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ABSTRACT: We study a formulation of quantum mechanics in which the central
notion is that of & quantum mechanical history - a sequence of events at a succession
of times. The primary aim is to identify sets of “decoherent” (or “consistent”) histories
for the system. These are quantum mechanical histories suffering negligible interference
with each other, and therefore, to which probabilities may be assigned. These histories
may be found for a given system using the so-called decoherence functional. When the
decoherence functional is exactly diagonal, probabilities may be assigned to the histories,
and all probability sum rules are satisfied exactly. We propose a condition for approximate
decoherence, and argue that it implies that most probability sum rules will be satisfied
to approximately the same degree. We also derive an inequality bounding the size of the
off-diagonal terms of the decoherence functional. We calculate the decoherence functional
for some simple one-dimensional systems, with a variety of initial states. For these sys-
tems, we explore the extent to which decoherence is produced using two different types
of coarse-graining. The first type of coarse-graining involves imprecise specification of the
particle’s position. The second involves coupling the particle to a thermal bath of har-
monic oscillators and ignoring the details of the bath (the Caldeira-Leggett model). We
argue that both types of coarse-graining are necessary in general. We explicitly exhibit
the degree of decoherence as a function of the temperature of the bath, and of the wigth
to within which the particle’s position is specified. We study the diagonal elements of
decoherence functional, representing the probabilities for the possible histories of the sjs-
tem. To the extent that the histories decohere, we show that the probability distributions
are peaked about the classical histories of the system, with the distribution of their initial
positions and momenta given by & smeared version of the Wigner function. We discuss
this result in connection with earlier uses of the Wigner function in this context. We find
that there is a certain amount of tension between the demands of decoherence and peaking
about classical paths.



1. INTRODUCTION

-

Few would dispute that quantum mechanics is a very successful theory. Indeed, there
is at present no discernible discrepancy between the predictions of quantum theory and
the results of experiment. Yet the conventional interpretation of quantum mechanics, the
Copenhagen interpretation, is felt to be inadequate: it rests on an a priori division of the
world into a classical observing apparatus and quantum-mechanical observed system and
places heavy emphasis on the process of measurement [1]. What place is there for such
notions in a world thought to be fundamentally quantum-mechanical in nature? Or in the
very early universe when observers or measuring apparatus could not have existed?

These questions are not of a purely academic nature. A variety of recent developments
suggest that extrapolation of quantum mechanics to the macroscopic domain might not
only be of interest, but could even be obligatory. The possibility afforded by SQUIDS of
preparing systems in macroscopic quantum states has forced a revision of the notion that
only microscopic systems can exhibit quantum effects [2]. And the emergence of the field of
quantum cosmology [3,4], in which it is asserted that quantum mechanics may be applied
to the entire universe, has necessitated a reconsideration of the foundations on which the
conventional interpretation of quantum mechanics is based.

Even on the familiar territory of the microscopic level, quantum mechanics continties
to be a source of conceptual diffculty. Although mathematically consistent, and in full
agreement with experiment, it displays a number of features which are difficult to reconcile
with physical intuition and are sometimes described as paradaxical.

Resolution of these difficulties may emerge from the observation that there is con-
gsiderable scope for formulating the theory in different ways whilst preserving its physical
predictions. For example, non-relativistic quantum mechanics may be formulated in the
Schrodinger picture, the Heisenberg picture, or in terms of a sum-over-histories. The the-
ory looks very different in each of these approaches, but they are mathematically equivalent
and their physical predictions are exactly the same. Viewing the theory from the perspec-
tive of these different formulations not only sheds new light on conceptual aspects of the
theory, but also points the way to possible generalizations.

The conventional formulation of quantum mechanics, especially in the Schrodinger
picture, places heavy emphasis on the notion of an event at a single moment of time:
the quantum state of a system, the Hilbert space to which it belongs, and the “collapse
of the wave fanction” of conventional quantum measurement theory, all involve a single
moment of time [5]. It is, however, possible to generalise the usual formulation of quantum-
mechanies so that such notions are de-emphasised, and one focuses instead on the notion of
a quantum-mechanical Aistory. By this is meant, loosely speaking, a sequence of quantum-
mechanical events at successive moments of time.

The object of this paper is to study such a formulation of quantum mechanics, de-
veloped over the last few years primarily by Griffiths (6], Omnés (7], and Gell-Mann and
Hartle [3,8,9]. This formulation specifically concerns closed quantum mechanical systems,
and is assumed to apply to microscopic and macroscopic systems alike, up to and including
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~ the entire universe. Its most important feature is that it focuses on the possible histories
of a system. The case of events at single moment of time is included as a special case,
in which case the formulation reproduces the familiar results of the orthodox approach.
The formulation is explicitly time-symmetric. It may be used to assign probabilities to
non-commuting observables at different times. It makes no reference to external observers,
classical apparatus, wave function collapse, or indeed any of the usual machinery of conven-
tional quantum measurement theory. The physical process of measurement may, however,
be examined from within the formulation.

The central goal of this formulation is to assign probabilities to families of histories
of a closed system. However, as we shall see, interference is generally an obstruction
to assigning probabilities to histories. Attention therefore centers around a set of “consis-
tency conditions” which determine the sets of histories suffering negligible interference, and
therefore, to which probabilities obeying classical probability sum rules may be assigned.
A set of histories satisfying the consistency conditions are referred to as “consistent” or
“Jdecoherent” histories. They have the same status as the histories of a classical statistical
system, such as a stochastic process. One may think of a system described by a set of con-
sistent histories as possessing definite properties, but for which there are only probabilities
of finding the system to be following a particular history.

In brief, therefore, in this “decoherent histories” (or *consistent histories”) formulation
of quantum mechanics many of the difSculties of the orthodox approach, and in particu-
laz, the difficulties associated with central role played by measurement and the presumed
existence of a classical domain, are replaced by the issue of satisfying the consistency con-
ditions. These conditions act as a regulatory principle, or sieve, systematically sorting out
the statements that may be made about a system into meaningful and meaningless. They
identify the properties of a closed quantum system which may be regarded as deflnite, in
an objective sense, that makes no reference to measurement or external observers.

