despite the staggering of the cells. Figure 5 shows four examples of such ambiguous 
patterns. By eye, in each of the examples, there are two possible tracks. The least 
square fit calculation found the smallest chi-square for tracks different from the ones 
chosen by the net. This indicates that the resolution of the net is not quite precise 
enough always to find the best choice. Scanning of such events reveals that usually 
there is some activation at the slope and intercepts neurons of the best fit track but 
the lwgest activations were for the phantom track parameters. 

To a lesser extent, this inefficiency also occurs in the workstation simulation 
where the low maximum weight and gain seems to limit the accuracy. Figure 6 shows 
track finding efficiencies for both the simulation and the chip in the trainer. Figure 
6a shows the efficiency of the nework having the correct, intercept within 5 mm of 
the target intercept as a function of target intercept. This chip intercept efficiency 
avemges about 96% across the cell compared to 98% for the simulation. Figure 6b 
shows the efficiency in finding the slope within 100 mrad (5.7”) of the target slope 
as a function of slope. The chip average efficiency is about 95% versus 97% for 
the simulation. Figures 6c and 6d show the combined efficiency of simultaneoulsy 
requiring intercept within 5 mm and slope within 100 mrad of the ta,rget as function 
of iutercept and slope. The combined &Xency for the chip is about 93% versus 
nearly 97% for the simulation. The biggest dips in figures 6a and 6c occur in the 
indercept ranges where ambiguities occur as shown by examples in figure 5. 

0. Drift Chamber Test Setup 

Figure 7 shows a schematic of the test setup at Fermilab. The test was run in 
parasitic mode by placing the chamber near a beam absorber of another experiment 
to obtain muons from particle decays. A trigger required hits in scintillators placed 
behind the chamber plus a coincidence of one hit from each layer of the chamber. 
For cosmic ray tests the chambers and scintillators were rotated 90 degrees. The 
analog TVC voltages (0.0~ to 3.2~) and pad latch voltages (0.1~ and 3.0~) were 
sent both to the ETANN inputs and to analog-to-digital converters (ADC). For two 
layer processing, the ETANN is sent pulses to clock the first layer neuron outputs 
back through the second set of weights. The second layer outputs are connected 
to ADC’s and read out along with the input digitization. The data ( each event 
record included ADC values for 3 TVC’s, 3 pad latches, and 64 ETANN outputs) 
was recorded on disk for later processin,g. The ETANN resided on a VME board in 
a c&e adjacent to the chamber. 

7. Drift Chamber Test Results 

Figure 8 shows some early results of on-line track finding with the ETANN 
connected to the chamber while the muon beam was available. Figures 8a and 8b 
show distributions of the slopes and intercepts for the beam tracks for the fits and 
for the ETANN outputs. The slope distribution differs from that in figure 4 because 
of the narrow beam. The differences between the net and fit intercepts and slopes 
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are shown in figure 8c and 8d. The Gaussian fits give about 1.2 mm resolution for 
the intercepts and about 20 mrad (1.1”) for th 1 p e so e. This compares to 0.9 mm 
and 16 mrad (0.9”), respectively, for the chip in the trainer. Also, the intercept 
distribution is shifted slightly negative by about 0.400 mm. 

Ideally the chip should give identical results whether connected to the trainer 
or to the VME board when presented with identical input voltage patterns. To 
reduce the differences between the performance of the chip with the trainer and 
with the chamber, several systematic problems were addressed. At the chamber the 
TVC voltages are roughly on a 0.0~ to 4.0-z scale. The chip was trained on a 0.0~ to 
3.2~ scale. A voltage divider reduces the TVC voltage from the 4v scale to the 3.2~ 
scale. A careful comparison was done of the voltage going into the chip with the 
TVC ADC readings to insure that the voltage divider was correct to within 1% and 
that the pedestal voltage was truly at 0.0~. The chip power supply voltage, reference 
volt,ages and gain voltage were mezured bat,11 a.t the trainer and on the VME boa.rd 
to insure they were the same to within 10mV. This is very important because, as 
shown in reference 14, a variation of even a few millivolts in the power supply voltage 
can cause significant shifts in the neuron sigmoidal outputs. Such shifts in the hidden 
layer sigmoids in turn can cause dramatic changes in the final output layer sigmoids. 
For example, a. difference of 14mV in the power supply voltages between the trainer 
and the VME board caused as much as a factor of 2 change in some output neuron 
VdUW. 

