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ABSTRACT: We study a formulation of quantum mechanics in which the central 
notion is that of a quantum m&hanical history - a sequence of events at a succession 
of timea. The primary aim is t& identify sets of “decoherent” (or %onsisteht”) histories 
for the system. These are quantum mechanical histories sufking negligible interfaence 
with each other, and therefore, to which probabilities may be essigned. These histories 
may be found for e given system using the so-called daoherence tknctional. When the 
decoherence functional ir exactly diagonal, probabilities may be assigned to the histories, 
and all probability sum rules are sAsSed exactly. We propose a eondition for approximate 
decoherence, and argue that it implies that most probability sum rules will be satisfied 
to approximately the same degree. We also derive an inequality bounding the size of the 
off-diagonal terms of the decohaence functional. We calculate the decoherence functional 
for some simple one-dimensiond systems, with e variety of i&id rtates. For these sys- 
tems, we explore the extent to which decoherene is produced using two d&rent types 
of eoeuae-graining. The &rt type of coarse-gminih~ inmlm imprecise spai0eation of the 
particle’s position. The eecond involves coupliq the particle to a thermal bath of har- 
monie omillatotr and ignoring the det& of the bath (the Cd&Leggett model). We 
argue that both types of eaera-grdnhg are naary in general. We explicitly exhibit 
the degra of decoherenee as a function of the tanperaton of the bath, and of the wi 
to within which the particle’s position is specified. We study the diagonal elemeutr of 
decoherence functiond, mt& the probabilities Gx the poesible histories al the S&B- 
tan. To the extent that the hi&o&~ decohere, we show that the probability distributions 
are peaked about the clasicd hhtoria of the system, with the distribution of their initid 
poeitionr and momenta +sn by a smeared version of the Wwer function. We discuss 
this rault in connection with earlier uses of the Wieer function in this eontext. We find 
that there ie. a cat&z amount of tension between the dunan& ofdecoherena and peaking 
about classicd paths. 
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1. INTRODUCTION 

. 

Few would dispute that quantum mechanics is a very successful theory. Indeed, thae 
is at present no discernible discrepancy between the predictions of quantum theory and 
the results of expcrimcnt. Yet the conrcntiond interpretation of quautum mechanics, the 
Copenhagen interpretation, is felt to be inadequate: it rests on an e priti division of the 
world into a classicd observing apparatus and quantum-mcchanicd observed system and 
places heavy emphasis on the process of measurement [l]. What place is there for such 
notions in a world thought to be fundamentdly quantum-mechanicd in nature? Or in the 
very early universe when observers or measuring apparatus could not have existed? 

These questions are not of a purely academic nature. A variety of recent developments 
suggest that extrapolation of quantum mechanics to the macroscopic domain might not 
only be of intawt, but could even be obligahny. The possibility aEorded by SQUIDS of 
preparing systema in maaoecopic quantum rtatea haa forced a revision of the notion that 
only microscopic systems can exhibit quantum &cts [2]. And the emergen ee of the field of 
quantum cosmology [2,4], in which it is asserted that quantum mechanics may be applied 
to the entire universe, has necessitated a raonm ‘daation of the foundations on which fbe 
conventional interpretation of quantum mechanics is based. 

Even on the &milk taxitory of the microscopic level, quantum mechanics contin$es 
to be a murce of conceptad dlfEculty. Although mathematically eonaiatent, and in full 
agreemat with experiment, it displays a number of features which ue di&ult to reconcile 
with physical intuition and are sometimea dacribed aa paradculcd. 

Resolution of the di%ultia may emerge from the ob-tioh that there ir con- 
siderable scope for formulating the theory in di!Taeut ways whilst p&g its physicd 
predictions. For example, non-relativistic quantum mechanics may be formulated in the 
Schrijdinger picture, the Helsenberg picture, or in terms of a sum-ovedistoxks. The thc- 
ory loohs very diffaeut in each of theaa approaches, but they ace m&cmaticaUy equivalent 
and their phyticd predictiona are exactly the eeme. Viewiug the theory &out the perspec- 
tive of these ditkent fomnzlatioti not only rhedr new light on conceptual upectr of the 
theory, but also pointr the way to possible gcnadisatioua. 

The convmtional fixmulation of quantum mechanics, apeciay in the Sehriidiager 
pieture, pluu heavy emphuir on the notiort of an event at a single momentoftime: 
the quantum state of a aydem, the Hibert space to which it belongs, and the “collapse 
of the wave flulction- of con~tioad quantum rIleas- theory, dI invalve a single 
momentoftime[~]. Itis,h-,posm ‘ble ,to generaIke the usual kmulation of quantum 
mechanics so that such notions are d-phasieed, and one focuses instead on the notion of 
a quantum-mdanieel Abtory. By thh is meant, loosely #peaking, a nquence of quantum- 
mahauied eve&r at mcceasim moments of time. 

The object of this papa is to study such a formulation of quantum mecbenia, de- 
vdoped over the lad fm years primarily by Grifathr [6],Omn& [7], end Dell-Mann and 
Hartle [3,&B]. This formulation spe&eally concerns chmed quantum mechanicd systems, 
and is assumed to apply to micmseopic and maaoseopic systems alike, up to and includiug 
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the entire universe. Its most important feature is that it focuses on the possible histories 
of a system. The case of events at single moment of time is included M a spedsl case, 
in which ease the formulationieproduces the familiar results of the orthodox approach. 
The formulation is explicitly timosymmetric. It may be used to assign probabilities to 
non-commuting observables at different times. It makes no refer~~e to external observers, 
classical apparatus, wave function collapk, or indeed any of the usual machinery of conven- 
tiond quantum measurement theory. The physical process of measurement may, however, 
be aamincd from within the formulation. 

The centrd god of this fbrmulation is to assign p~obsbllities to families of histories 
of a closed system. However, as we shall see, interference is generally an obstruction 
to assigning probabiities to histories. Attention the&& centers around a set of ‘consis- 
tency conditiona” which det amine the sek of histories suSriug negligible interference, and 
therefore, to which probabilities obeying classical probability sum rules may be assigned. 
A~~of~~slu~thc~~conditionrucrdaralku’~etmt”or 

‘dec&erant” historla. They have the same status u the histories of a &s&d statistical 
system, such u a stochastic proccas. Onemaythlnkof~syskmdatribedbyrsetofcon- 
&tent bisto&a as posacsslng d&k propatia, but for which there are only probrbilities 
of hdlng the system to be f&wing a particulat history. 

In brief, therefore, in this “decohaaxt historks” (or “consistent hi&o&a”) fomdatjon 
of quautum nlechmlcs many of the dlflicdtles of the octhodoz rppmub, 8w.l in particu- 
lar, the dlf3culties usociakd with central role played by A and the presumed 
airknee of a dauied domain, arereplacadbytheisswds&aQingtheceasistencycoa- 
ditions. These eonditiow act as. mguhkry priaeiph or sieve, systanaticdly sorting out 

the statemaats that ma, be made about. system into manirylul rod zmninglcss. They 
identify the properties of a closed qwatum system which may be regarded as definite, in 
an objective sense, that makes no refera~a to mwsurement or external observers. 

The authors who developed this gaterdization of conventional quantum me&u&s 
appeared to have so-hat di&ent aims. Grifaths anphmimed the Cnnzulation’s potentid 
for ahcdding light on the muceptud dilBculties of quantum xnedmnics [a]. on&s was 
likewise eoneaned with quantum swbuicd paradoxes, but dditioudly, empheaized the 
mleOffhldlOgiC. He~showedthatthewx&stenthisto&sfbrmatrtionis~ 
onfewaud~thrnthe Oopabpn interpretation, and moreovu, onadi&altsetof 
axioms [7]. ‘h umet anbltlow point of view is that kken by G&Mann and Hutle, who 
w~~ri6h~t~~auit~ta~ytotbeopi~u~whdc[S,8,9]. 
ThemotirrJZutorthepracatw~~pa~~dorattothaeobGdl-MurnandHartle. 
T~amarn~irmeofths~~of~dudul~~~,~dthcinkrprrtationof 
quantum conuology. 

Aa swnticmed at the begin&g $ this papa, the Cope&w inkrpretrtion pre- 
Mb~s~eddomainsndicrnotnrffId~y~kexplrinitintenarofan 
underlyiug quantum theory. By contrast, the decoherent hiskaia approach aaumcs no 
separation of dauiul and quantum domaina, and is t&cm to hare an unrest&kd domain 
of vdidity. Oonsida thm, the req uircmcnksquantumay&mmustsatisfyifitisto 
be approximately clasaicd [S]. The most fundamatd requirement is that it should be 
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described by a decoherent set of histories. For then the histories of the system may be 
assigned probabilities obeying classical probability sum rules. Secondly, the decoherent 
histories should consist of largay the ssme variables at different times. In this paper, we 
shall assume this and not explore the manner in which it may fail to be true. Thirdly, 
the values of the dynamicd variables at different times should be correlated according 
to da&cd laws. This means that the probability distributions for the histories should 
be strongly peaked about classical histories. There is some uncertainty as to what other 
requirements should be imposed. A further requirement discussed in Ref.[S] is that the 
histories must be characterized as precisely as is consistent wlth decoherence. Here, we 
will focus on decoherence and da&cd correlations. 

We feel that the decoherent histories approach is likely to be both useM and important 
in the development of quantum mechanics and especldly, in quantum cosmology. It is 
therefore of interest to explore its features ln the context of some simple mod& This is 
what we do in this papa. The purpose ls to develop some intuitive feel fbr the formdlsm in 
familiar circumstmces, and to obtain a quantitative understamiing of how the decoherence 
conditik may be sat&v&d, and the extent to which classicality may emerge. Our work 
consists largely of calculations in non-relativistic quantum mechanics. Although quantum 

- cosmology is one of our motivations, we will make no referrnce to any of its k&&d 
aspects. Other studiw of the decoherent histories approach include that of Albrecht [io], 
who considers spin syata, and Blencowe [ll], who considered the genadization to field 
theories. 

We begin in Section 2 by reviewing the decoherent histories approach. The formalism 
SLY it cnrradly &da ir largely con4 with histories which saw ,the consistency con- 
ditions exactly. However, for most cases of i&mat, one has at but appraximate decoher- 
ence. In Section 3 we therefore address this issue and propose a condition for approximate 
decoherence. We also derive some useM inequsllties for both the density matrix and the 
decoherence fuuctiond. A particularly useful model with which to discuss decoherence 
is the Cddeira-Leggett model, a model for quantum Brownian motion. It consists of a 
distiquiahed particle coupled to. thamd bath of harmoar ‘c aclllators. We review this 
model in Section 4. In Sectiosu 6,6,7 and I) we cdcnlate the decoherknce tunctiond ior 
this model in l variety of d&rent circumsturces. We summa&e and conclude in Section 
9. 

1. THE QUANTUM MECHANICS OF HISTORY 

We have described in the Introduction the motivutions tOr studying a formulation 
of quantum me&tics based on history. We now describe the formalism for handling 
quantum-mechanical histories. This section is largely a review, with elaborations, of the 
materid of R.efk[S,B-91. A hirtorg is a mpence of eve+ at a succession of times. Let us 
thmetkre &t describe what we mean by an event in quantum mechaniw. 
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2(A). Projection Operators and Events 

. 

In classical mechsnics, systems are regarded ss having definite properties and state- 
ments such as, “the position of the particle is z”, are dwmed to have an unambiguous 
meaning. In quantum mechaniw, by contrast, dthough a system may have definite prop- 
erties if its state is an eigenstate of some observable, it generally will not. We might be 
interested, for example, in hnowing whether or not we can say of the system, at some mo- 
ment of time, “the position of the particle liw in the range AD, or “the momentum is p”, or 
“the spin is up”. Formally, possession of certain properties or the oc curreuw of events may 
be tested using projection operators. A projection operator umciakd with some event 
(or with some “proposition”) is a hermitian opaator P satisfying Pa = P. The event is 
said to occur in quentum mechaniw if PI*) = I*), and not occur if PI*) = 0. Since any 
state I@) may be wxitkn es a superpositioa 19) = PI*) + (1 - P)lq), evenfs cannot in 
gmerdbes~dto~~yoeclucnde8ni~ynotocFllr,mdoneuo.tbaturyna 
probability to each poaibillty. The probrbiity of occurmaw, fbr example, is (BIPP). 

A simple example is provided by the tndimmdnnd Eilbert space of spin statw in a 
particular direction, {It), Ii)}. The projection wrwsponding to the proposition, The + 
in up”, is PT = It)(fl, for which one ciearly~has Pelt) = It), and Pll1) = 0. 

H&want to the rut of thir papa ue propositions about a puticle’r pwition. ‘rrhe 
proposition, “the position of the particle is t ” is implemented through the projection 
operator, 

p. = I=)(4 (2.1) _. 
This corresponds to in&My precise specitkation of the particle’s position. Of greater 
interest is the proposition, “the position of the particle lies in the range A “, which is 
implemented through the projection operator 

PA = 
/ dz Id4 

A 
(2.2) 

If the particle is dwcribed by the strk IS), then itr position dcfbitiy Ibin the range 

A if PAIS) = IQ), and it ddnitdy lies odd& that range if P&IS) = 0. The projection 
operators (2.2) ectudly turn out to be rather cumberwnm to cue in practice, and it is 
somewhat oak to usa m-a&d ‘Gmmsiaa slik “. This involvea using instead of (2.2) the 

b~~~s-j=t-nojeaorr, 

Jwl= & 11 * erp (-‘“;~““) lz)(al (2.3) 

Genadly, we will consida a ut of projection operators Pm cmponding to a set 
of dtemativw labeled by a, where Q runs over some (possibly infinite and/or continuous 
range). The set of dternatives should be enhwwtive, which means that 

(2.4) 



and mutually exclusive, meaning 

pa Pa = 6.a.e pa (2.5) 

The Gaussian slit project&s, (2.3), are not exactly mutually exclusive, but satisfy (2.5) 
only approximately, for small 0. 