The authors who developed this generalization of conventional quantum mechanics
appeared to have somewhat different aims. Grifiths emphasized the formulation’s potential
for shedding light on the conceptual difficulties of quanium mechanics [6]. Omnés was
likewise concerned with quantum mechanical paradaxes, but additionally, emphasized the
role of formal logic. He also showed that the comsistent histories formulation is based
on fewer axioms than the Copenhagen interpretation, and moreover, on a different set of
axioms [7]. Tha most ambitious point of view is that taken by Gell-Mann and Hartle, who
were concerngil with quantum mechanics as it might apply to the universe as a whole [3,8,9].
The motivations for the present work are perhaps closest to those of Gell-Mann and Hartle.
They concern the issue of the emergence of classical behaviour, and the interpretation of
quantum cosmology.

As mentioned at the beginning of this paper, the Copenhagen interpretation pre-
assumes a classical domain and is not sufficiently general to explain it in terms of an
underlying quantumn theory. By contrast, the decoherent histories approach assumes no
separation of classical and quantum domains, and is taken to have an unrestricted domain
of validity. Consider then, the requirements a quantum system must satisfy if it is to
be approximately classical [8]. The most fundamental requirement is that it should be
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described by a decoherent set of histories. For then the histories of the system may be
assigned probabilities obeying classical probability sum rules. Secondly, the decoherent
histories should consist of largély the same variables at different times. In this paper, we
shall assume this and not explore the manner in which it may fail to be true. Thirdly,
the values of the dynamical variables at different times should be correlated according
to classical laws. This means that the probability distributions for the histories should
be strongly peaked about classical histories. There is some uncertainty as to what other
requirements should be imposed. A further requirement discussed in Ref.[8] is that the
histories must be characterized as precisely as is consistent with decoherence. Here, we
will focus on decoherence and classical correlations.

We feel that the decoherent histories approach is likely to be both useful and important
in the development of quantum mechanics and especially, in quantum cosmology. It is
therefore of interest to explore its features in the context of some simple models. This is
what we do in this paper. The purpose is to develop some intuitive feel for the formalism in
familiar circumstances, and to obtain a quantitative understanding of how the decoherence
conditions may be satisfied, and the extent to which classicality may emerge. Our work
consists largely of calculations in non-relativistic quantum mechanics. Although quantam
cosmology is one of our motivations, we will make no reference to any of its technical
aspects. Other studies of the decoherent histories approach include that of Albrecht (10},
who considers spin systems, and Blencowe [11], who considered the generalization to fleld
theories.

We begin in Section 2 by reviewing the decoherent histories approach. The formalism
as it currently stands is largely concerned with histories which satisfy the consistency con-
ditions exactly. However, for most cases of interest, one has at best approximate decoher-
ence. In Section 3 we therefore address this issue and propose a condition for approximate
decoherence. We also derive some useful inequalities for both the density matrix and the
decoherence functional. A particularly useful model with which to discuss decoherence
is the Caldeira-Leggett model, a model for quantura Brownian motion. It consists of a
distinguished particle eoupled to a thermal bath of harmonic oscillators. We review this
model in Section 4. In Sections &, 6, 7 and 8 we calculate the decoherence functional for
this model in a variety of different circumstances. We summarize and conclude in Section
9.

2. THE QUANTUM MECHANICS OF HISTORY

We have described in the Introduction the motivations for studying a formulation
of quantum mechanics based on history. We now describe the formalism for handling
quantum-mechanical histories. This section is largely a review, with elaborations, of the
material of Refs.[3,6-8]. A Aistory is a sequence of events at a succession of times. Let us
therefore first describe what we mean by an event in quantum mechanics.
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2(A). Projection Operators and Events

In classical mechanics, systems are regarded as having definite properties and state-
ments such as, “the position of the particle is z", are deemed to have an unambiguous
meaning. In quantum mechanics, by contrast, although a system may have definite prop-
erties if its state is an eigenstate of some observable, it generally will not. We might be
interested, for example, in knowing whether or not we can say of the system, at some mo-
ment of time, “the position of the particle lies in the range A", or “the momentum is p”, or
“the spin is up”. Formally, possession of certain properties or the occurrence of events may
be tested using projection operators. A projection operator associated with some event
(or with some “proposition”) is & hermitian operator P satisfying P23 = P, The event is
said to occur in quantum mechanics if P{¥) = |¥), and not oceur if P|¥) = 0. Since any
state |¥) may be written as a superposition |¥) = P|¥) + (1 — P)|¥), events cannot in
general be said to definitely occur or deflnitely not occur, and one can st best assign a
probability to each possibility. The probability of occurrence, for example, is (¥|P¥).

A simple example is provided by the two-dimensional Hilbert space of spin statesin a
particular direction, {|1),[1}}. The projection corresponding to the proposition, “the sffin
is up”, is P; = |[1){1], for which one cleacly has P;|T) = [T), and Bll) =0.

Relevant to the rest of this paper are propoeitions about a particle’s position. The
proposition, “the position of the particle is 2" is implemented through the projection
operator,

Py = |2){=] - (2.1)
This corresponds to infinitely precise specification of the particle’s position. Of greater
interest is the proposition, “the position of the particle lies in the range A 7, which is
implemented through the projection operator

Ps = j; dz |2)(z| (2.2)

If the particle is described by the state |¥), then its position definitely lies in the range
A if Pa|¥) = |¥), and it definitely lies outside that range if Pa|¥) = 0. The projection
operators (2.2) actually turn out to be rather cumbersome to use in practice, and it is
somewhat easiar to use so-called “Gauasian slits”. This involves using instead of (2.2) the

(approximat¥} peojectars,

i) = [ deem (-0 =) el (2.3)

Generally, we will consider a set of projection operators P, corresponding to a set
of alternatives labeled by @, where a runs over some (possibly infinite and/or continuous
range). The set of alternatives should be exhaustive, which means that

YiPa=1 (2.4)
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and mutually exclusive, meaning
il Py Pg=6a3 Ps (2.5)

The Gaussian slit projectors, (2.3), are not exactly mutually exclusive, but satisfy (2.5)
only approximately, for small .

For a system in state |¥) at some moment of time, the probability of the occurrence
of the event specified by the alternative a is

pla) = (¥|PaFal¥) (2.6)
A trivial re-writing of this, relevant to what follows, is
T [Pa] @) (¥ Pur] = P(a) b @

where the trace is over a complete set of states.