While this study of systematics was underway, the Fermilab fixed target run 
ended. So the cha,mber and trigger counters were oriented for cosmic ray data taking. 
Figures 9a and 9b show the distributions of intercepts and slopes for cosmic rays 
for both the fits and the network outputs. After improved control of systematics, 
the results became more consistent with the trainer results. The Ga,ussian fits to 
the distributions (where net outputs were compa,red to those tracks with fits having 
&-squared per degree of freedom less than 1.0) in figures 9c and 9d give sigma.s of 
0.85 mm and I,5 mrad for intercept and slope, respectively, (0.97 mm and 15 mrad 
if no cut on chi-squa,red is made). These widths are similar to what was obtained 
with the chip in the trainer. Figures 10a and lob show that, as before, the net is 
inefficient at the 5-10% level due to the ambiguity problem. The worse inefficiency 
at brrge angles in figure lob as compa.red to figure 6b is appa,rently due to a. greater 
number of cases like figure 5d in the cosmic ray distribution of tracks than in the 
Hat intercept distribution of the pattern sets made for training and testing (compare 
figures 4,a a.nd 9a,). 

To compare further the performance of the chip in the trainer versus that 
when connected to the chamber, the above cosmic ray data files were made into 
pattern sets for the trainer. This was done by converting the TVC and pad latch 
ADC va.lues into trainer input numbers and making the track fit intercepts and 
slopes into target distributions. The chip was returned to the trainer and the dashed 
lines in figure 10 show the results for these same data when these patterns were 
presented to the chip. Ideally there would be no difference between the solid and 



dashed distributions. The fact that the differences are fairly small indicate that there 
are no big systematic problems in chip power supply voltage levels, ADC pedestal 
subtractions, etc. This provides us the option of training on actual data rather than 
Monte Carlo generated events, where the latter may be based on an incomplete 
representation of the chamber. 

8. Discussion 

This test was done both to determine how well the chip could implement a 
given neural network and also to find ifit could perform a task of possible importance 
to triggering in high energy physics detectors. Initially it was not known if the limited 
precision of the weights, low maximum weight, low sigmoid gai,n, non-linearities, etc. 
would preclude implementing complicated networks, especially those whose desired 
outputs were proportional values rather than simply binary (i.e. above or below some 
threshold). Although the chip is less precise than a simulation on a conventional 
computer, we believe the results are quite promising and indicate the chip could be 
a, useful tool both for high energy detector systems and for other applications. 

We believe this is the first time that a hardware neural network of any kind 
has been used to do on-line pattern recognition with a high energy particle detector. 
The neural network learned from examples to find intercepts and slopes of tracks 
from drift chamber signals to a, resolution less than lmm in intercept and less than 1 
degree in slope. There are long tails on the distributions, though, caused by situations 
where f,he network cannot resolve ambiguous tracks. This produces inefficiencies and 
false tracks. 

Further studies of the chip and training procedures are being done to try to 
improve the resolution and the eficiency. In addition we hope to apply the same 
method to a. four layer cha,mber (see section 2). The three layer chamber maximizes 
the a.mbiguity problem. A four layer network should have much higher efficiency 
because of the elimination of most phantom tracks with the constraints of a.n extra 
layer. 