For a system in state IS) at some moment of time, the probability of the occurrence 
of the event specified by the alternative CI is 

p(a) = (wJ,Pm 

A trivial re-writing of this, relevsnt to what follows, is 

w3) 

Tr[Pple)(~lPd] = p(a) Ltd 

where the trace in over a complete set of stake. 

(2.7) 

A projection is said to be completely fine-grained if it corresponds to precise rpec- 
i&&ion of a complete set of commuting observabla. That is, the projectors are of the 
form, 

Pm = Mb1 (Q8) 
where the states { Ia)} arc a complete. For a particle moving in one-dimension with position 
2, (2.1) would be an example of a hagrained projection. A projection is said to be 
wavse-groined if it corresponds to imp& aped&don of a complete set of commuting 
observablw, precise specification of an incomplete set, or both. An example of the first 
possibiity is Eq.(2.2), or (2.2). An example of the second (considki in the following 
sections) is provided by a composite ayatan consisting of a distinguished subsystem with 
single coordinate z and an “environment” with a set of coordinatw Rh . The Hilbert space 
tar the total system is spauned by the stata {le,R~)}, and a coarse-grain4 projection 
correeponding to precise spedfication al an incomplete ret of observables is 

P l = J a lo,&)(2AI (9.9) 

Most generally, a coarse-grained projection is one of the form 

where PO ia s fine-gained projector, and the mm ir over all Q not &ed by &. 

2(B). Quantum Mechanical Histories and Interference 

(2.10) 

Turn now to the description of histories. As stated above, a history is a sequence of 
evenb at successive momenk of time. A quantum mechanical hidory is thadore charac- 
ter&d by a sequence of projection operators at a succession of times. The god of quantum 
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mechaniw is to determine the probabilities for certain events, or sequences of events; thus 
through the use of projection operators at a succession of times one might hope to assign 
probabilities to the possible hiktoriw of a system, in a manna andogous to Eqs.(2.8), 
(2.7). However, interference generdly forbids the assignment of probabilities to histories 
in quantum mechsniw. To see why this is so, consider the following example. 

Consider a system with Hamiltonian E wbicb at time to is in a state 19). At time tl, 
it will be in the state 

e-iti(tl-to) pp) (2.11) 

Suppose at this time we ask whether or not the event corresponding to some set of pro- 
jection operators Pa, occurs. We therefore consider the object 

p,, e-wtl-b) 19) (2.12) 

ThisWillofeoIlM be sero if the event dow not occur, equal to (2.11) if it doer; but 
genaally it wilI be non-saa and diffaent &om (2.11). Now suppwe we evolve tiher to 
time 12 and ask about about the event Carruponding to projwtors Pa,. We thus obtain 
to obtain the “path-projected state”, . 

la~l~,all~,*) = Paa e-w(*r-*r) P,, e-iH(*a-(o) 19) (2.i3) 

This state is the embed rtak projected onto a seqaence of alternatives at succeesive 
momenta of time. It is the state f&r the titotg (9,ts) + (al,ta) -+ (os,ts). 

Now we wish to assign a probabihty to this history. The obGms candidate fez the 
probability of this history is 

P(a212,aA) = (a~la,aili,~la2~,aitir9) (2.14) 

Ho-, probabilitiw assigned to hidoriw in this way will generally not obey the correct 
probability sum rula. To we this, consida another history, similar to the one above, but 
in which no projection is made at time tl; that is, the history, (‘2,:s) + (a,, tl). It has 
path projected state 

laab, W = Par 6 -Wh-6) 19) 

-Cl aah,altl,+) 
01 

(2.15) 

where the &ul aquality foIlows from the property (2.4) of the projection operators. The 
probability tar tbir second history is 

d&r) = (ah,QlahW (2.16) 

If (2.14) and (2.16) are to be true probabihtiw, then they should obey the probability sum 
rule 

Aad4 =~lhtr,aA) 
0% 

I2.17) 
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This is the rule that probabilities should be additive on disjoint regions of sample space 
(e.g., the pmb&iity of A or F is the probability of A plus the probability of B, if A 
and B are mutually exclusive events). But this is not the case: the probability sum rule 
(2.17) is generally not obeyed by the probabilities (2.14) and (?.16), d&cd in terms of 
the path-projected states. This follows immediately from (2.15) fkom which one has 

(2.18) 

This differs from (2.17) by the presence of the term 

c (aab,Qlf*,Ylaata,a:~l,~) (2.19) 

or++ 

which is gmerdly non-sem, and represents interference bet- diEad quantum me- 
chanied historia. It is in this sense that intexference generally prevents probabilities from 
being assigned to histories in quantum mechanics. 

We may, omrtheless, still attempt to identify those sets of histori- which suiTer nag- 
li@ble intafaence with each other, and therefore to which probabiitia may be assigned. 
Ekom the above, it is readiIy seen that these histories may be found by studying the object, 

-~(al,a2Ia:,aa) = (aata,altl,~larfa,a:tl,~8) 

= a [P,, c -iH(:a--1,) pa, e-iH(:s-C) pj(yl ,WCI-to) p 
4 

.&h-td pa31 (2.20) 

where the trace is over r’complete set of states. If Eq.(2.20) is zero for a1 # at, we say 
that the histories deeokrr and the probability sum rule (2.17) wiU be satisfied. Moreom, 
the probabilities themselves are given by (2.20) with a1 = a:. The main god, therefore, 
rhea studying the qurntum mechanica of hidory, ia to study aa expreesion of the form 
(2.20), and iden* thae sets of histories which decohere. 

This dimple exampla ilbtrata the key issued axking in any attempt to build a quan- 
tum W w em history, and we brow describe the more general formalism. 

2(C). The Dccoherenca Functional 

Geuadly, the system is described by an initial density matrix p at i&id time ta, 
~do3le~da~eanris~~.nprojectionrat~tl <ts <+-a<&,. The 
expression (2.20), the object which tells us whether or not probabiities may be assigned 
to histmia, and what those probabiities are, is a specid case of an object called the 
demhmnca junctkmol, and is given by 



It is a functiond of the pair of histories, [a], [a’], where [a] denotes the string of alternatives, 
al,aa,*-*a, attimest1<t2(*-* < t,. The trace is over a complete set of states for the 

&tire system, and we have introduced 

p,L,(tL) = &-(o)H pt, e-Ytb-*~)H (2.22) 

The superscript k has been added to allow for the possibility to have different types of 
projections at d&rent moment of time, e.g., a position projection at tl, * momentum 
projection at ts etc. 

A find density matrix of could also be included at the end of the string of projections 
in (2.21), and it would then be necessary to divide by a normalisation factor, Tr(ptp). 
Thin form emphasisa the time-symmetric nature of the fixnndation [12]. Here, we will 
generally take pf to be proportiond to the identity operator. 

We note the foUowiq demenkry propertia of the daoherence functional: 

o(M b’l) = Wb’l, [aI) Pm 

C C W4k4) i lb = 1 @W 
[al WI 

The diagond al-ts of the decohereuce functiond satisfy, 

W4 [aI) 2 0 (2.250) 

E W4W) = 1 , (2.256) 
0 

The last property, (2.25b), follows from the cyck property of the trace, and from sum- 
ming out the projections, stuting with the projection at time i, and working inwards. 
The diagonal elanents are the candidata for the probabiitia for the historia (p,ts) -+ 
(al,W**- -+ (h&J d we d-k them, 

Pt al,ah---aJ =~al,ar,..-~lal,aa,...a,) (2.26) 

Eqs.(2.254, @35b) ensure that they are non-negative ad properly mrmalkd. 

Cw the sum rula the probdGlitia should satisfy. For a given set of historia, 
. 

chaa&m4(sg*.eoqwn&oqrunciprojectionsP,, (... P,,onelua~coM~ COUW-g&Id 
historia, by saamdng over the finet-gaincd projections, a in Eq.(2.10) (dthough nok that 
here, the P,‘r need uot be completely 6ne-grained projectiuns). Tlk coarsa-pdned hirtw 
riaaretha&fe&ractmd . by. aquaa of 
We will be more explicit &out the 

coana-gmiued projectiolq P*, ) - - * Pk. 
-gainillg pmau below. lb? probrbility sum 

rula to be s&&d are that the probsbility of each wtmex-grdned history should be the 
sum of the probrbilitia of the Gna-grained historia of which it is axnprised. This means 
that 

Pt &,&a, . ..a.) =F. C P(at,w-*-ad (2.27) 
14~14 
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Here, we have used the notation 

(2.28) 

where ah E &b denota the sum over dl dternativa a* not fixed by the coarse-greiniug 
&b, and the cos.rscgreining may be different at each moment of time. Eq.(2.27) should 
hold for elf coarse-grainings [&I of the finer-greined set of historia. 

As in the simple example discussed above, however, the probability sum rule (2.27) 
will generally not be satisfied by the diagonal elements of the decoherence functional, 
and one cannot assign probabilitia to histories in the manna (2.26). Summing over the 
t&r-grained projections, one obtains the decoherence functiond for the coerser-grained 
histories, 

w49 ip’l) = C C ~U4~Ia’l) (2.29) 
MWI Wlete’l 

From this it follows that 

~0% [a = c D([a],[a]) + c Dtbl, PI) 
mP1 bW&‘l 

bl.t-‘lcI~I 

H-e, bl # b’l - dl pdrs of histories [a],[a’] for which tab # 4: fix at led one 
vdue of k. In andogy with (2.X3), there&q the praena of the sum om off-diagod 
t- generally prevents one &om identifying the on-diegond t- with the probabiitia, 
(2.26). 

For the probability mm mla to be obeyed, it is necessary that the sum uvcr OS- 
diagond terms vanishes in (2.30). From the hamiticity property, (2.23), it follows that 
only the red pert of the decoherence fimctional contributa to the interference term in 
(2.90). A tmfiicient eonditicm foe &coherence, thaefore, is 

Re(D(al,ar...a,(a:,a;...a~)) = 0 (2.31) 

cxceptw~a~3a1/fordl&. Thisisdso~necasycondition,beausethesumover 
off-diqoud W5a must v8ni8b for all prrible causer-grhings of the historia, ie., dl 
poaible stmm of tke d-di8goud t- must vanish. The fundamentd kmulra for the 
quautum nmhnh of history may therefore be written, 

Re(D(aa,aa ---a,,~a;,a~-.-a~)) =p(a1,a*,---a,J S,,,; ---6,+ (2.32) 

This is both the condition for deeoherena and the rule for the assignment of probaldlitia 
to decoherent historia. 

Sets of historia that decohere sue the only historia that are regarded as having 
meaning in this franewo rk, end constitute the predictive output of the theory. Sets of 
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histories which do not decohere cannot be assigned probabilities. They are regarded as 
devoid of meaning, and have no-predictive content. 

In all cases we are aware of, the red and imaginary parts of the decoheze-nce functiond 
generdly vanish together (or are small - see below), and it is often convenient to work 
with the slightly stronger condition obtained by omitting the red part condition in (2.31). 
It would, however, be of interest to 6nd examples for which one cannot do this. 

Note that it is asentid that ~the complete ret of hlstoria decoheres. That is, the 
decoherence condition must be ratis5ed for all possible vdua of the dternstiva [a]. It 
might he poaible, for example, to find II particular pair of dirtinct historia [a], [a’], (i.e. 
particular valua of [a], [a’]) for which the &coherence condition (2.31) is satisfied, but 
not in gaaad for dl other pair of vdua. It would not be correct, however, to ssy that 

this particular pair decohaa. The crucid point is that the probability sum mla must 
be s&&d, and these sum rula invoke 8 sum over CJZ dterzmtives, Cc., over alI possible 
vduaofa~fwruehk. Thedecoherenceeonditionmusttherekebeuti&edfordI 
possible pairs of hirtoria in the set. 

2(D). Coane-Graining and Decoherencc 

Turn now k the quation of how to &eve decoherence. First we nok a simple 
but very important case. The decoherence functional (2.21) is days diegond in the &d 
projection, D([a], [a’]) a 6-1:) by rirkra of the &ic pro* of the trace. hi partierrlar, 
suppose that we consider l&tories charaeterired by 8 single evyt rt ,* single moment of 
time. Such historia dwsyr decohae, for one has, 

m [p&)PP,:(f1)] = wP~,Wl LB; (2.33) 

It is perhaps for this reeson that the need for deeoherence is not apparent in conventiond 
qusntum mechanics, which largely focuses on events 8t 8 single momcntoftime. Letus 
go on, therefore, to study more generd hlstorla consisting of events rt more thau one 
momalt oftime. 