A projection is said to be completely fine-grained if it corresponds to precise spec-
ification of a complete set of commuting observables. That is, the projectors are of the

form, .
Pa = |a){a] (£8)

where the states {|a)} are a complete. For a particle moving in one-dimension with position
z, (2.1) would be an example of a fine-grained projection. A projection is said to be
coarse-grained if it corresponds to imprecise specification of a complete set of commuting
observables, precise specification of an incomplete set, or both. An example of the first
possibility is Eq.(2.2), or (2.3). An example of the second (considered in the following
sections) is provided by a composite system consisting of a distinguished subsystem with
single coordinate z and an “environment” with a set of coordinates R,. The Hilbert space
for the total system is spanned by the states {|z, R))}, and a coarse-grained projection
corresponding to precise specification of an incomplete set of observables is

P = / dR |z, Ru)(z, Ra| (2.9)
Most generally, a coarse-grained projection is one of the form
Py=Y Pa (2.10)
ata

where P, is a fine-grained projector, and the sum is over all a not fixed by &.
2(B). Quantum Mechanical Histories and Interference

Turn now to the description of histories. As stated above, a history is a sequence of
events at successive moments of time. A gquantum mechanical Aistory is therefore charac-
terized by a sequence of projection operators at a succession of times. The goal of quantum

7 -



mechanics is to determine the probabilities for certain events, or sequences of events; thus
through the use of projection operators at a succession of times one might hope to assign
probabilities to the possible hiktories of a system, in a manner analogous to Egs.(2.6),
(2.7). However, interference generally forbids the assignment of probabilities to histories
in quantum mechanics. To see why this is so, consider the following example.

Consider a system with Hamiltonian H which at time #; is in a state |¥). At time ¢y,
it will be in the state . _
e~ iH{ti—to) ) (2.11)

Suppose at this time we ask whether or not the event corresponding to some set of pro-
jection operators P,, occurs. We therefore consider the object

Py, e—tH(h—t) |§) . (2.12)

This will of course be zero if the event does not occur, equal to (2.11) if it does; but
generally it will be non-sero and different from (2.11). Now suppose we evolve further to
time ¢ and ask about about the event corresponding to projectors P,,. We thus obtain
to obtain the “path-projected state”,

lasts, arty, ¥) = Po, e~H(B=0) P, o=iH(t1t0) |g) (2-5-3)
This state is the evolved state projected onto a sequence of alternatives at successive
moments of time. It is the state for the Aistory (¥,%p) — (a1, 1) — (aa, 1)
Now we wish to assign a probability to this history. The obvious candidate for the
probability of this history is .
plaztz, anty) = {aaty, arty, ¥lazts, ety ¥) (2.14)

However, probabilities assigned to histories in this way will generally not obey the correct
probability sum rules. To see this, consider another history, similar to the one above, but
in which no projection is made at time ty; that is, the history, (¥,%0) — (@a,t2). It has
path projected state

lagts, ¥) = P,, e~ H(ta—t) |9)
= 2 |aata, arty, ¥) (2.15)

L

where the final equality follows from the property (2.4) of the projection operators. The
probability for this second history is

p(aztz) = (a;t:, P|agts, \I') (2.13)
If (2.14) and (2.16) are to be true probabilities, then they should obey the probability sum
rule

plaata) 3-21’(0213, axts) (2.17)



This is the rule that probabilities should be additive on disjoint regions of sample space
(e.g., the probability of A or B is the probability of A plus the probability of B, if 4
and B are mutually exclusive évents). But this is not the case: the probability sum rule
(2.17) is generally not obeyed by the probabilities (2.14) and (2.16), defined in terms of
the path-projected states. This follows immediately from (2.15) from which one has

(@ata, ¥|azta, ¥) =}:{a3t’,,a1t1, ¥lagts, arty, ¥)
ay
+ Y (aats, anty, ¥lasts, aits, ¥) (2.18)

C],#G"l

This differs from (2.17) by the presence of the term

3" (aats,arty, Flaats, @iy, ¥) (2-19)
aypial

which is generally non-zero, and represents interference between different quantum me-
chanical histories. It is in this sense that interference generally prevents probabilities from
being assigned to histories in quantum mechanics.

We may, nevertheless, still attempt to identify those sets of histories which suffer neg-
ligible interference with each other, and therefore to which probabilities may be assigned.
From the above, it is readily seen that these histories may be found by studying the object,

_,D(al,azla',,ag) = (a:f:, asty, 'P|agtg,a',t1,\1'}
=Tr [pa’ emiH(—t) p_ —iH(ti-te) |g)(F| H(t1~%) P, (H(t2—t1) pm] (2.20)

where the trace is over a complete set of states. If Eq.(2.20) is zero for a; # o}, we say
that the histories decohere and the probability sum rule (2.17) will be satisfied. Moreover,
the probabilities themselves are given by (2.20) with a3 = aj. The main goal, therefore,
when studying the quantum mechanics of history, is to study an expression of the form
(2.20), and identify those sets of histories which decohere.

This simple example illustrates the key issues arising in any attempt to build a quan-
tum mechanies based on history, and we now describe the more general formalism.

3(C). The Decoherence Functional

Generally, the system is described by an initial density matrix p at initial time ¢,
and one consider histories consisting of n projections at times ¢; < ¢3 < --- < t,. The
expression (2.20), the object which tells us whether or not probabilities may be assigned
to histories, and what those probabilities are, is a special case of an object called the
decoherence functional, and is given by

D((a), [a']) = Tx [P, (ta) -+ P2, (t1)0PY (1) +- P2, (ta)] (2.21)



It is a functional of the pair of histories, (], [a'], where [a] denotes the string of alternatives,
Qi, s, - an at times {; < 23 < -+ < t,. The trace is over a complete set of states for the
‘entire system, and we have introduced

P (1) = eita=to)H P2 ~ilta—ta)H (2.22)

The superscript k has been added to allow for the possibility to have different types of
projections at different moment of time, e.g., a position projection at ¢;, a momentum

projection at {3 eic.

A final density matrix py could also be included at the end of the siring of projections
in (2.21), and it would then be necessary to divide by a normalization factor, Tr(psp).
This form emphasizes the time-symmetric nature of the formulation [12]. Here, we will
generally take py to be proportional to the identity operator.

We note the following elementary properties of the decoherence functional:

D[a], (o) = D*([a],[a]) (2.23)
3 3 D(la),[e]) = Trp =1 230
(o] [o]

The diagonal elements of the decoherence functional satisfy,

D([a],[a]) 2 0 (2-25a)

> DAlal,[a]) =1 , (2.256)
(=]

The last property, (2.25b), follows from the cyclic property of the trace, and from sum-
ming out the projections, starting with the projection at time ¢, and working inwards.
The diagonal elements are the candidates for the probabilities for the histories (p,%,) —
(a1,t1):++ — (G, tn) and we denote them,

a1, as, - an) = D(ay, a1, - aplay, a3, - - an) (2.26)

Eqs.(2.25a), (2.28b) ensure that they are non-negative and properly normalized.