This test, however, illustrates that the ETANN chip already rea.ches a level of 
performance that is required for some trigger applications. Typically, trigger systems 
do coarse measurements but they do them very quickly to determine whether to 
record the event on tape or to reset the system in time for the next beam crossing. 
There a,re usually several levels of triggers in current collider experiments. The lowest 
order level 0 triggers make the simplest cuts and take on the order of 1 - 2~3. Level 
1 triggers do somewhat more elaborate cuts and take on the order of 10 ~ 20~3. 
Further trigger levels continue the process to reduce tape writing rates. Typically 
the level 0 and 1 triggers are done in hardware and the higher level triggers in 
software. The use of ha.rdware neural networks is being investigated to do fast muon 
f,rack finding in lhe level 1 trigger for the DO pp collider experiment.” The current 
DO forward muOn trigger system, for example, has an effective resolution of about 
5cm compa.red to the 1 mm resolution achieved here. This improved resolution, even 
with the inefficiencies mentioned above, would reduce ba.ckgrounds considerably.” 
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The final design of such a trigger would probably have a network architecture 
q~uite different from the net used here. For example, the network probably would 
have a least 6 cell pair inputs instead of 3 to allow for tracks crossing pair bound- 
a,ries and allow for overlapping coverage. Also, it is probably only necessary for the 
chip to give the intercepts of tracks. The performance of the simpler network re- 
ported here, though, gives us some initial benchmarks to build upon. 
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Figure 1. (a) Cross-sectional view of a DO muon drift chamber cell. (b) The 6 cells 
of the prototype chamber. The dashed lines indicate position of walls for normal 
width cells. (c) Top view of two cells showing the electrical connection of the sense 
wires at one end. 



NEURAL NETWORK FOR DO MUON CHAMBER TRACKING 

Input = 4 x (3 TVC Voltages) + 3 Pad Latch Voltages 
Output = 32 0.62&m bins from -0cm to +20cm 

t 32 O.OSrad bins from -0.8rad to 0.8rad 

Target Distribution: 

Output Distribution: 

Output Units: 

Hidden Units: 

Input Units: 

Chamber Signals: 

B? 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . rf 64 

Figure 2. Neural network architecture to determine intercept and slope of tracks 
from 6 cells of the DO muon drift chamber prototype. 
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Figure 3. Examples of Monte Carlo track patterns presented to the chip while con- 
nected to the training system. 
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Figure 4. For chip in trainer: (a) Intercepts of targets and neural net; (b) slopes 
of targets and net; (c) distributions of differences in intercept of target and net; (d) 
distributions of differences in slopes of target a.nd net. For (c) and (d) shown are 
results for both chip and the workstation simulation. 
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Figure 5. Examples of Monte Carlo track patterns presented to the chip (while 
conuected to the training system) where the chip gave incorrect slope and/or inter- 
cept as compared to best fit parameters. 
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Figure 6. For chip in trainer (a) percent of net intercepts within 5mm of targets 
as function of target intercept; (b) percent of net slopes within 100 mrad of targets 
YS target slope; (c) percent of net intercept and slopes within 5 mm and 100 mrad, 
respectively of target values vs target intercept; (d) same but vs target slope. Shown 
are result for both chip and workstation simulation. 
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Figure 7. Chamber setup during beam tests. For cosmic ray data taking, the cham- 
ber was rotated counter-clockwise 90’ and one trigger counter was placed above and 
one below the chamber. The motherboard TVC and ADC data were read out and 
saved by a computer not shown. 
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Figure 8. For a sample of beam data: (a) distribution of intercepts for fits and 
ETANN; (b) slopes; (c) distributions of differences in fit and ETANN intercepts; (d) 
differences in slopes; (e) differences in intercepts. 
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Figure 9. For cosmic ray data: (a) distribution of intercepts for fits and ETANN; (b) 
slopes; (c) distributions of differences in fit and ETANN intercepts; (d) differences 
in slopes. 
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Figure 10. Cosmic ray online results compared to same data made into pattern 
sets and presented to the chip while in ‘trainer: (a) Intercept efficiency versus fit 
intercept; (b) Slope efficiency vs fit slope; (c) distributions of differences in fit and 
ETANN intercepts; (d) differences in slopes. 