The moot rehetl description of Idstory it ia possible to give is 8 completely fine-gained 
history. Tbim i& owe chm by. set of fine-gained projections .t every moment of 
time, i.e., a& which oue precisely specik 8 complete at of eodg obsavdda rt 
evay tnomemof time. With the mqdion of loplc ape&l cama, iIneqpined hidoria do 
not decohere. To ae this, insert into (2.21) the fine-grained projecthma 

P’, = Macl @.94) 

andtorthe moment let the pr+ctions at e discrete, flpite set of timea. Then the deco- 
heFence functiond ha the form 

D([a],[a’]) = &,.+ (amrtnlaa--l,L-l) (a~-l,~]&)rcd 
x . . . 

x (ar,:zlal,td (4,~114,~l) x (wlt4U4) (2.35) 
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Even before taking the limit that the projections are continuous in time, it is evident that 
a decoherence functional which has the product form (2.35) will generally not be diagonal. 
This will also be clear from thi path integrd form below. As indicated above, however, 
there are some exceptions. For example, suppose that all the projections commute with 
each other and with the Hamiltonian (as would be the case with momentum projections 
for the free particle). Then it is not difficult to see that the decoherence functiond will 
be diagond for any initid state. Another spedd case is that of a pure initid state I%‘), 
with the projections at the times ts taken to be the state unitarily evolved to that time, 
P& = I$(tb))(g(th)l (together with its complement, 1 - P&). It is not diEcult to show 
that these histories decohere. 

To achieve decoherence, it is generally necessary to consider coarse-gained histories. 
There are three principle methods of coarse-graining historia. The Srst is to make projec- 
tions at not every moment of time. Typically this involva making projections at discrete 
momeuts of time, but it could also involve making projections in a dispute set of continu- 
ous rauga of time. At the moments of time when the projection are made, one can then 
give imprecise speci&*tion of 8 complete set of commuting varidla, or precise specifi- 
cation of an incomplete set, or both.This of course cmraponds to making COUM-pid 
projections at those moments of time, u discussed earlier. 

It is an imporknt issne for invatig*tion to determine the extent to which th#se 
coarse-grdhgs lead to decoherena. This will be the topic of much of the remainder of 
this psper. We remu k that it is immediately clew that the &at of the three methods does 
not seem to be particularly relevant. SpeeUyiq a set of fine-grained projections at not 
eveqmomentoftimei88 coarse-grdning, but m we saw above, it alone will genadly not 
lead to decoherence. On the other hand, there is no reason why coarkgrained projection 
continuous in time should not lead to decoherence. We will concentrate on the second two 
methods in the following sections. 

2(E). Path Integral Form of the Decoherence Functional 

The decoherence fimctiond is very conveniently written in t- of a path integrd, 
a fbrm we wlll,aploit in the fdlowing sections. Suppose the system is described by a set 
of confiearrtion rp- vahbla $(t). From the expreesion (2.21) for D([a], [a’]), one may 
derive the p&&kgd apses&n 

D([al, [a%,= ia1 Qi liI ‘Dq” ap (iShi - Yn”1) J(q+ - pi;) Pcd, &I (2.36) 

Here, S[q’] is the action for the system. The sum is over two sets of paths q’(t), q”(t), 
which begin at qi, q’b, at t = to, weighted by the initid density matrix. They end at 
t = tf St 8 comnlon point 4 = qi;, which is slummed over, and the result is independent 
of tf (this follows from the trace fixm of the &coherence functional, (2.21)). The paths 
ala0 satisly ratrictions St tima t1 - - et, corraponding to the projections P&(t‘). The 
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path-integrd form is most useful when the projections are onto position. In this cme, the 
paths are restricted to pass through certain ranges (i.e. pass through gates) on- the time 
&a t1 e-e tnr but are otherwise free. Projections onto momenta are possible in a phase 
sp&e path-integrd version of (2.36) [Q]. 

The path-integrd form of the decoherence functiond provides en alternative wsy of 
see@ that completdy fine-grained histories do not decohere. For suppose we project onto 
precise vdua of the coordinsta rt every moment of time, e.g., project qt onto some relue 
Q’, ssy. Formdly, this involva inserting into the path integrd at erery time t s delts- 
function, 6(q’(t) - Q(t)). It is not difhult to see that the decohersnce timctiond then 
taka the form 

W4, b’l) = axp (W8’1 - w14”l) J(s) - oi;, PtQ:,Q’b) (2.37) 

This exprasion is the decoherenc~ functiond for completely 6ne-gained con@ustion 
spsce historia, Q’(t), Q”(t). It is clearly not ln generd smdl Ear distinct historia. 

In the p&h-integd form of the decoherena functiond, the twu most import-t 
cous+grddngs involve specifykg not dl of the q’ but only some of them, ud spdf$bg 
the qi only imprecisely, by projecting them onto some rsnge. The sum-wa-bistoria s&o 
ah& thepouibili~afcouse-e -pnadthulthosetlmtunbeiltqkmYtd 
byprojectionoperntorsinthetrsee&mnofthe dewhaence filnctioad. Tlw undaiying 
notion that permits this genadixati0B is that of 8 pdition of the p&s. Projection op- 
aakrs put&m the p&s saordlng to their properties rt 8 psrtienlnr mommt of time, 
e.g., the puticle dther does or does not pea tbmugh the region of co&uration space A 
at time f. In the sumava-historia, they cut be pnrtltioned without rekence to time. For 
example, one can psrtition the psths into those that do or do not pnss through the region 
A at sny moment of time. Such a psrtition cannot be eRected by projection operstors; yet 
it csn in the sum-ova-histories, and is sometimes a useful and interesting one to consider 
[13]. The sum-ossr-Gstosia rasion of the decoherena functiond is there&e more genera 
than the trsce form (2.2l), in that it permits these more generd coarse-grdmngs, but it 
is dso la8 generd, in th8t it ls rat&ted to conrse-grdn&s involving only position and 
momenta. 

As at rills, we note that the path-lntegrd form of the decoherence fimetlond may 
dsobewrimB 

D(l4 b’l, = iaIddI ‘04’ arp (iW1) p<d, 99 (2-W 

Hen,themmisorrrdlprthr$(t)~atq~att=ts,~~intimrto 
f = tf pessing through the gates [a], end then moving bachuuds intimepasingtbrough 
the gata [a’], ending rt #t rt t = to. 

Thls completa our surrey of the general formdiwn of the quantum mechanics of 
history. As at&d in the hkodustion, we fed that this spproaeh to qturttum mechsnics 
has consldemble potentid, on the one hand for elari6ing msny conaptud issues, snd on 
the otha, es s posdble tool with which to do qusntnm cosmology. It t&ebre b-a 
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an interesting iaaue to calculate the decoherence functional for various models. Not only 
will this allow ua to develop some feeling for how the formalism works in the context of 
simple examples; but also, it will allow us to obtain a quantitative idea of the effectiveness 
of the coarsograinings discussed above. In particular, in the following sections, we wish to 
exhibit the decoherence explicitly and quantitatively, as a function of the coarse-graimng. 

3. APPROXIMATE DECOHERENCE 
AND SOME INEQUALITIES 

In Section 2 we described the formalism of the quantum me&auks of histories and 
ganr the condition, Eq.(2.32), that must be satisfied if probabilities are to be assigned 
to sets of histories. This condition is the condition for -t decohaence, i.e., for the 
probability sum rules for histories to be satisfkd exactly. Whilst it is sometimes possible 
to exhibit bistorla which decohae -tly, it seems reasonable to expect that in generd 
decoherence will not be -t, but will be approximate. This is the case, for example,~for 
the mod& considered in this paper. It therefore becomes an intaating and important 
question to understand what is meant by approximate decoherence. This question ir the 
topic of the present section. 

S(A). Approximate Decoherence 

Recall that the probability mm rula to be ratiriicd are Bq.(2.27), i.e., that the prob- 
ability of a coarser-gained history must be the sum of the probabilities for its constituent 
her-grained histories, and that this must be true for ell coarser-gained histories. The 
naturd gencralisation of this ia to demand that the probability sum rulee are artistled to 
order c, fbr some constant l < 1. By this we mean that the intaference terma do not have 
to be exactly aero, but only suppressed by a tit&or c; i.e. 

(3-l) 

for dl possible coarser-grainlng [&I of the dternatives [a]. 

In the case of aact decohenmce, c = 0, we showed that condition (3.1) is fully 
equivalent to the much simpler condition (2.31), that the real parts of all the oft-diagonal 
tams of the decohenmce functiond vanish. This enormously simmer the problem of 
checking the probability sum rules. For the case of approximate decoherence considered 
here, however, in the worst possible case, we might have to check the probability sum 
rulea fix dl possible choices of coarser-grained histories. It could be, for example, that the 
degree to which the sum rules are sati+ed depends on the particular sum rule in question. 
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Let us therefore ask, is there a particular sum rule which, if satisfied to order c, will imply 
that dl other sum rules are satigfied to the same order of better? 

To addreu these issues, consider the finest coarser-grain& possible, in which two 
dternatives at time fh are combined: 

Pa, = PP. + Pa: (3.2) 

This meens that the alternative 61, consists of a~ or a;. Let ua then demsnd that the 
probability sum rule for this coarser gaining is satisfied to order c. It is simple to show 
that this means 

I 

&q...ab...]...a; **-)I < e ~...a‘...)+p(...a;...)] 

Ooc might contemplate m this type of condition to the case iu which the QL’S 
~rl;Ctonuehlidcofthedecoherrnafunctiondfardl~naofC,natjurtooe 
due, as ia (KS). The right-hand side might then inratre some kind of arithmetic mean 
of the lxmsponding on-diagonal krms. 

HOlUW,fklX- that will become clear below, it turna out that the amdi&n 
(3.3), or its genadisations, am not the mod appropriate ones. A audition that we m 
foundlristeadtobemorensefdis 

where we have introduced the convenient notation, 

LB = B.e D(Ial, [a’]) 

(3.4) 

(3.5) 

We therefore take the geometric mean of the dlsgond terms on the right-hand side, ratha 
than the arithmetic -. 

First of all, note that (3.4) implies (3,3). This follows (apart from a factor of 2) using 
the reMion, 

PkldCdCfl~ 

I $R,+&d) (3.5) 

and taking do, ease in which [a] and [a’] differ only in the values of the dternatives at 
timefhandnoatha. 

Now consider what the condition.(3.4) implieifca more genad coma-a of 
the histork. Consider 5rst the strict upper bound on the left-hand side of (1.1). One has 

Ip4 qp-4 
-c c c l%p&dl’ (3.7) 

a#d 
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where here, and in what follows, a, a’ E 6. Also, to streamline the notation we temporarily 
drop the bracket notation [a] in favour of a simple a. 

. 

We need m expression involving a sum over probabilities, as in right-hand side of 
(3.1). We therefore write (3.7) as 

where 

I& 1 c, .%aJ < ArCL 
-3 

-l c [%o%Jm~l* O#P’ 

(3.3) 

It is not di&ult to qec that the factor A will gcnerdly be much greater than 1, meaning 
that more genera probability sum rules will not be ratided to the same dm M the basic 
condition, Eq.(3.4), but will be satisfied to degree AC, number generally much greater than 
c. 

The above anslysis gives ‘rigorous bounds on the probability sum rules, but thSae 
bounda are perhaps not the meet relevant ones. In the sum over off-diagond terms ‘on 
the left-hand side of (3.7), it is reasonable to expect that the t- will be m&y 
distributed with regard to rign. This means that, if there ir a large number oft- in the 
sum, there wiIl be a considerable amount of eaaeellation, and the upper bound (3.8) is not 
representative of the typical due of the sum over oiFdiiyod temu. It b like a random 
wdk in one climaulon, with raudom step lengths and equd probabiitks of stepping left or 
right. If the arerage step length ir L, and the number ofrtepa is N, the maximum distance 
one can walk ie UV. However, if N is large, walks of such length are exceedingly rare, and 
it may be shown that by far the most probable walks have lengths of order LN* or less 
(assuming that no one rtep k mxbrtautially larger than atl the others) [14]. 

For the case at haad, we axpect that a statistical andysis of the distribution of the 
off-diagond terms summed ova wilI produce an upper bound much lower than than the 
rigorous uppa bound in (L7). In particular, we will assume, in place of (3.7), that the 
distribution d oMiaguaal terms is such that 

(3.10) 

Now we repeat the above analysis using (3.10). Using condition (3.4), it is straightkward 
to show that (3.10) implies 

I.+# .I -jpd <AepL 46 (3.11) 
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where 

(3.12) 

It is readiIy seen that A 5 1. This is the main result of this section: given condition (3.4) 
and assumption (3.10), alI probability sum rules are satisfied to order c or better. 

It may be enhghtening to explain why condition (3.4) is more appropriate than (3.3). 
The main di&uIty with (3.3) arises when the coarser-graining & involves a sum over an 
idnik numbex of do. This happens in the modeIs of this paper, for -le. For suppose 
one repcakd the above analysis wing (3.3) in pIace of (3.4). Then in the expressions 
corresponding to (3.7) and (3.11), one would obtain expressions in which 4, are summed 
over both o and a’, and wouId therefore diverge. 