Conside#itiew the sum rules the probabilities should satisfy. For a given set of histories,
characterisod ¥ & soquence of projections P, , -« - Pa,, one may construct coarser-grained
histories, by summing over the finer-grained projections, as in Eq.(2.10) (although note that
here, the P,’s need not be completely fine-grained projections). The coarser-grained histo-
ries are therefore characterized by a sequence of coarser-grained projections, Py, ,--- Py _.
We will be more explicit about the coarse-graining process below. The probability sum
rules to be satisfied are that the probability of each coarser-grained history should be the
sum of the probabilities of the finer-grained histories of which it is comprised. This means

that .
P &1, &, - 8p) = Z oy, az,+ - an) (2.27)
[od€la}
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Here, we have used the notation

S-Y ¥ oo % 229)

[a]€fa]) a1€E& @€y L -1

where ay € & denotes the sum over all alternatives aj not fixed by the coarse-graining
&s, and the coarse-graining may be different at each moment of time. Eq.(2.27) should
hold for all coarse-grainings [&] of the finer-grained set of histories.

As in the simple example discussed above, however, the probability sum rule (2.27)
will generally not be satisfied by the diagonal elements of the decoherence functional,
and one cannot assign probabilities to histories in the manner (2.26). Summing over the
finer-grained projections, one obtains the decoherence functional for the coarser-grained

histories,
D([a], [&']) = z Z D([al,[a']) (2.29)
{al€[a) [o)€[a]
From this it follows that

p(al(a) = Y D(able) + 3 Dalle]) (2:30)
e e

Here, [a] # [a'] means all pairs of histories [a], [a'] for which as # aj for at least one
value of k. In analogy with (2.18), therefore, the presence of the sum over off-diagonal
terms generally prevents one from identifying the on-diagonal terms with the probabilities,
(2.26).

For the probability sum rules to be obeyed, it is necessary that the sum over off-
diagonal terms vanishes in (2.30). From the hermiticity property, (2.23), it follows that
only the real part of the decoherence functional contributes to the interference term in
(2.30). A sufficient condition for decoherence, therefore, is

Re(D(as,01 - aalal, o} --al)) = 0 (2.31)

except whea a3 = af for all &. Thilildsoanecmuyeondition,becam the sum over
off-diagonal texms must vanish for all possidle coarser-grainings of the histories, i.e., all
possible sums of the off-diagonal terms must vanish. The fundamental formmla for the
quantum mechanics of history may therefore be written,

Re (D(a1,a3---aplaj,ay «+-ah)) = pla1, a2, an) 6.1,-‘ TET Fpy (2.32)

This is both the condition for decoherence and the rule for the assignment of probabilities
to decoherent histories.

Sets of histories that decohere are the only histories that are regarded as having
meaning in this framework, and constitute the predictive output of the theory. Sets of
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histories which do not decohere cannot be assigned probabilities. They are regarded as
devoid of meaning, and have no predictive content.

In all cases we are aware of, the real and imaginary parts of the decoherence functional
generally vanish together (or are small - see below), and it is often convenient to work
with the slightly stronger condition obtained by omitting the real part condition in (2.31).
It would, however, be of interest to find examples for which one cannot do this.

Note that it is essential that the complete set of histories decoheres. That is, the
decoherence condition must be satisfied for all possible values of the alternatives [a]. It
might be possible, for example, to find a particular pair of distinet histories [a], [a'], (i.e.
particular values of [a], [a']) for which the decoherence condition (2.31) is satisfied, but
not in general for all other pair of values. It would not be correct, however, to say that
this particular pair decoheres. The crucial point is that the probability sum rules must
be satisfied, and these sum rules involve a sum over all alternatives, i.e., over all poesible
values of a; for each k. The decoherence condition must therefore be satisfied for all
_ possible pairs of histories in the set.

2(D). Coarse-Graining and Decoherence

Turn now to the question of how to achieve decoherence. First we note a simple
but very important case. The decoherence functional (2.21) is always diagonal in the final
projection, D([al, [a']) & Sa. e, by virtue of the cyclic property of the trace. In particular,
suppose that we consider histories characterised by a single event at & single moment of
time. Such histories always decohere, for one has, '

Tr [Pﬂs(tl)PPa’,(‘l)] = T-'[P-Pda.(tl)] saua', (2.33)

1t is perhaps for this reason that the need for decoherence is not apparent in conventional
quantum mechanics, which largely focuses on events at a single moment of time. Let us
go on, therefore, to study more general histories consisting of events at more than one
moment of time.

The most refined description of history it is possible to give is a completely fine-grained
history. This is one characterized by s set of fine-grained projections at every moment of
time, i.c., ons ia which one precisely specifies a complete set of commuting observables at
every momens.of time. With the exception of some special cases, fine-grained histories do
not decohere. To see this, insert into (2.21) the flne-grained projections

P2, = laa)(aa] (2.34)

and for the moment let the projections at a discrete, finite set of times. Then the deco-
herence functional has the form

D([a]'[a']) = Sayal, (a,.,t,.la,-;,t,._;_) (a:u—litﬂla:u‘u—l)
W e

x {az,talar,ty) (a1, talog,ts) % (aalp(ta)ley) (2.35)
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Even before taking the limit that the projections are continuous in time, it is evident that
a decoherence functional which has the product form (2.35) will generally not be diagonal.
This will also be clear from the path integral form below. As indicated above, however,
there are some exceptions, For example, suppose that all the projections commute with
cach other and with the Hamiltonian (as would be the case with momentum projections
for the free particle). Then it is not difficult to see that the decoherence functional will
be diagonal for any initial state. Another special case is that of a pure initial state |'¥),
with the projections at the times ¢, taken to be the state unitarily evolved to that time,
P: = |%(ta))(¥(ta)| (together with its complement, 1 — P% ). It is not difficult to show
that these histories decohere.

To achieve decoherence, it is generally necessary to consider coarse-grained histories.
There are three principle methods of coarse-graining histories. The first is to make projec-
tions at not every moment of time. Typically this involves making projections at discrete
moments of time, but it could also involve making projections in a discrete set of continu-
ous ranges of time. At the moments of time when the projection are made, one can then
give imprecise specification of a complete set of commauting variables, or precise specifi-
cation of an incomplete set, or both.This of course corresponds to making coarse-grained
projections at those moments of time, as discussed earlier.

It is an important issue for investigation to determine the extent to which thifse
coarse-grainings lead to decoherence. This will be the topic of much of the remainder of
this paper. We remark that it is immediately clear that the first of the three methods does
not seem to be particularly relevant. Specifying a set of fine-grained projections at not
every moment of time is a coarse-graining, but as we saw above, it alone will generally not
lead to decoherence. On the other hand, there is no reason why coarse-grained projections
continuous in time should not lead to decoherence. We will concentrate on the second two
methods in the following sections.

2(E). Path Integral Form of the Decoherence Functional

The decoherence funetional is very conveniently written in terms of a path integral,
a form we will exploit in the following sections. Suppose the system is described by a set
of configuration space variables ¢*(t). From the expression (2.21) for D([a},[a’]), one may
derive the path-integral expression

Dl = | Pd' j[;] g exp (iSla’} ~ iSla™)) (g} - o) plahia’s)  (236)

Here, S[g'] is the action for the system. The sum is over two sets of paths ¢’(t), g (t),
which begin at gi, ¢, at t = o, weighted by the initial density matrix. They end at
t = i; at a common point q} = q‘}, which is summed over, and the result is independent
of t; (this follows from the trace form of the decoherence functional, (2.21)). The paths
also satisfy restrictions at times t; - -1, corresponding to the projections P2 (t3). The
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path-integral form is most useful when the projections are onto position. In this case, the
paths are restricted to pass through certain ranges (i.e. pass through gates) on the time
slices ¢; -+ ¢,, but are otherwise free. Projections onto momenta are possible in a phase
space path-integral version of (2.36) (9).

The path-integral form of the decoherence functional provides an alternative way of
secing that completely fine-grained histories do not decohere. For suppose we project onto
precise values of the coordinates at every moment of time, e.g., project ¢ onto some value
Qi, say. Formally, this involves inserting into the path integral at every time ¢ a delta-
function, §(g*(t) — @%(¢)). It is not difficult to see that the decoherence functional then
takes the form

D([a], [o']) = exp (iS1Q°] - iS[@"]) &(QF - Q) p(@4,Q%)  (237)

This expression is the decoherence functional for completely fine-grained configuration
space histories, Q%(t), Q¥'(t). It is clearly not in general small for distinet histories.

In the path-integral form of the decoherence functional, the two most importaat
coarse-grainings involve specifying not all of the ¢ but only some of them, and specifylibg
the ¢* only imprecisely, by projecting them onto some range. The sum-over-histories also
affords the possibility of coarse-grainings more general than those that can be implemented
by projection operators in the trace form of the decoherence functional. The undeslying
notion that permits this generalization is that of a pertition of the paths. Projection op-
erators partition the paths according to their properties at a particular moment of time,
e.g., the particle either does or does not pass through the region of configuration space A
at time t. In the sum-over-histories, they can be partitioned without reference to time. For
example, one can partition the paths into those that do or do not pass through the region
A at any moment of time. Such a partition cannot be effected by projection operators; yet
it can in the sum-over-histories, and is sometimes a useful and interesting one to consider
(13). The sum-over-histories version of the decoherence functional is therefore more general
than the trace form (2.21), in that it permits these more general coarse-grainings, but it
is also less general, in that it is restricted to coarse-grainings involving only positions and
momenta.

As an aslde, we note that the path-integral form of the decoherence functional may
D(el )= [ Do e (Sle) oleh’ (239)

faddl

Here, the sum is over all paths g’(t) beginning at g} at ¢ = o, moving forwards in time to
t = t; passing through the gates [a], and then moving backwards in time passing through
the gates [a'], ending at ¢' at t = 2,.

This completes our survey of the general formalism of the quantum mechanics of
history. As stated in the Introduction, we feel that this approach to quantum mechanics

has considerable potential, on the one hand for clarifying many conceptual issues, and on
the othex, as a possible tool with which to do quantum cosmology. It therefore becomes
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an interesting issue to calculate the decoherence functional for various models. Not only
will this allow us to develop some feeling for how the formalism works in the context of
simple examples; but also, it will allow us to obtain a quantitative idea of the effectiveness
of the coarse-grainings discussed above. In particular, in the following sections, we wish to
exhibit the decoherence explicitly and quantitatively, as a function of the coarse-graining.

3. APPROXIMATE DECOHERENCE
AND SOME INEQUALITIES

In Section 2 we described the formalism of the quantum mechanics of histories and
gave the condition, Eq.(2.32), that must be satisfied if probabilitics are to be assigned
%o sets of histories. This condition is the condition for ezact decoherence, i.e., for the
probability sum rules for histories to be satisfied exactly. Whilst it is sometimes possible
to exhibit histories which decohere exactly, it seems reasonable to expect that in general
decoherence will not be exact, but will be approximate. This is the case, for example, for
the models considered in this paper. It therefore becomes an interesting and importsnt
question to understand what is meant by approximate decoherence. This question is the
topic of the present section.

3(A). Approximate Decoherence

Recall that the probability sum rules to be satisfied are Eq.(2.27), i.e., that the prob-
ability of a coarser-grained history must be the sum of the probabilities for its constituent
finer-grained histories, and that this must be true for all coarser-grained histories. The
natural generalization of this is to demand that the probability sum rules are satisfied to
order e, for some constant ¢ < 1. By this we mean that the interference terms do not have
to be exactly zero, but only suppressed by a factor ¢; i.e.

2 R“’““‘“"'Dl < e Y Dlalla) (3.1)
l-[l:[l:'{l-e'[lal (a]€la]

for all possible coarser-grainings [&] of the alternatives [a].

In the case of exact decoherence, ¢ = 0, we showed that condition (3.1) is fully
equivalent to the much simpler condition (2.31), that the real parts of all the off-diagonal
terms of the decoherence functional vanish. This enormously simplifies the problem of
checking the probability sum rules. For the case of approximate decoherence considered
here, however, in the worst possible case, we might have to check the probability sum
rules for all possible choices of coarser-grained histories. It could be, for example, that the
~ degree to which the sum rules are satisfied depends on the particular sum rule in question.
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Let us therefore ask, is there a particular sum rule which, if satisfied to order e, will imply
that all other sum rules are satisfied to the same order of better?