S(B). Soma InaquaIIties 

We now derive some inequditia which wiII be weft& and lend support to the apprax- 

imate &eohaaa eoudition, (3.4). Consider the matrix d -ts of the density operator 
p ia au arbitrary basis, { ]A)}. It im given by, 

PAB = C~PIW (3.13) 

Now p is a non-n 
7 

atbe hermitian operator. This means that there exists some operator 
S such that p = S S. It follom barn the Cauchy-Schwas ixbzqudty that 

](A]StS]B)(’ 5 (A]StS]A) (B(StS]B) (3.14) 

We thaeha&ve the inequdity, 

IPAd I PM PBB (3.16) 

for~A#~~~~tyit~doplJifpisparr. 

An analogous ruult dso hoIds ti the decohaence functional. Write the decoherence 
iiulctioaal 

o(bl, WI) = N c (Blur Gpd lP) 
B 

(3.16) 

where we have expIicitly written out the trace over a complete set of states, {Ip)}, and we 
use the notation 

c a = Pm.(L). - . Pa*(ff)Ptl*(h) (3.17) 
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For generality, we have also included a final density matrix at The normalization factor 
N is given by N-’ = T+p). - 

For simplicity, consider first of all the case in which pf is mixed but the initial state 
pa is pure, po = lS,)(Yoj. One then has 

D([Q],[~‘]) = N (%l’&,GlW (3.18) 

Since we may write p, = Sf Sf for some St, it follows from the Cauchy-Schwarz inequality 
that 

lW4 b’lI I P(bl,I~l) N41 b’l))* (3.19) 

with equality if pt is pure. The case. of (L pure pf and mixed po is esaentidly the same. 

The case of general P, and po is a little more complicated. Write p1 = SjS/ and 

po = SOS]. Then the decoherence functional may be written 

N4 b’l) = N c (BI%d P8) 
P 

(3.2?) 

,,h= we have introduced % = SAC&. One therefore hm 

IW4b’l)l I N c IOpl&&~,l 
P 

I IV c WU!lP,~ (al%&Pif 
P 

For simplicity of notation, introduce 

XP = (BI%A!lP)~ 
YP = (al%A!*Mt 

Then (3.21) #&de, 

Ah 

IW4~b’l)l I N c XP$ 
P 

D(bl, bl) D(b’l, WI) = Na c XjY. 
PST 

Non coneida the inequality, 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.251 

z (XPY, - X,YPY 1 0 
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This implies that 

E: XpYpXJ-, I cx;Y; 
P,7 P.7 

and hence that 

X&p 5 (3.28) 

Comparing with (3.24) and (3.25), we therefore again obtain the inequality (3.19). This is 
the main result: the decoherence functional satisfies the inequality (3.19), with equality if 
the initial and finsl states are pure. 

It is not true that equality is obtained only it the ix&id and &al states are pure. It 
is not di%ult to construct examples with a mixed initid state in which all but one of the 
probabilities for a set of histories are 340. But one then has eqdity in (3.19), because 
both dda are sero. 

The inequality (3.19) lends support for the use of our approrimate decoherence con- 
dition, (3.4). The degree of dccohcrence is basicdly the anmmt by which the left-he$td 
side of (3.19) is lees than the right-hand side. A search for other, more wncrcte meslrurpr 
of approximate decoherence would clearly be both useful and interesting. 

4. THE CALDEIRA-LEGGETT MODEL 

An important class of syskma in the study of decoherencc are those in which there is 
a preferred split of the totd system into a distinguished system, and the rest, summarily 
referred to as the environment. A natural coarse-&raining in such composite syskms 
then umsisk of projecting onto the dlrtinguiehed system only, whilst tracing out over the 
enviwnmcnt. Models of this type have been wnsidued aknsivcly in the context of the 
reduced density matrix approach to decoherence [15]. Here, we will consider such a model 
in the conkxt of the deeoherence functional. The model is the Cddeira-Leggett model, 
originally prqped u a model of quantum Brownian motion [Ml. 

The w&&t model ls a comparatively simple model for decoherence in which 
the evolu&~Icthe reduced density matrix may be determined exactly. It consists of a 
di2~2y2kaaAwithaetion 

SA[O] = i’& [+a - +w] ) (4-f) 

coupled to a reeermh 01 environmmt B consisting of a large number of harmonic oscillators 
with coordlnaks Rb and action 

&[a] = cp [+!i - +4Rq 
h 

(4.2) 
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The coupling is described by the action 

S;[z,R] = -F l7 dt C&,z 

where the Ck’s are coupling constants. 

The object is to study the quantum evolution of this system, but focusing on the 
system A only. At any time f, the most complete quantum description of A only is given 
by the reduced density matrix 

i(w,4 = J -Q 6(R - Q) &,R,v,Q,:) (4.4) 

where p(e, R, y, Q, t) is the density matrix of the combined ayakm. 

The evolution of a pure date would be gi:ren by the usud pro=ator for the totd 
mystem, which may be apressed in path integrd form, 

(=~,Ry,+o,%,O) = /- -P(W=,RI) (&) 

Here, S[z, R] is the totd action for the system, 

s[=,Rl = SA[Z] + %[Rl + szh RI 

and the sum is over paths (a(t),R(t)) oatidying the boundary conditions 

2(O) = 00, Z(T) = Zf, R(O) = &, R(T) = Rt 

The evolution of the totd density matrix is therefore giten by 

(4.6) 

(4.7) 

P(~~~vY~,Q~,~) = J &oiodRodQo (db+oJb,O) 
(4.8) 

x (~,Q,ha,Qe,0Y P(=o,%,Yo,Qo,O) 

Using (4.6) aud (4.8), we may therefore obtain a path-inkgrd expression for the evolution 
of the reduw&&nsity ma&x 

~(%~f,~) = J dao+oclRodQo~tdQj I)zW=‘Q Vb - Qr) 

x acp (is&] - is.&] + iSB[R] - iSzt[Q] + iSz[z,R] - iSz[y, Q]) 

x ~~o,%,Yo~Qo,O) (4.9) 

Nat, it is assumed that the initid density matrix for the totd system has the form 

P(~o,~,~~(O,QO~~~=PA(~O,~O,~)PB(%~QO,~~ (4.10) 
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For then it is possible to completely integrate out the environment in the path integral 
(4.9). The resulting expression play then be written 

. 

i(zf,Yf,r) = J dzodyo ~(=f,Yf,7b,l/o,o) PA(ZO,YO,O) (4.11) 

Here, we have introduced 

~(=mv,+o,yoso) = J-Q 
where F[z, y; T) is the influence functiond, 

Urp (isAk1 - isB[Yl) %Y; T) (4.12) 

~z,Y;T) = /fWQoa,dQ/ 60-b - Qt) ~d%rQo,O) 

x J z)lRsQ ap (&PI - &Ml + iszb, RI - iszb, Ql) (4.13) 

The quantity .7 de6ned in &.(4.12) is the centrd object of intaest in the Cdddra-Leggett 
modd, because it describes the evolution of the reduced density ,&om any i&id total 
density matrix of the Eotm (4.10). It will also turn out to play an important role in t&e 
decoherence functional described in the next se&on. 

The influence functional (4.13) may be evaluated exactly given the initid den&y 
matrix of the emi ronment, B. A us&l choice, kken by Cddeira and L-egg&t, is to take 
the environment to begin in thermd equilibrium at temperature T, with density matrix 

pi&Q) = I;I %tiyw;,LTl 

xacp - ( 2wy;,kTj [(R: + ‘2:)~~h(ulkT) - W4 

The influence functional is then giren by 

F[w7) = ezp (-1-m) 

wheze 

f(J) = l,&‘&[+) - Y+)]Wi(J - a%(.‘) - Yb’)] 

+ i J ’ &‘&[z(r). - y(a)]oz(r - s’)[z(s’) - ~(a’)] 
0 

and 

OR(d - a’) = F $&oth (s) cow& - d’) 

OZ(d -I’) = c A- 
, 2Wb 

sinwr(s - d’) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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Caldeira and Leggett next choose to take a continuumof oscillators in the environment, 
with density pi, which invo!ves the replacements 

in (4.17), (4.18). Furthermore, a high-kequency cut-off in the sum over w is taken, of the 
form 

p&+9(w) = L 7 yI: y” ;:“y ; ; (4.20) 

The result has the genera form, 
. 

J(~trm+o,~o,0) = J Vz’Dy urp (i3.M - 4harl) 

The e&t of tracing out the environment leads, amongst other efkcts, to a renormal- 
ising of the frequency of the dirtlnguished odhtor from w to WR. We will work in the 
Fokker-Planck limit, for which kT >> n >> WR. One then has 

S[z, y] = lr dt (gz1’ - $42 - +;2 + +:Y’ - M7(= - VI@ + iI> (49) 

and 

Ok, VI = m+T oT 44t) - INI J (4.23) 

The environm ent therefore has three efktr of slgni&ance: renormkdisation of the fr+ 
quenc.y w, the introduction of dissipation character&d by 7, and the suppression of con- 
tributions from widely differing pairs of paths in (4.21) through (4.23).. It is this latter 
eEect that will lead to decoherence. 

It is particularly useful to introduce the variables X = e + y, 6 = e - y. In terms of 
these variables, the above expressions are 

S[X&] = 1-d ($dl- +:xc. -M-r&) (4.24) 

and 

4-T 4 = 2WkT J *w 
0 

(425) 

Two features that will be imporknt in yhat follows are firstly that 4 de+nds only on 4, 
and secondly that X cwmrs linearly in S[X, e]. 

Now we review the waluation of I, (4.21). e will be useful &x the next sections. 
It is convenknt to expand about the ertremum of S. The extmmum is the paths X,1(t), 
&l(t) satisfjkg the equations of motion 

m 

Df+jXyX+27i+w;X=0 
- . 

D~-gz(-27~+~~(=0 
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subject to the boundary conditions 

X(O) = X0,’ X(7) = x,, WJ) = to, t(7) = et (4.28) 

The solutions are 

Xd@) = gw, ev cinwt +X0 &w(r - t)) 

&&) = & (.$, e-f&wt +.$I sinw(7 - t,) 

where w! = wi - yz. The action 3 evaluated on these solutions is 

%I = &(7)X,& + &~)Xob - L(+)Xotr - N(r)Xfto 

(4.29) 

(4.30) 

(4.31) 

where 

Now write 

where 

i-z(T) = -+7 + ;Mwwtw7, (4-W 

k(T) = +++ +wwtw7, (4.33) 

L(T) = 
MWS” 

asinwr ’ 
(4.34) 

N(T) = fLwT. (4.35) 

X(t) = xd(t) + 6x(t), t(t) = b(t) + at(t) (4-36) 

6X(O) = 0, 6X(s) = 0, &(O) = 0; &(7) = 0. (49371 

The path integral (4.21) now beeoma 

+&&b~lX0,~~,0) = -P (i-h) J WVWO 
X=P (-i$ J.d SXDc+& - #[cd + 64) (4.38) 

Howeva, since the arpoomtirjlut~in6X,thsinkgrlover6Xir~y~, 
to pull down a delta-functional S[&-#]. Inkgratiq over 64 the only contribution thus 

comes from 6t = 0, and a p&actor of (dct[Dt-)I)-’ appears. Thi2 prehctor wao cvduakd 
by Cddeira and Leg&t, and we denote the rem& P(T). The &NJ rault in the&ore of 
storm, 

JGG&dXo,too,O) = P(T) ap (& - d[&r(t)l) (4.39) 
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Here, qQcl(t)] has the form 

d[&&)l = AkIt; + B(~)lb + C(7)&i (4.40) 

Explicit (but rather lengthy) expressions for the coefficients A, B, C me given in Ref.[16], 
and we do not give them here. However, they simplify enormously in the Folrher-Planck 
limit considered here, in which case they are given by, 

A(7) = 
2MykTc-2~ 1 

sin’ w7 [ 
+eJf+ -1)-I 

1 

B(7) = 2M7kTe-v 
sin’ WT [ 

A!?!E(,~V 
27 

-l)+Icoswr+Jsinwr 1 
C(T) = zfy7 $(ezT7 - l)- Icor2ur- Jsin2wr 1 (4.43) 

where 

I= :7(7’ + W’)-’ (ertr C082Wr - 1) + iw(7s + ws)-sesw &rw (4.44) 

J = -:w(? + w’)-l (e’” ~0~2~7 - 1) + $7(7J + wJ)-leav hm (4.45) 

For future reference, we note that in the short time limit, each of A(r), B(7) and C(7) are 
approximately equal to jM7kTr + O(rz). 

5. THE DECOHERENCE FUNCTIONAL 
FOR THE CALDEIRA-LEGGETT MODEL 

We are going to calculate the deCoherence functiond (2.21) for the system described in 
the previous section, consisting of a distinguished harmonic oscillator coupled to an envi- 
ronment consisting of a thermal bath of harmoni c oscillatom to provide decoherence. The 
projection operators will be projections onto the position of the dirtinguished oecillator. 
For mathematical simplicity, we wiIl use Gaussian slitr. 