To address these issues, consider the finest coarser-graining possible, in which two
alternatives at time ¢; are combined:

Pﬁ.=Pg. +Pa'. (3.2)

This means that the alternative &, consists of aj or aj. Let us then demand that the
probability sum rule for this coarser graining is satisfied to order e. It is simple to show
that this means :

Re D(---ag-+-|---ah---)| < ¢ [p(-+-an-+") +p(---al--")] (3.3)

One might contemplate generalizing this type of condition to the case in which the ay’s
were different on each side of the decoherence functional for all values of k, not just one
value, as in (3.3). The right-hand side might then involve some kind of arithmetic mean
of the corresponding on-diagonal terms.

However, for reasons that will become clear below, it turns out that the conditin
(3.3), or its generalisations, are not the most appropriate ones. A condition that we haye
found instead to be more useful is

|Raer| < ¢ [RaaRarar]} (3.4)
where we have introduced the convenient notation,
Raw = Re D({al,[a']) | (3.5)

We therefore take the geometric mean of the diagonal terms on the right-hand side, rather
than the arithmetic mean.

First of all, note that (3.4) implies (3.3). This follows (apart from a factor of 2) using
the relation, -

[RoaRerarlt = 3 [(Roa + Rerer) = (Raa = R Y]}

< 3(Ron + Burar) (3.)

and taking td# case in which [a] and [a'] differ only in the values of the alternatives at
time ¢ and no other.

Now consider what the condition (3.4) unpheafm' more general coarser-grainings of
the histories. Consider first the strict upper bound on the left-hand side of (3.1). One has

<e) [_Rcmﬂ«:'w]i (3.7

ao’
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where here, and in what follows, @, ' € &. Also, to streamline the notation we temporarily
drop the bracket notation [a] in favour of a simple .

We need an expression involving a sum over probabilities, as in right-hand side of
(3.1). We therefore write (3.7) as

Z: ‘Raa’

a¥a'

< Ac¢) Raa (3.8)

aEa

where

-1
A= (z R,,.,) Y [ReaRawl? (3.9)

atd ajyta’

It is not difficult to see that the factor A will generally be much greater than 1, meaning
that more general probability sum rules will not be satisfied to the same degree as the basic

' condition, Eq.(3.4), but will be satisfied to degree Ae¢, number generally much greater than
€.

The above analysis gives rigorous bounds on the probability sum rules, but thise
bounds are pechaps not the most relevant ones. In the sum over off-diagonal terms on
the left-hand side of (3.7), it is reasonable to expect that the terms will be randomly
distributed with regard to sign. This means that, if there is a large number of terms in the
sum, there will be a considerable amount of cancellation, and the upper bound (3.8) is not
representative of the typical value of the sum over off-diagonal terms. It is like a random
walk in one dimension, with random step lengths and equal probabilities of stepping left or
right. If the average step length is £, and the number of steps is N, the maximum distance
one can walk is £N. However, if N is large, walks of such length are exceedingly rare, and
it may be shown that by far the most probable walks have lengths of order 4N ¥ or less
(assuming that no one step is substaatially larger than all the others) [14].

For the case at hand, we expect that a statistical analysis of the distribution of the
off-diagonal terms summed over will produce an upper bound much lower than than the
rigorous upper bound in (3.7). In particular, we will assume, in place of (3.7}, that the
distribution of off-diagonal terms is such that

adta’

[E~l<(z=)

Now we repeat the above analysis using (3.10). Using condition (3.4), it is straightforward
to show that (3.10) implies

afa’ a€a

S Roa" < AeY Raa (3.11)
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where

A= (;E; R,.,) B ﬁ;‘ Rch.-avr

- (3 =) ) L(z R“),_ 5 R:mr (12)

aEd (1. ] ack

It is readily seen that A < 1. This is the main result of this section: given condition (3.4)
and assumption (3.10), all probability sum rules are satisfied to order ¢ or better.

It may be enlightening to explain why condition (3.4) is more appropriate than (3.3).
The main diffculty with (3.3) arises when the coarser-graining & involves a sum over an
infinite number of a’s. This happens in the models of this paper, for example. For suppose
one repeated the above analysis using (3.3) in place of (3.4). Then in the expressions
corresponding to (3.7) and (3.11), one would obtain expressions in which Ra, are summed
over both a and a', and would therefore diverge.

3(B). Some Inequalities

We now derive some inequalities which will be useful, and lend support to the approx-

imate decoherence condition, (3.4). Consider the matrix elements of the density operator
p in an arhitrary basis, {|4}}. It is given by,
pas = {4|p|B) (3.13)

Now p is & non-negative hermitian operator. This means that there exists some operator
S such that p = STS. It follows from the Cauchy-Schwarz inequality that

kastsiB)? < (a1sts|a) (Bists|B) (3.14)
We therefore pave the inequality,

lpaBl* £ paa pBB (3.15)
for all A # B with equality if and only if p is pure. _
An analogous result also holds for the decoherence functional. Write the decoherence

functional
D(jo},[e) = N 3 (BiosCamCL.18) (3.16)
8

where we have explicitly written out the trace over a complete set of states, {|3}}, and we
use the notation
-Ca = Pc.(tn) aen Pa,(t’)Pq‘ (tl) ) (3-17)
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For generality, we have also included a finel density matrix py The normalization factor
N is given by N~! = Tr(pyp).

For simplicity, consider first of all the case in which py is mixed but the initial state
po is pure, po = |¥o){¥o|. One then has

D([al,[a']) = N (Ze|CL.p1Cal¥0) (3.18)

Since we may write py = S;S ¢ for some Sy, it follows from the Cauchy-Schwarz inequality

that
1D((ad, (@)} < (D(lal a]) D], (o)} (3.19)
with equality if p; is pure. The case of a pure p; and mixed pg is essentially the same.

The case of general py and py is a little more complicated. Write py = SIS,- and
P = SoSI . Then the decoherence functional may be written '

D(lal,la) =N 3 (8l14.AL18) (3.20)
]
where we have introduced A = SyCaSp. One therefore has

ID(lal, 2l £ N T 1814418
f. |

< N Y (BlaaAtis (BlawAlis) (3.21)
[] .
For simplicity of notation, introduce
Xs = (Bl4aAL18)E (3.22)
| Ys = (814w AL 18)} (3.23)
Then (3.21) fends, : _
ID(lal (@)l < N ) Xs¥s - (3.24)
F-|
Also,
D([a}; [a]) D(la'), [a]) = N* 3 X3V} (3.25)
By
Now consider the inequality,
3 (XsYy-X,Ys)* 2 0 (3.26)

B
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This implies that

> XeYX,Y, < ) X3Y3 (3.27)
8 B
and hence that

* .
D XaYs < (E xgr;) (3.28)
B By
Comparing with (3.24) and (3.25), we therefore again obtain the inequality (3.19). This is
the main result: the decoherence functional satisfies the inequality (3.19), with equality if
the initial and final states are pure.