S(A). The DecoherenCe Functional 

The de&erence functional ir written down most readily using the path integrd form, 
(2.36). In our ewe it is, 

Dk&] = J +dy@&Q, ~ohodR8dQo =Pyl)QnR 

x a(=, - vt)&(Rf - Qt) PA(=O&O) PEPLQo) 
x erp (iSA[s] - is.&] + iSB[R] - iSs[Q] + iSzb, RI - iSz[v, Q]) 

Xexp .( 
_ g (+bg w _ g (Ye.&; a’) 
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For convenience, in what follows we will omit pre-exponential factors. (These can always 
be deduced, if desired, by appealing to normalization conditions). The sum is over histories 
(z(t),y(t),R(t), Q(t)), where t ?uns from t = to to t = tf = &,+I, and the histories satisfy 
the boundary conditions 

z(to) = 20, YOO) = YOO, 4Q) = =fl Y(Q) = Yj (5.2) 

IWO) = %, Q(to) = Qo, R(Q) = Rj, Q(Q) = Qj (5.3) 
On the i&id s&e, t = fs, the i&id density matrix of the system is folded in, and is 
taken to have the form (4.10), (4.14); on the Snd surface at i = tj, the delta-functions 
enforce zf = yf, Rj = Qj aud then 21 and Rj are summed over. The histories are obliged 
to pess through the Gaussian slits at posltios?s 2s, #b at timu t = fk, for k = 1,. *en. It 
will be convexdent to worh dways in the Fohha-Planch limit. 

Because the projections refer only to system A and not the environment B, the envi- 
ronment wordhates may be cmnpletdy integrated out. One thus obklns 

. 

D[h,&] = I ~jdy/~odvo -a +v - yj) I’A(=OdO) 

x erP (isA[Z] - isAb1) 7[%#;7) 

X=P ( 
_ g bob; ai)’ _ g wr; fibY> 

(a41 

where I+, y;s) is the influence functional introduced in the previous section (in the 
Fohher-Planch limit). We then hare 

D[h,flb] = J +&+ohro -a J(=t -Y/) PA(=O,Yb) 

x ezp (i&b;1 - 40, ~1) 

X-P ( 
_ 2 (ebb; Sb)’ 2 (Y@b&- #b)S 

> 
(5.5) 

b-t b hl b 

where &, v] and +I, p] are ginsn by (4.22), (4.23) reqectlvely. 

Beuarsthpropctionrrad&~thedir~retoi~cat=tb,fork=1,2,...n,it 
is conveaie& oi. rarrik (5.5) in terms of inkgrals on these .slices aud propagation between 
them. Itir3rotudalkpkthe~b~X,~,deilnedbyX=z+y,~=z-y. We 
then have 

D[&&] = J~+,crl.+,dx.dc.--ax,~o G+I) PA(XO,tO,tO) 

Xarep ( _ k (X* - XbP _ 2 Rb - I‘)’ 

b-1 20: b-1 2q: ) 
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Here, 

J(x~+~,~,+,,‘~;llX~,t,ti) = /vXW 

x csp ( 4X,~;t*+1,t*) - 4Lw;~b+l,~b) > 

where ~[%I;~i+~,~~l and ~[X,~;~,+I,~~] d enote the quantities (4.22) and (4.23), respec- 
tively, but ~with the integration domain [O,r] replaced by [tb,tb+l]. As in the previous 
section, Eq.(5.7) may be evaluated exactly with the result 

J(Xb+I,~b+1,tb+lIXi,~b,tb) = F:+l,b utp ( &L+M - 4r+1,b > (5.3) 

where &.le = F(fb+l - tb), with F(t) as in Eq(4.39). Also, 

sb+l,r = Scl(Xb+,,t+ltfb+lIXb,~b,,tb) 

= &+1,.X.4+1 + &+I,bxb~L 

- Lr+l,bX,&+~ - N,+~,rX~+lt, 6.5)) 

where I&S = k(tr+l - tb), with K(t) glva by (4.32), and simihuly for &+~a, l;r+l,b 
and &+I,,. -, 

9wc = Ar+d:+~ + &+I,&+& + G+I,& (5.10) 

with Ah+l,b = A(tb+l - tb) etc. 

As an aside, we note the following point. The propagator J from t = 0 to t = 7 is 
given by Eq.(4.12), which involves the influence functiond (4.13). This in turn involvea 
the density matrix of the reservoir B at time t = to, given by JSq.(4.14). The propagator 
bet-sliceat = tb and t = Li+,, JSq.(5.7), comes from expressions of identical form, 
but with ths change af domains of integration noted above. It is perhaps surprising, 
however, that the prupagatuc fkom tb to th+, shonld kolve the de-nsity matrix pi at 
t = to. Them tar this is that the environment in the Cddeira-kg&t modd is taken 

tobeaseaK6&innnite. Thismemls that dthough the the system A is itself a&ted 
substautial&by its interaction with the en vimnment B, A has negligible c&t on the 
dynamia of the m+onment To a good approximation there&e, the environment is 
dways in thermd equilibrimn; deaeribed by the density matrix (4.14) for all time. 

Our task now is to evaluate the dewherence functional (5.6), for varions choice of 
initid den&y matrix PA. All the integrations are Gaussian and may ther&re be carried 
out in closed form. Despite this, a direct assault tums out not to be the simplest or most 
transparent way to proceed. Recall that in Section 4, the evaluation of the propagator J 
was considerably eased by the simple observation that X occurs linearly in the exponent. 
Because of the presence of the projections, X doer not occur linearly in the exponent of 
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the decoherenee functional. However, the following trick turns out to be extremely useful. 
Write 

(xb;xb)a) =~Jdp,up(-P~+~(x,-~b)) (5.11) 

Now inserting (5.8) and (5.11), the decoherence functional becomes, 

~[~b,‘fbl = / d&+l&+ldX&o d”X a”( 8’1 &$.+I) ~&Wo,i) 

X Urp 2 [is‘+,,, - +b+l,b 
brO 0 

Xurp (5.12) 

The exponent of the dccoherence functiond is now antirely linear in the vaaiabla Xb, and 
we may proceed with the evaluation, baginning with the integral OIQ Xb. 

A change of vaxiablas is useful. Consider the classical solution fix X(t) connactiq the 

initid and Snd points, (4.29). Write it ss 

&d(t) = X,,l 4) +x0 B(f) (5.13) 

Here, o(t) and p(t) are solutions to the fidd equations fat X whose exact form may be 
finmd by comparison with (4.29). They sati+ the boundary conditi?nr 

a(C) = 0, a(ff) = 1, (5.14) 

B(fo) = 1, B(Q) = 0. (5.15) 

Now perform the change of variables 

X,=X,d+6X, 

- xn+1 Qb + xe Bb + 6Xb (5.16) 

where ah = @A), 8‘ = fl(tb). It follows from the above that the 6Xr, obey the boundary 
conditiono 

6X, = 0 = 6Xtil (5.17) 

Under this shift of inwtion &abler, ona finds that 

2 Lb = S.l(x~,O,~tlxo,~.r,te) + w (5.18) 
b0 

whae & is given (&om (4.31)) by 

- . 
%.I = K(+foXo - N(T)~lJX, 
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and 

- b+l,btb+l •,- (kb+,,b + k ,,,- 1 )<b - N ,,,- l(,-, 1 6x, (5.20) 
b=l 

Using the above results, the decoherence functional may now be written, 

D[,P,,tb,l = / dx,+lG 4a d”(W PC d”P PA(XO,EO,~Q) 

X exP 

( 

i~(~)Xoto - iN(~)L+ito -I- is(‘) - g ~b+i,b(~b,~b+l) 

I;=0 

- 2 [p: + 5(x.+, ah + xo @b + 6x, - a%) + (“ ;‘*“I) 
b=l 

(5.21) 

The integrals over x,,, and 6X, pull down the ddt&unctions 

‘“I -~b+l,b’!b+l + (k&+1,‘ + iii,‘-l)& - N,,‘-l&e, - 2: 
> 

The integrations over es and 6th may then be performed. The only contributiona come 

and from the value of .$ satistying the difference equation, 

-L‘+l,‘b+l + (iir+l,b + ii&,&-,)(, - N&,&e,.f‘-, = 22 (5.24) 

for L = 1,2---n, with the bonndary conditions that &,+l = 0. Eq.(5.24 may be solved 
arplidtly, but the aut &em of the solution will not be needed. It will be is linearly 
depndent m.6 aad hi. We will hereafter asswnetheintegralsmer& andl& havebeen 
done, and e. to dasmte the right-hand side of (S-23), and 6th to denote the solution to 
(5.24). =h.:m d 4. .d 4‘ to k@Sl, inmindi?thatthayarebothlineuinP~. We 
now have, 

~i~b,tbl - jkT0 pp PA(XOr&htO) 

x ‘=P 
. ( 

ik(T)xObl - ~~b+l.b(t,~b+l) 

br0 

?+,, 8, - x,i) + (6 -‘)ja 

b I> 
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We will now consider the evaluation of this expression for various different forms for the 
initial density matrix. 

. 

5(B). Wave Packet Initial States 

We 6rst consida aa initid density matrix corresponding to a pure state consisting of 
a wave packet mommturn p centered about the point to. One thus has 

pA(x&,io) = cxp 
( 

iptp - (xo ,;‘“I’ - $) (6.26) 
. 

where Xs = 210. InseAng this into the decohaence functiond, the integral over Xs may 
be perbrmed, and one obtains, 

~i~b,tb] = 1 d”p -P +tO - $ - 2 ~b+l,b(~b,~b+1) 
0’ 

‘90 

- flbpb - 2 c - 
h, *‘ 

’ 1 
“,” x, + (t* -)da 

b I) 

(6.27) 

The importaut skp now is to orgudse ihe exponent into t- quadratic md linear in Ph. 
We thmfore write the decohaenm fimctlond in the form 

D[xb, fb] = 1 ( d-p eXp - 2 2 PbMbjpj + &b + iv,)fi - g, 3 
b-1 j=l Ll > 

WhCU 

and 

gig fi"‘& = ua ’ + ~~b+l,b~~b,~b+l) 
b-0 

+; b(T)&2gy 
[’ 

la+&:+$] 

. err,&=2 23th 
bl ,=I ‘ 

fi&=,&+d 1 +2 g12& 
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In particulti, 

Now let 

Yb = &ah + ($+b +@b) a0 

(5.32) 

(5.33) 

The significance of this is as follows. Consider the da&cd solution for X(t), given by 
(5.13). This is the solution for iixed initid and End X. However, Hamilton-Jacobi theory 
together with Eq.(4.31) give 

-@7)x0 + N(T)X, 

whem Pt is the momentum conjugate to 4, and we can use this relation to obtain the 
classical solution bar &ed initid X and PC, 

( 
. 

X&) = g+(L) + $&a(1) + Lw > x.0 

When the decoherena functiond is diagond, z = y = 4X, uxd since Pt = fd42, we can 
identify p = Mai, the momcotum oomjugate to o, with Pt. We theefore have the result 
that Y, = X&) = %&), where &i(t) iS the dssd& SOhltiOll With initid pOsitiOn ts 
and initid momentum p. 

The intcgrd over P& may c&&d out, with the formal reauh 

D[&&] = UIJI +%i-‘u _ +‘v -;,,-lv$j 
> 

(6.36) 
b-1 ‘ 

in an obviow matrix notation; Eq.(S.36) may be n-arranged into the form 

whem i&j may be fimnd &om the above. It &II be positive definite beea? the de&ha: 
cncc fimctiond is by construction normaliaable. Siy, it follows from (6.29) that M&j 

is positive definite. 

We may now see that the decoherence fimctiond has the expected qualitative features. 
The Crst term in the exponent of (5.37) shows that the decohereznce f+ctiond is small for 
large values &.[&, ic. that distinct histories decohae. The -d term, whi& is linear in 
(b, is p&y imaginarJr. It does not a&t decoherence, and in fact vanishes when & is set 
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to eero. The third term clearly shows that the diagonal part of the decoherence functional 
is peaked when the slit positions 3, lie dong the clsssicd trajectory, -%b = Yb. 

At this stage, the full ad&age of writing the slit projections in X in terms of 
their Fourier transform is clear. The qualitative features of the decoherence functiond 
- decoherence of distinct histories, and peaking about classicd trajectories - are clearly 
exhibited. The detsiled expressions for the widths of the peaks are ratha complicated, 
and it is because of this that a direct assault on the evaluation of the integrd would lead 
to some rather -basome algebra. Use of the identity (6.11) leads to a clean separation 
of the t- giving the conilgurationo about which the decoherence functlond is peaked 
from the terms giving the width of the peaks: the former are linear in & in (5.28) and the 
latta are quadratic in 4. It seems likely that this simple trick will be similarly useful in 
calculations of more complicated decoherence functionala 

5(C). General Initial States -The Wiper Function 

For more genad i&id states, we have fonnd that some of the qualitative featarq pf 
the decoherence functional may exhibited using the Wigner tradbrm of the initial dens&y 
matrk We there write the inltid density matrix, 

PA(XO,~O,tO) = 
/ 

dpo e’mb W(R,Xo) (5.38) 

where W(po, Xs) is the Wigna function, and is obtained in terms of QA using the inwzrse 
of (5.38). The Wgna function has many properties shared by classical phase space distri- 
butions, and has often been proposed as an interpretationd tooI [17,18]. Inserting (6.38) 
into (5.25), one obtains 

. 

D[~b,tb,l = ] dpo dx, d”P WV(po,Xo) 

’ =P +@ + @s)xO)tO - ~~b+,~(t,&+,) 
h0 

=&, ,& - &) + (“ --/“’ I> (5.39) 
b 

wh-, f-h to and t - @rep b (5.23) 
- demalty 

and (5.24). Inse&ng the enpresslon for &., 
arrangement of the krms yidds an apses&n mry oldiar to (6.28), 

D[~bll;] = J dpr ax, d”PW(pa,Xo) 
x-P -22 ~~bj~j+~(ti‘+iv‘)~-~~ 

> 

(64 
b-1 j=l hl 'b-1 
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Here, vk is given ss before by (5.30), but hfbj is given by 
* 

2 2 Pbhfhjpj = 2 4 
b=l j=l 

, 

a 

o b+l,b:(tb,~b+l) + $, [p: + $ 

Ah.0 v, = 2(x, - Y,)/@,, where Y, iS ,JiPen by 

yb = &ah + ($+b+@b) x0 

(5.41) 

(5.44 

This differs from (5.33) only in as much as p and xs have been replaced by p,, and Xs . 

Again one can formally carry out the integrd ow P&, with the result 

D[~b,ti,] = / dpo MO ‘W@o,Xo) 

M-‘If -+-‘v-$j 
(SW 

hl l 

In particular, setting & = 0, we see that the diagond part of the decoherence fimctiaha 
is g&n by 

#&I=/ dP0 dx0 w@o,xoj ap -c 
(2‘ - y^lMG, (xj - .,> 

bj =* .=i 
(5.44) 

This, then, is the formal result for an arbitrary initid density matrix. 

The form of (6.44) is suggestive of an ensemble of classicd paths, with the Wigna 
function of the kitid density matrix giving the probability distribution of their initial 
vdueo of coordinrta and momenk This cannot be quite correct, ho-. + 
Wguer i%uction is noi dways positive, whereas (6.4) is, by construction. Seco::yT;.$ 
is a probability distribution on a sequence of position samp*, and makes no &rence 
to momenk. The comuetion with phue spaa distributions is obtained by considering 
hietoriee co&ding of position sampiings at two momenk of time. By kking the times 
wry close tqrtkr, one thus obtaina an appmximate position sampliq together with a 
wf-fli(lht :e sa~~pling o~tr a short time interval. The resulting probability 
~tributi~tprnroattobethewignerfrrnctionuncandom~h~rrgionofphsse 
space -just sufklmt to make it positire. These results are described in more detail in a 
separate papa [IS]. 

S(D). Decoherence 

The complexity of expressions such as (6.37) x+es it di&nlt to obtain more than 
qualitative inkmation about d-herence and classical peaking. More precise quantitative 
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calculations for simpler cases will be the subject of the following sections. Here we note one 
particular simple case showing some important quantitative features of decoherence. First 
of all tahe the projections onto the distinguished system to be at every moment of time, 
from to to ft. Secondly, take their widths to zuo, so that the hiatories for the diatinguiahed 
aptem are completely Sne-grained. Fkom (5.51, one thus obtains, 

w(Gml = m - 8f) up (4w -m) PAPOJOO) 

Using the density matrix inequality (3.15) for PA, and using the explicit form for 4, (4.23), 
one tluda that the decohcrcnce functional satisfies the approximate decoherence condition, 

I D[Wl I 5 exp (-24 w -4 (DP,WLd (5.46) 

Thh indiuta that path; oepuated by dirtanca of orda l dbcohere on a time wale of 
Order 

tD N (2Mymf’)-’ (547) 

h noted by Znrek, this time can be very short indeed [20]. 

This dmple ease the&&e explicitly indicatea the general tendency of the en&t 

to induce dccoherence. But it also illartratm a subtlety. To obtain decohcrence of the set 
of hidoria {a(t)} to mme degree c < 1, it ir naaaary that 

erp (-2bw+t -Iv) s e 

However, the set of historia {Z(t)} are completely Cwgraincd. It follows that it will 
dways be poasibk to Snd paim of histories, a(t), g(t) which are distinct, yet for which 
Jdt(t - glz is so close to sero that (6.48) cannot be satidied. Clearly what is needed is 
filrtha ~~oithchirtoriaft(t)},#,thrt~hudPnisc’L”~anLuptorome 
length scale 4, uy [21]. The moral of this, therefore, im that to satin@ an apprkmate 
deeohawnee eon&ion of the fimn (3.4), in thir modd, both typa of -g&llhg- 
ncamuy-tmcingouttha wn-t and anuring over podtion. 

6. EXPLICIT EVALUATION OF SOME SPECIAL CASES 

In Section 5, we evduated the decoherence functiond tar the case of an arbitrary 
number of projectiona in the Cddcira-Leggett model. Or rather, we evaluated it to the 
point where its qualitative featurea could be MIX: decohercnce, and peaking about claakd 
trajcctoriea. Howwwr, were not able to evaluate it to the point where we could obtain a 
qwntifatiwe idea of the degra decohercnce. In thin and the next section, thereforw, we will 
cvduate the dccoherence functional completely for the simplest non-trivia case, namely, 
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the case of histories characterized by projections at just two moments of time. This involves 
evaluating (5.6) for the case n = 2. 

As we have seen already, the decoherence functional has the property that it is diagonal 
in the 6nd projection, dthough in the present case this is only true approzimately, because 
the Gaussian slit projectora obey the mutually exclusive property only approximately. 
Nevertheless, to the extent that it in true, Eq.(S.B) for the case n = 2 redueez to, 

w,,~,tz,) = J ~a4a&41~040 6(h) PA(Xo,~o,to) 
x F& J?,o exp (iSa. - da,1 + &,o - h,o > 
Xexp 

( 
JX,-a,)yx,-R,) -(c,--&)J 

4 4 4 > 
(6.1) 

where P, 3 and 4 are ddkd by Ekp.(5.8)-(5.10). Pot the initid d&zity matrix, we will 
tahe a genera Cans&n, 

PA(-LCo,to) = exp (-oxi - BOG - YoxocD + Pox0 + 40 + co) w 

Here, a0 and PO are reaL clearly aa > 0 fez normalisabiity, lkp = 1. It may be sh&n 
that pouitivity of p implia th8t flo > 00 [19]. 

To duate the decohezatce functiond (6.1), we could of course just use the method 
used for the geaerd case in Section 5, and quite simply ezdnate the tInal exprezsion for 
thin particular cue. Ho-, this turns out to be rather eumberuw, and we have found 
it easier to employ a merent method. In particular, we rhdl proceed az followz: 

Step (i): Perform the integrals over X0, (0, thus obtaining the evolution of the reduced 
density matrix from to to t1: 

wa,wa) - J dxocyo q,, axp (i&,0 - hs) PA(Xo,lo,to) (5.3) 

Step (ii): Multiply by the projwetora at time tl md then evolve to time ta; i.e., edenlate 
the qnantity 

.ILl;t;tl,xr,m = Jw Ft,, ezp (a,, - h.1) 
x 

( 
-(Xl -y _ (b -I# 7 #Xl,&,to) > (6.4) 

1 

whae wq may uac the f&et that & = 0 in &,I and &,I. 

Step (iii): Piiahy, multiply by the single projector at time ta and integrate over X2: 
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Beginning with step (i), a tedious but straightforward calculation yields the result, 

iw,&,tl) = = Ff,o A,: ;cp (-Q& -PI<: -%X1& + ~1x1 + VI<, + cl) P.6) 

where 

&,o =ao(Po +01,0)- i(YO - i&o)' (6.7) 

and 

w I,OQo a, = - 
44.0 

034 

[- %0- + Jf,oCP~ + 4,0) + iLl,oBl,o(70 - i~?,,~)] 

+ 40 (6.9) 

1 
71 = - 

4b.O [ -2iN1,0J31,0a0 - ~1,0~1,0(7e -~i&,o)] - &,, (6.10) 

1 
Cl = - 

2&o 
--iGu0v0 + ~NI,OPO(~O - ikl,o) 1 (6.a) 

. 

Y -4 & Wt,0(Bo + CI,O)M - Bl,oaow 
. 

+fho - &0)Wh,ow3 + %OPO) 1 
01 = & [OS + G,o)fd + a04 - (70 - &,0)ww] +k 

* 

This completes step (i). 

(6.12) 

(6.13) 

Aa an aside, and by way of a check, we compare these rest&a with the cdculationr of 
Cddeira and Ieggett ioa the evolution of the reduced deuoity matrix [la]. They took M 
their i&id state a waw of appr&mate momantump,cantaaduounda=O~d 
with width o. The comeqonding i&id density matrix is, 

pn(Xo,&,tr) = (2Tru9-4 exp 
( 

i&o - (xih+ti) 
> 

(6.14) 

Fromthe~~dndthereduceddenaitymatrixat timwtl tobe 

%G,G,tx) = * <,o A;: =P (-J23tJo (xl - 73’4 

X exp 
. ( 

&I;,oXI& -i 162;l,o (~a&o~~,o-- &,o) (x1 - $-) &) (6.16) 

where 

‘I% = 40 + 2dt:,o - 32u:Al o (&,o - @L,.o~,,o)~ (6.16) 
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and 

82c’Q,,o = Sc’k:,, + 4 (4.0 + &) (6.17) 

This agrees with the results of Cddeira and Leggett (up to a number of numerical f&tom 
which we take to be typographicd errors in their paper). 

Now consider step (ii). With the results of step (i), Eq.(6.4) may be written, 

fi(~*,x& = r F~,I F?,o A$ J fl1d.5 exp(i& - 42~) 

X-P ( -h-e - Pd: - 71x1t +61x1 + 6’1.$ + z1 > 
(6.18) 

where, 

61 = al+ - A, /%=A+-$ 
1 

(6.19) 

fil = Cl + 
2x1 2.5 
-, h=xq+--, Zl=el- m + 8) 

4 4 4 
WP) 

But the integrd (6.18) ir now of the same form as (6.3), aud we map use q+ the 
of rtep (i), recabg that we may set (2 =Ointhenprruionr~Ss,~and~,1. We 
obtain 

&-%,xa,&) = S’ *,J F& A$ A$ arp (-aaX: + MXa + ea) (6.21) 

where 

and 

Ah1 = M% + CT,,,) - ;(T, _ &,)’ (6.22) 

a* = N,l& 

4hl 
1 

&a=- 
2Ar.1 1 

-iNa,aWx + ~N,a,1&(~1 - &,l) 1 
1 

@=- Ia + Ca,i)P: + Wf - (73 - irir.a)hi] + 6 

@W 

W4) 

(6-W 

We could 8t this stage pro&d to step (ii), but it t- out to be u&r to &3t 
simpw the expression (6.21). Some lengthy algebra 1eaQ to the rault, 

WltXa,&,) = X’ Fi.3 F?,o A,! A,,' exp - 
([ 

I X-P -'gA 
( 

.&&X,& + @; 

I %* 1 w 1 
461 Y -2(71 

37 



03 

The final step, step (ii), ia now readily performed using the identity, 

X ~4 (@ia + a+ b)-i e~rp (ui2;a+b) [-;,+ic($+-+I+ 

-+(X2 - ap - -$@a - 8)’ - da - 8Y]) (6.27) 

U&g the above identity, we obtain the find result, which ir conmniently writtd~ 
th=torm, 

D(xa,xa,&) = d” Zf.1 Jf,o A,; AC! (vi’ + ar)-t 

x exp 
&&I 

i4(aad + 1)Aa.a -&(Xa - Ys) + i(‘l~~x”l) (31 - YI) 
1 a.1 I> 

H-1 

-Cal: - (R - Y)TM(R - Y) + el + 

4-a * ‘- 61 N,1& 

b: 4Aa.1 + 4(cta + &)o$A;,, 

(6.28) 

- i$ ,- -+(a&=: l)As,~ 

As in Se&oar we have intkduced the notation, 

&(Z), y,=(Z) 
what 

Y,=e 
1 

Y* = -i$ + it71 - iri;,, j 2,rha , 
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(6.30) 

(6.31) 

(6.32) 



Also, 

where 

Ml = 

= 

Mia = 

,Mar = 

. M=($ z:> 
1 

q- 
(~a,, +A, + (71 -%)'N:,, 

0:&l 16of(aa + @;‘)A:,, 

I (Ca,, +& + ftiN#,,) 
q’- @:(~a4 + l)Aa,l 

M2l = -i (71 - &)Na,l 
4(aa(r: + l)~:Aa,l 

N&"l 

4(araf + l)Aa,l 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

Using this notation, and also using (6.8)-(6.13), Eq(6.28) may be rewritten, 

- (a - Y)=M(X - Y) + Q + A- (6.37) 

In the next section we wihvduate this expresdon for particular initial states. 

7. DECOEBRENCB AND CLASSICAL CORRELA!MONS 

We willow dude the decoherence functiond (6.26) fbr speci& choicea of i&id 
state eontaWWin the Gawdan amats, lZq(6.2). We will look tot decoherence and for the 
dcgrwedpdm&a~tut@du#iulpdl#. 

?(A). Single Wave Packet 

Let the i&id state be a wavepacket centered around the point a, with width Q, and 
momentum eentered around p: 

*o(s)=wxp ip- '">"'a 
( > 

' 
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The associated, density matrix is 

PO ==P 
( 

- 
(X’+t*) +~x+;&,g 

202 d > 

That is, it is of the form Eq.(6.2), with 

ao=A=& 70=6 

w=$, *=ip, 
2aa 

Co=-7 

(7.2) 

One can now calculate all the terms entering Eq(6.28). One Gnds that al, & and 
~1 are red, yr and y are imsginary, and sr is complez The quantities Yr and Us in 
Eqs.(6.31), (6.32) are real. Denote by z&(t) the classical solution at tims t with i&id 
p&&ion a and initial momcptllpL p. Tha Y(tl) = 2zd(tl), and Y(ta) = Itd(ts). The 
eoefEcient of (1 in the decoherence functiond (6.26) is purely w. 