It is not true that equality is obtained oaly if the initial and final states are pure. It
is not difficult to construct examples with a mixed initial state in which all but one of the
probabilities for a set of histories are sero. But one then has equality in (3.19), because
both sides are sero. ‘ '

The inequality (3.19) lends support for the use of our appraximate decoherence con-
dition, (3.4). The degree of decoherence is basically the amount by which the left-hapd
side of (3.19) is less than the right-hand side. A search for other, more concrete measuges
of approximate decoherence would clearly be both useful and interesting.

4. THE CALDEIRA-LEGGETT MODEL

An important class of systems in the study of decoherence are those in which there is
a preferred split of the total system into a distinguished system, and the rest, summarily
referred to as the environment. A natural coarse-graining in such composite systems
then consists of projecting onto the distinguished system only, whilst tracing out over the
environment. Models of this type have been considered extensively in the context of the
reduced density matrix approach to decoherence [15]. Here, we will consider such a model
in the context of the decoherence functional. The model is the Caldeira-Leggett model,
originally progosed as a model of quantum Brownian motion [16].

The Colilliva-Leggett model is & comparatively simple model for decoherence in which
the evolutiowwf the reduced density matrix may be determined exactly. It consists of a
distinguished system A with action :
Salz] = j dt [l.llé’ - luw’a’] , (4.1)
L Tz 2

coupled to a reservoir or environment B consisting of a large number of harmonic oscillators
with coordinates R; and action

SgR] = ; jo "t [-;-mnz - %m,’,ﬂi] | (4.2)
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The coupling is described by the action
- r
SI[S,R] = —E/ dt CyRyz (4.3)
: o

where the C,’s are coupling constants.

The object is to study the quantum evolution of this system, but focusing on the
system A only. At any time ¢, the most complete quantum description of A only is given
by the reduced density matrix

Bz, y,t) = f dR4Q §(R — Q) p(z,R,y,Q, 1) (4.4)

where o(z, R, ¥, Q,t) is the density matrix of the combined system.

The evolution of & pure state would be given by the usual propagator for the total
system, which may be expressed in path integral form,

(21, Rg,7l20,Ro,0) = [ DeDR exp(iSTe, R]) (43)
Here, S{z,R] is the total action for the system,
S[z,R] = Sa[z] + Sa(R] + Si[=,R] (4.6)
and the sum is over paths (z(¢), R(t)) satisfying the boundary conditions
2(0) = 20, z(r)=27, R(0)=Re, R(r)=Ry (4.7)
The evolution of the total density matrix is therefore given by
P(cf:RhY.va.f!r) = /‘ko‘mm-ono (’!valzhn-ho)

x {y, Q, T|yo, Qho). P(zhn-o’yﬂtho)

Using (4.5) and (4.8), we may therefore obtain a path-integral expression for the evolution
of the reduced density matrix:

(4.8)

Azsryp )= / dzqdyedRodQoedR 1dQ; DzDyDRDQ §(Rs — Qs)

x exp (iSa[z] — iSaly] +iSs[R] - iS8(Q] + iSi[z, R] - i51(y, Q])
X p(zGHR-OsyﬂsQO:o) (4'9)

Next, it is assumed that the initial density matrix for the total system has the form

P(z(hn_'hyfh Qo, 0) = PA(zo,yo,O) PB(R-Ch Qho) _ (4.10)
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For then it is possible to completely integrate out the environment in the path integral
(4.9). The resulting expression may then be written

Azynt) = jdzodyo J(zs,¥1,7|20,%0,0) pa(2o,%0,0) (4.11)

Here, we have introduced

J(zhyhflzhyoao) = /szy exp(iSA[zl —ng[y]) F[z,y;r) (4'12)

where F[z,y; ) is the influence functional,
Flewir) = [ dRedQodR1dQs S(R; ~ Q) p5(Ro,Q0,0)

x [DRDQ exp(iSlR] - iSs[Q] +iSile, R] - iSify, Q) (413)

The quantity J defined in Eq.(4.12) is the central object of interest in the Caldeira-Leggett
model, because it describes the evolution of the reduced density from any initial total
density matrix of the form (4.10). It will also turn out to play an important role in the
decoherence functional described in the next section.

The influence functional (4.13) may be evaluated exactly given the initial density
matrix of the environment, B. A useful choice, taken by Caldeira and Leggett, is to take
the environment to begin in thermal equilibrium at temperature T, with density matrix

I,
PB(R: Q) = l;_[ ZWOinh(W:/kT)

X exp (- = m:(i": 75 [(R2 + Q2) cosh{ws /kT) — ZR,,Q'..]) (4.14)

The influence functional is then given by

Fawir) =exp (- [ £) (4.15)

where '

fa=[ " dd'dafa(s) — y(s)lar(s — o )z(s") — y(s")
+i | " a5t dale(s) — y(o)]ar(s — #)z(s") — y(s")] (4.16)
and
"N - Cci ' -
ap(s —4') = . 2_m_¢!v_;~°°th (-i-?i-;) coswy(s — &) (4.17)
ar(s —4')= Z 202 sinwy(s ~ ') (4.18)
T s .
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Caldeira and Leggett next choose to take a continuum of oscillatorsin the environmeant,
with density pp(w), which involves the replacements

> [ dopnte), 01— o) (4.19)
k

in (4.17), (4.18). Furthermore, a high-frequency cut-off in the sum over w is taken, of the
form

‘le:u’ :
Cz = - 3 if w < Q 4.20
po{w)C(w) {0, fw> Q. (4.20)

The result has the general form,
I(ep,ups7loew0,0) = [ DDy exp (i3(e,s] - ¢le.3]) (a21)

The effect of tracing out the environment leads, amongst other effects, to & renormal-
izing of the frequency of the distinguished oscillator from w to wg. We will work in the
Fokker-Planck limit, for which k7' >> 2} >> wpg. One then has

Steusl = [ " (-;w - SMP ~ S MR + 3 MRy - Mz — 3G + ﬁ)) (4.22)

and ”
$lzy] = 2MART j dtfa(t) - y(1)]? (4.23)

The environment therefore has three effects of significance: renormalization of the fre-
quency w, the introduction of dissipation characterized by v, and the suppression of con-
tributions from widely differing pairs of paths in (4.21) through (4.23). It is this latter
effect that will lead to decoherence.