Considsr now the condition the decoherencs functional must satiai) for the probabiffty 
sum rula to bs satis5ed to order c. It is given by (3.6), which in the premeat cue read& 

1~~(%,~fl31,h)l C e[~(s*,Sala*,tt)D(&,aalm,Sa)l’ (7.5) 

fora1 #h. Iwrtirytheaprsgiolr (6.28) tkr the decoherence functiond, it is not difEeult 
to show that this condition will be &i&d if 

crp(-@I -31)'(c2 -&)) < c 

(apart Corn prefactors, which are of orda 1). 

(7.6) 

To sa what this implies, we need to be precise about what is meant by “zr # gr ” in 
the condition (7.6). ReedI that we ars usin3 not true projections, but the Gaussian slit 
projections, (2.31. At a fkai moment of time, these projections partition the con6guration 
Sp~into~rithdRdoodQa~timathe~dthol. Thevariables~r andarlabel 
the re@ms,Ilbic,Lhrp have sidpiticance only up to a few times the width. It follows that 
‘r,#n”nrr.twII;I~dbegestathan~~timerthe~dth.Howmanjrt~~ 
the width? ‘IS Guusisa slit projections are cxchsiYe only to the exknt that exp(-g/<) 
isappadm8 kly sao, and we should not expect to obtsin decoherence to a degree better 
than this. If we sak to, obtain dwoherence to ordsr e, therefore, we should choose I& I to 
be sllakientlylarge that 

to ensure that the non-exclusivity of the projections cleanly separates from the issue of 
obtainin dscoherence. The rapid decay of the expom&tid will enare that this condition 
is readily satizhd. 



Inserting the explicit forms for L-’ and Ml1, one finds 
. 

u:(ri - ii&) = 
G.1 +A - al + f+J:,, 

ui(ad + lb&,1 (7.8) 

and some straightforweud maaipulation shows that 

0 5 uf(P -Ml;) 5 1 (7.9) 

It folIows that the decoherence is most &e&ire when oi(f-’ - Ma1) is very close to 1. 

After decoherence to the requisite degree is achieved, we are interested in determining 
the degree to which the diagonal part of the decohcrence functional is peaked about the 
clamical paths. The diagonal part is given by, 

PtXl,Xd = =P (4X - Y)“M(X -Y,) (7.10) 

(apart &om p&actors). The degree of peaking is d&&mined by the size of the cigamalned 
of the matrix M, ill comparison to quantities of the form (X, - Y#, (X2 - Ys)‘. T&e 
lattaq~titiuuegrratathanaf~~~,~,beuareR~,asarrdeftnedonlJ~p 
to these widths. A convadent me- of the degree of peaking, therefore, is the qua&$, -1 

(7.11) 

One has 
#d&U 5 1 (7.12) 

and thus the probability measure (7.10) is most strongly peaked when 44 det A4 is very 
c&se to 1. 

we now evaluate exprasioM, (7.9) and (7.11) inavuietyofintaa~u8a,anclscc 

whether the req&ema&s of &&euaw and &s&al h arc met. We wiIl cxmsida 
the caaa of the &cc puticle and the harmonic. osciIlator, with and without cnvimnment, 
inthe~~att~timaintarrat(t,--,),(t~-to)bothkrge~dsmrll. 

(1) Noun+oPmanL. Inthecaseofnoen vimnment,wema~setAA,BandCtosao, 
and aIso ths#&&ion 7 to m. 

In the slid time limit, with both (Lp - tl). and (tr - 6) smaU, the f&e particle and 
harmoni? oscillator - caincbie, aud one haa, 

2(T) - k(T) = L(r) = N(T) ,= g 

&s 41 u &/4, Al,o u @s/4, and a1 = as. It wows tit 

Uf(f-’ -I&) u [l+u:(&+-$)]-l 

(7.13) 

(7.14) 
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and 

.3u2 ditibf 1 2 m [I+2u+++-3]-1 (7.15) 

Each of the quantities has to be close to 1. (7.14) indicates one should take 01 C< u 
and UI << ~2, whilst (7.15) indicates one should take u << uz and u << UI. There is 
therefore a certain amount of co&et between the demands of decoherence and cle&cal 
peaking, but a compromise is possible. For example, if one takes 201 = u: = 4, then 

u:(f-’ - &I) uu;u; dctM B 3 

which can be sufedcnt tar satisfactory decoherencc and classical peaking. 

In the long time limit for the free particle, #, k, t and N all go to zero, as do al, 
&, 71 and A~J. One thus haa 

u:(f:’ -J&1) 4 0 

and therefore there is no decoherence. Similarly, 

(7.17) 

#&W-r0 (7.&i) 

Both of these features might hare been anticipated girm the spresdinl( of the wave pacbst 
for the free particle. Eowcw+ by chooskg the mass of the particle to be sufllcicntly large, 
one could ensure that that it remdns dec&cred and peaked about the classical path for a 
long period of time. 

For the harmonic oscillator, the qnantitias 4((-’ - d411) and 44 det dB oscillate 
without tending to &cd vdues in the long time limit, but return to their short time limit 
dues when both w(i, - il) and w(tI - ta) are simultaneously equal to lntega multiples 
of 2%. 

(1) With envirunmeat. In the short time limit, the quantities A, B and C are dl linear 
intime(~Seetion4),uditir~difacaltk,reetbatalldepePdenaontheenriroammt 
dlvpa out, rcdllcing to the case ofno enrironment. 

kr the h th-~ limit, h and 71 tend to datory functiom, C(T) and N(r) grow 

lilce21+,alq& 

a1 m srn M(7’ + w’) 
qs 8KT 

(7.19) 

The quantity o+(l” - h) is dcminakd by C,,I and Ns,l, and one has 

Shilarly, it is readily shown that 

(7.20) 

” dctM. H (aluj +“::a:4 + 1) 

42 



Decoherence and classical peaking are therefore controlled by the quantity alof (or alu:). 
Loosely speaking, this is the rakio of the energy of the particle to the thermal energy of the 
environment. Classical peaking is obtained when this quantity is large.. Physically, this 
is not surprising since it is the condition that the particle has su&ient inertia to resist 
the thermal fluctuations of the environment. However, decoherence demands that aluf 
be smdl. This is again to be expected physically, because on general grounds decoherence 
demands a certain amount of interaction from the environment. Again, therefore, there ia 
a certain amount of competition between decohucnce and classical peaking, but again a 
compromise can be reached if the parameters of the models are chosen such that aruf m 1. 

An important feature to note is that the quantity (7.20) controlling decoherence is 
independent of the initial density matrix. We have the&ore exhibited the degree of deco- 
hcrcnce as a function of the coarse-gmining for the class of i&id states contained in the 
Gaussian ansata (6.2), not just for wave pa&et i&id states. 

It should dso be noted that the fact that we obtained decokaace without M anti- 
ranmentintherhorttimtlimitira~tanpeealiutotheMtirlrtrts~~ofarinde 
wave pa&t. The density matrix f6r this initid atate is peahed dong the history traced out 
by the wave pachets enolution, and is arcntidly sero elsewhere. The oSdiagonal t-of 
the decohcmnce tunaiond essentially sample the density matrix doq two d&rant hi&o- 
&s. But if the density mat& is non-- dong one and ody one history, the &diq@d 
tarns of the decoherenm fanttioud will clearly be small. 

7 (B). States Corresponding to a Set of Clarsicrl Solutions 

Because of the spccid nature of wave pa&et initid states, it is importaut to consider 
other initid states more representative of the genera case. A more general initial state 
leading to classicd bchaviour will generally predict not just one classical solution, but a 
set of classicd solutions, with a probability measure onthatset. Asimplo-pleofa 
wave function of thii more general variety is one of the form 

et+) = up (-F2) (7.22) 

ForthespecidnhteF= @fw,thisisofcourse the (pound state of the harmonic oscillator 
and rema+&Uda state under tmitary e~olutior~ However, if F = Fa + iF1 is dlowed to 
be au arbi~.amqla nmuhcr, with FR small and PI large, F will edvc fhm its initid 
mlue. W~~~atthirtlpeuireuwarafanetiorufor~&Idfluet~~in 
idationary uaivasc models. An earlier heuristic mdysis suggests a prediction of a set 
ofclauicdl&~ee,sa~M1=p= -2Fn, and with probability proportiond to 
erp (-2F&) for a @en Stid due oft [17]. We will show how them featurea emerge 
from the present approach. 

An i&id waw function of the form (7.22) gira an initid density matrix of the 
Gaussian form (&2), with 

4g=+FR, ye=iFx (7.23) 
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and ps = vs = cs = 0. It follows that Ya = Y2 = 0. 

In theshort timelimit, * 

ugf-’ -&I) = [1+u:(a0+$)]-’ (7.24) 

so decoherence can be achiemd if asu: << 1, and ul << 02. In the long time limit, with 
an environment, the degree of decoherence becomes independent of the initid conditions, 
and the discussion reduces to that of the single wave packet case discussed above. 

The diagond part of the decoherence functiond is given by 

dJL;Pr) = erp (---fq (7.2s) 

This probability for history is not peaked about a particular classical path, but as men- 
tioned above, we anticipate that it predict8 a ret of classical paths. One way to exhibit 

this fbature is to appeal to the ram&s at Section 5 and Rd[lS], which show that one &s 
a set of classical solutions fbr which the distribution of initial positions and momenta m 
girePbyasmearedrcrsioa d the Wigner fwdion for the i&id stak. In partidar, the 

Wigner function for the i&id state (733) is peaked about p = -2&z, if Fr ia large &d 
FR in smd.l[17]. Here, however, wewillgiveadifkeattreatmMt. 

The probability of tinding a given value of Xl at time tl is, 

d&,-lab, d&,X,) 

"ap (-$gz) (7.26) 

One can then ask fo? the couditiond probability of xs, given xl. This ir given by, 

dWl=@$& 

(7.27) 

TIw ~0diti0d pbddlity (7.27) ia peaked about 

-?a W¶ z-- l=i 
Maa 

x (n - &,l) R 
Nd+m + 1) 1 

which -Y be shown to be a weal solution in (ts - t1). Letting (t2 - tl) go to -, one 
iIn& \ 

(7.29) 



where a dot den&w a derivative with respect to (f2 -tl). Then the heuristic interpretation 
described abovemay be maintained if alu! << 1. 

. 
The degree of peaking is determined by the quantity 

and thus the discussion of classical peaking is very similar to the single wave packet case. 

8. SUPERPOSITIONS 

We now study au imporknt but rimple illuatratin cane, namely that ia which the 
initial hbk h taken to be a superposition of two wave pa&k. This example s* most 
clearly how inkrkrence in an obstruction to asaigniag probabiitiea to histoxia:~d ,hmr 
inkrfaence ir destmyed by coupling to an environment. Thk example ia ewe&Sly t#e 
doubLelit apaiment, but paired down to itr most basic form. 

8(A). Without Envlronmrnt 

Con&k a particle moving in one-dimauion, in a pure rtate whw wave tundtfon’ at 
f = to ir a rupapoaition of warn packets far apart, but moving towarda each other. So 

Iwo)) - IQ+(h)) + IQ-(h4 

where lY+(to)) ia a warn packet at o = L > 0, with width u << L, and with mo&ntum 
-p. Sii, 1+&u’ ia lomted at s = -I;, hu the w width, but momentum p. 
Explicitly, 

(4*+(tr)) = exp 
( 
-ip - 

(a -L)’ 
t+ > 

(rl*-(to)) = exp (ipa - (a +$L”> 

~WM8pUk&UC- l ppr&matelyorthogonalatt=~,uptotermsoforder 
&-La/d). Let them me& at the origin at time tl, whexe they will have suktaniid 
overlap. We will asmuue thrtthepuurrtt~mcharthernuroffh=p~~chdieP 
eo that the wave packet1 do not spread appreciably. In fact, we wuld consider a humonie 
odlator in which they do not spread at all. 

The form of the wave fiuxtion might tempt one to-ascribe definite propaties to the 
history of the particle. In particular, one might wish to say that the puti& ti in the 
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neighbourhood of either e = L or 2 = -L at time to, and then in the neighbourhood of 
the origin at time 11, with som9 probability for each of these two histories; We shall show 
explicitly, howerer, that this view is not tenable, because this pair of histories do not form 
a decoherent set. 

At time to, it is su&ient ask whether the particle lies on the positive or negative 
z-axis. This is e&cted through the projections, 

P+ = 
/ -L l4(4* 

0 

It is easily seen that 

P- = J a tfa I=)(4 (8.4) 
--s 

Jw*t(toN = IQi(toh PiP&oN SJ 0 (8.5) 

up to terma of order ap(-La/u’). At time tl, when the wave packets meet, we will ask 
whether the particle lies in a region of sine A around the orlgln, where A is somewhat 
greata &an the wave packet width u, but much less than L. This proposition is e&&d 
by the projection, 

J All 
PA = -A,l & I=)(4 (*, 

One has, 
PAI*&')) u I*&)) (9.7) 

An exhaustive set of dternativee at time tl consists of PA to@ha with its compl-t, 
l-PA. 

The candidate probabilities for the histories in which the particle was either in z < 0 
or z > 0 at to, and then nert the origin at tl are @en by the diagonal elements of the 
decohaence functional, 

D(f,f) 3: a [PA e--“I(*l-*) Pi }9(to))(Q(to)l P* e”(L1--to)] c3.8) 

Using (8.5), and then odriclg to time Cl, this becoma 

(8.9) 

But if tbae probabilities UC to satisfy the probability sum rules, it is mcmsary that 
theoir-~tamraithrdetohmnwZMctionduewo,oratiwtrmdt TbaoS 
diagonaltamsarc+cmby 

D(f,F) = a [PA 0 -ur(h-ro) P* IQ(to))(V(to)l Pr em(B(l*-4) 1 
m ‘R 

1 
PA e-~“‘-~~lr*(tO))(Qr(Lo)] eur(*l-to) 1 

= (Q,(tl)lQ&)) (8.10) 
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again using (8.5). But (zlQ+(tl)) and (zllk-(11)) are essentially equal, both being wave 
.packets peaked about z = 0. One therefore has 

. 

IW, r)l = D(+,+) = D(-,-) (8.11) 

and it ir not possible to satisfy the condition of approximate decoherence, 

ID(*,r)l c-c P(+,+P(-,-It (8.12) 

The set of histories are therefore not decoherent and the assertion, “the particle was either 
in z < 0 or 2 > 0 at to, and then near the origin at tl”, is meaningkss. 

- 

8(B). With Environment 

suppoee we now couple this system to an en vironment using the CddeimLegg&t 
model described in eadia wctiom. The main diEerencc is that the wolutioa cd the i&id 
density matrix is no longer uaituy, but is inrtatl described by the Cdd&a&q@t p&p 
agakr, (4.39). A -d di&rence is that the en+onment introduceY dinipatioa il&ab 
dMsiul equatioaa ofmotlorl (according to which the wavepacket~ move), and the tix+* 
at wbicb the wampcketa me& ia nk&Ie& ‘T’Uinitid den&y matrix hu the dorm 

P = pi++,’ + p(--, + p(+-1. + p(-+) (8.13) 

where, km (8.2), (83, 

,J~++)(~o,M) ==P ( (a-L)’ _ (v--L)1 ida -v)-' ,,, t+ > 
pc+-,(80,pJ)~ 3 exp 

( i& + v) - (= sL'I - b LL'I > 

(8.14) 

(8.15) 

P(--1 and ~(4) am obtdmd by letting p 4 -p and L. + -L’in (0.14) aad (811s) 
-F-ti*. 

D( a, a’) 
-L:+@L 

&a P(ro,Yo,to) J(zl,zl,+worto) (8.10) 

Henamda’denotethein~~~~ttknet~,w~ehmrybctheporitiveorneg- 
ativeaxm. Tbefourpnuibleteramoftbe dewhaence fimcticmd, q*,*:) a”dD(f,q, 
-thwobkined~integstinClareachottheEoarqusdtllltrintheEoyr plane. Jir 
the Cdd&Lq@t propqator, (4.39), which we write, 

J(a,=l,t4=o,xm,ta) : ap (8 - C(or - ve)‘) 
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where C = Cl,@ and is given by (4.43) with T = tl -to. The explicit form for 3 will not 
be needed. . 

The d&red result will be obtained by focussing OII the size and location of the maxima 
of the intcgrand of (8.16) in the zoyo plane. Let 

f(++)(zo,Yo) = ucp (-eo - YOY) k++hYo)l (8.18) 

f(+-)(2OrYO) = exp (-eo - YO)‘) IP(+-)(2OrYO)l (8.19) 

and sirnil& for f(--, and fc-+). Then, in the coordinates X = 2 + y, 4 = 2 - y, it is 
readily shown that one has 

(8.20) f(++)(=rdo) = exp 

f(+-,,20,~)=~(-1.((-~)a-~) =P(--2%) (8.21) 

where 8 = C + &. Similarly, f(v) and f(+, am obtained from (8.20) and (8.21) $y 
letting L + -L. 

The in&grand of (8.16) is the sum of the &ur fs, apart &om phases. Fralm (8.20), 
(8.21), it therefore has four peak at 2 = y = 24, and at 2 = --y = fL/(24)C). when 

CissmaU,th2lattapairarecloseto2=-y = Al;, but for large C they approach the 
origin. The widths of all four peaks are thi same. But moet importantly, the rise of the 
peaks of &) are suppressed in comparison to &A) by the exponen iiel factor, 

(8.22) 

Cawider now the emluation of D(+, +). It ir obtained by integrding to,* over the 

&rt quadrant, z. > 0, ye > 0 in (8.16). Recall that we are wuming that L >> b. 
The peak of f(--) is kz &III the integration domain w its contributioz~ will be very 

small, of e &-2La/01). The peaks of f(~,~) on the other hand up be close to 
the integratia &main (depending on the value of C) but their maguitade is suppressed 
by the faek, fl.22). These terms therefore contribute at worst the same as f(++), but 
multiplied by (8.22). By far the domkant contribution to the integral, therefore, will come 
km f(++), whae pak lia well-tide the integration domain. Sily, D(-, -) will be 
dominated by f(+, and will be the - order of magnitude. 

Now conaider the &diagonal term, D(+, -). It ia obtained by integrating the same 
integraad ova the fourth quadrant, 2s > 0, ys < 0. The peak of f(+-) lies inside the 
integration domain and one would apect this to provide the dominant contribution. The 
peah of f(+*:) are fiu from the hhgratiou domain , but they are not suppnmed by (8.22). 
Their contribution would the&&e be comparable to that of f(+-1. Siiy, the peak 
of f(-+) may also be comparable, since it can be clone to the integration domain. Tbe 
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important point, however, is that it is clear that all four terms are suppressed by the 
factor (8.22) compared to the contribution ft++) makes when the sac integrand is used 
to calculate D(+, +). A similat argument goes through for D(-, +), and we may therefore 
write 

ID(*s r)l [D(+t +)D(-, -)I’ 

In the short time limit, C z ~M-#Z”(tl -to), so 

exp (-2%) % urp (-$lw’(tl -to)) 

In the long time limit, C goes to i&dty like t~‘*(‘l-~), so 

-(-25g) a * (-Z) 

(8.23) 

(8.24) 

(8.25) 

We thedixe have very e&&ire decohenmce. Probabilitica can be aqigncd to the hid-, 

and it becomea meaningful to day that, “the particle was either in 2 < 0 or o > 0 a!$, 
and then near the origin at tl”. 

8(C). The Double-Slit Experiment 

Finally, it ia perhspa enlightening to comma t on how these &widuati- might 
&et the the fully-fledged double-slit experiment. Consider the standard double-&t ar- 
rangcmcnt,inwhicbonehasaaource (of electrons, ray) indent on a peir oft alita with a 
screen behind, with the wh& &-up in an evacuated bar. The probaMlity distribution 
ottheeleetronrpaition~thelatn~bethe~-lmormintertmnee pattern. Nor 
askwhc&itirpo&bkktothinkofthadeetroarProdncingthointe&rQUe pattern u 
having goue through OM slit or the other. IYi&ently put, ulr wlwtk the prob&ility 
di&ibntion fog the inteafeswca pattern might be regarded u . sum of twu probrbilities 

w fix tb hist.6aiu in which the electron went through one or the other 

;:,sl- 
dit Thh ie deeted u&g projectiou operatom of the form (8.4) at the time 

m weps in the ncighbourhood of the dite (where the o direction ia 
pudkl~e#tmsadthe&te). However,hmuulyldsTerydmitrtotlutgiren 
above, it iLmdSl$ shown that due to the presence of id&us terma 31 the decoheram 
fun- om utanot write the irhrkence pdcrn probrbiity diJtribution ” the mm 
of them pfokbillti~. It ir therehe not pomible to think of the electron am hrving gone 
through oue slit or the other. 

Now mttppose we gmdually introduce an enviromneat into the box, ray L gu of photons. 
Am in 8(B), the m vircmment will induce decoherena of the histories, end then it pill be 
paeib to amslgn pro~bilities to the two powible historic of the electmn. The interference 
patkrn may then be written au the mm of the two probabilitia. But, the intertkeace 
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pattern will be changed. It will, however, be changed gradually as the environment is 
introduced into the box. In particular, one will find that there is complements.+ between 
the sharpness of the interference pattern and the degree of decoherence. 

This sort of analysis of the double-slit experiment is well-known (see for example, 
Ref.[22] and references therein). Typical analyses involve the notion of actually measuting, 
to some precision, the position of the electron in the neighbourhood of the slits. They thus 
yield a complementarity relation between the sharpness of the interference pattern and the 
precision of the measurement. 

In the decoherent histories approach, measurements do not play a central role. Prt 
&ion of the measurement is replaced, in the complementarity relation, by the more fun- 
damentd notion of the degree of decoherence - the degree to which probabilities may be 
Maignd Ofcour6e, the distinction is perhaps not so great, in that an actud physicd 
mammmemt might involve observin g the photons ieattered off the electrons, km which 
the loution of the dectrou could be deduced. It is, however, perhaps s&+ng to ses how, 
in the decoherent histories approach, the notion of complumntarity appears, but without 
rdbrence to any notions of measurement. 

9. SUMMARY AND CONCLUSIONS 

The prpou of thin paper has been to explore some of the features of a formulation 
of quantum muhuda for closed rystems which deals directly with quantum me&a&d 
histories. Afta rwi- the formalism, we addressed the issue of appmaimate decoha- 
mce. A wnditiou for appraxima te decoherence was proposed. The form of this condition 
is partially motivated by (L simple inequality sati&d by the decoherence functiond, which 
we derived. We argued that our condition ensures that most probability sum rules are sat- 
is&d to rppradnla tdy the same degree. Our ugument, however, relied on an assumption 
dmut the et&is&d distributiom of the oE-diagond terms of the decoherence functiond. 
It would be intemsting to understand the signi&ance, if any, of the situations in which 
this usumption doea not hold. 

We cdcm&od the decoherence functiond for the Cddeira-Leggett modd, and derived 
the general b of the decoherence functional for linear aptems, for histories consisting 
OfWP * 11rrnplingofpositionatan&itrarynnmberof momultaoftime. It was 
aeea to diaplq the de&red formal pmpatia, namely, decoherma, and perking about 
&s&al paths along the diyPna. Both types of the c!o.lwgrsininpr employed (tracing 
over the enritolrmart and smwing over position) were found to be necessary to achieve 
decohercnce. We also found that the probabilities for the histories invoked a smeared 
version of the Wigner function in an essentid way. 

A more precise evaluation of the decoherence funetiond was achieved by specializing 
\ to the UI(! of histories characterised by approximate position samplings at two moments 

of time. We rtudicd initid states consisting of a single wave packet, and e ware function 



corresponding to a set of classical paths. In each case we obtained a quantitative meeaue 
of the degree of decoherence and classical peaking, as a function of the coarse-gaining 
parameters - the temperature of the bath and the width of the position projections. We 
found that there is an clement of conflict between the requirements of classicd peaking 
and decohaence; but in our cases at least, there seemed to be a compromise regime in 
which each requirement could be adequately satisfied. 

An important case we considered is that of an initid state consisting of a ruperposition 
of ware packets. Perhaps more clearly than any other, this -ple illustrates some of 
the key features of the decoherence histories approach. l?iiy, it prosides a very concrete 
-pie of a set of historiu which do not decohere, and therefore, to which probabilities 
cannot be assigned. Secondly, it dearly shows how decoherence can be very eEectivdy 
achieved by coupling the system to a larger environmeut and then traelng it out. 

Some of our work, and in p&ieular that of Sections 5 - 8, hu math in common with 
tha$ of Dell-Mann and Hartle [3,8,9]. We hm not attempted to be u gene& u they -, 
and indeed, some of our rmults, ouch as the observation of the tension between dec&emna 
and classical peaking, and the appearance of the Wwa f&&ion, are spoeid cams of their 
resulta. We have, however, been more explicit and praime in OUT ul~tioru, utd hse 
exhibited in detail the feat- of the formalism for spsei& &&es of initid stak 

Decohemnce and dassical correlations have been rtudid &en&d7 u&g den& 
mdriaa *t 8 hed moment of time [lS]. In these .pproaahm, the wocd ‘m” &an 
auoci.kdritbthtdestraction~~~-~,but~&~dcgPitiak ~rtmaud 
in B&43,8,9], and as should he dear from this paper, inte+rena is moat properly thought 
of M the failure of clusical probability sum rules for Airtoria. Decoberenca u destruction 
of inkrlcrena ir likewire but understood as recomyoftheserrrla. Asevideatfcom 
Eq.(2.33), these mlu ae .utoan.ticdly s&&d for hlstorie8 oMsisting of -tr l t 8 
tie momeut of time. The signi&ance~of these earlier approacha in the context of the 
p-t one ia the&ore somewhat unclear. It seems to “, h$3weva, tll&thae is at lend 

camcctiou between theea approaches, and to srplore it would be Ur intae+g issue 
iGzkutig.tton. Theu ami aala quutloM will be thc.topic offiltlue pllbliuti~. 
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