It is particularly useful to introduce the variables X =z 4y, £ =z — y. In terms of
these variables, the above expressions are :

5(x,¢) = f. Tt (-;-MXE - éuw;xe - Mﬂ‘:e) (4.24)
and ) 1_
Hx,g=2mmr [(ae (4.25)
/]

Two features that will be important in what follows are firatly that ¢ depends only on £,
and secondly that X occurs linearly in S[X, £].

Now we review the evaluation of J, (4.21). This will be useful for the next sections.
It is convenient to expand about the extremum of S. The extremum is the paths X (t),
£.1(t) satisfying the equations of motion

DpyX=X+29X+whX =0 (4.26)
Diyt=f~2vf+whé=0 (4.27)
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subject to the boundary conditions
X(0) = Xo, X(f) = Xy, f(O) =&, £(r)= &r

The solutions are

Xa(t) = ;:% (Xy €™ sinwt + X sinw(r ~ t))
Ealt) = n:.:‘r ({f e“"’aiﬁwt + £o sinw(r — t))

where w? = w} — 4%. The action § evaluated on these solutions is
Sa = K(r)Xgés + K(v)Xobo — L(7)Xofs — N(1) X1
where
- 1 1
K(r)= —-2-M7 + EMw cotwr,

K(r) = +-;-M1 + %Mw cot wr,
Mwe™ "

2sinwr

Mwe™

2sinwr’

L(t) =

N(t)=

Now write '
X(t) = Xa(t) +6X(t), &(2) = Ealt) + 84(2)

where

5§X(0) = 6, §X(r)=0, &§60)=0, &(r)=0.
The path integral (4.21) now becomes

KXy 6 7Xar00,0) = exp (i8) [ DO6X)DISE)

% exp (_.-.;‘2.‘. j dt 6XD_)5€ — dles + 68])

(4.28)

(4.29)

 (4.30)

(4.31)

(4.82)
(4.33)
(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

However, since the exponent is just linear in §.X, the integral over §X is readily performed,
to pull down a delta-functional §{D(_)5¢]. Integrating over 5§ the only contribution thus
comes from §§ = 0, and a prefactor of (det[D..,]) =1 appears. This prefactor was evaluated
by Caldeira and Leggett, and we denote the result F?(r). The final result is therefore of

the form,
J(X1.€5,71X0,60,0) = F2(r) exp (15 - éléa(t)])
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Here, ¢[£.1(t)] has the form

$lEa(t)] = A(T)E} + B(r)esrbo + C(7)E5 (4.40)
Explicit (but rather lengthy) expressions for the coefficients 4, B, C are given in Ref.[16],
and we do not give them here. However, they simplify enormously in the Fokker-Planck
limit considered here, in which case they are given by, |

2MykTe 277 [ 1. . l
= —— | — T-1)~-1T 4.41
A(‘r) sinﬂ wT 4’7(‘ ) ( )
~r
B(r)= 2M?/k:Te [- cosw‘r(e,.r, —1)+ Tcoswr + Jsinwf] (4.42)
sin” wr 27

M~ET [1 , .

C(r)= o [a(e"’ —1) - Icos2wr —J sm2w1'] (4.43)

where

I = -;--7(1’ +w?)" T (27T cos2wr — 1) + %w(‘r’ + w?) 1?7 sin 2wt (4.44)

J= —%w('r’ +w?)™? (¥ cos2wr —1) + %1(1’ +wd) 1M sin2wr  (4.45)

For future reference, we note that in the short time limit, each of A(7), B(r) and C(r} are
approximately equal to § MykT'r + O(72).

5. THE DECOHERENCE FUNCTIONAL
FOR THE CALDEIRA-LEGGETT MODEL

We are going to calculate the decoherence functional (2.21) for the system described in
the previous section, consisting of a distinguished harmonic oscillator coupled to an envi-
ronment consisting of a thermal bath of harmonic oscillators to provide decoherence. The
projection operators will be projections onto the position of the distinguished oscillator.
For mathematical simplicity, we will use Gaussian slits.

8(A). The Decoherence Functional
The decoherence functional is written down most readily using the path integral form,
(2.38). In our case it is,

D(Zs,5) = jdzrdydefde dzedyedRedQe PzDyDQDR

X §(zy —ys)é(Ry — Q) pa(20,10) PB(Re, Qo)
X exp (lSA[z] - iSA[U] + l-S’B[R-] - lSB[Q] + is![zs R] - "SI[yv Q])

Cxe (=) =8 - (v(ts) — 5)?
* "‘_"( X a TLoa ) 5)
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For convenience, in what follows we will omit pre-exponential factors. (These can always
be deduced, if desired, by appealing to normalization conditions). The sum is over histories
(z(t), y(t), R(t), Q(t)), where ¢ tuns from ¢t = tp to ¢ = ¢ = t,;, and the histories satisfy
the boundary conditions

2(to) = 20, Y(to)=w, =(ts)=2zs ylts)=vs (52

R(to) = R'oi Q(i) = Qﬂi R(*f) = Rf’ Q(tf) = Qf (5'3)
On the initial surface, ¢ = iy, the initial density matrix of the system is folded in, and is
taken to have the form (4.10), (4.14); on the final surface at ¢ = 1;, the delta-functions
enforce zy = yy, Ry = Q and then z; and Ry are summed over. The histories are ob].iged
to pass through the Gaussian slits at positions 2;, Jj at timest ={, for k=1,---n. It
will be convenient to work always in the Fokker-Planck limit.

Because the projections refer only to system A and not the environment B, the envi-
ronment coordinates may be completely integrated out. One thus obtains

Dits, sl = [dosdypdssdin DDy bzt — v7) paleo, )
x exp(iSa[z] - iSaly]) Flz,vi7) |
_y ) -m) ¢ (y(t..>~a.>=) %4
< o (-3 Gl Bl S ) (54)
where Flz,y;T) is the influence functional introduced in the previous section (in the
Fokker-Planck limit). We then have
D(zs, 5] = f dz gdysdzedys DzDy 6(zs — yy) PA(’MW)'
X exp ‘-S.[a,'y]_¢[a'y])

xq(—iw_imﬁtﬁ) (5_5)
-} L] Aml &

where S{z,y] and ¢{z,y] are given by (4.22), (4.23) respectively.

Because the projections reside only the discrete set of slices t = t3,for k =1,2,...n,it
is convenient to rewrite (8.5) in terms of integrals on these slices and propagation between
them. Ituﬁomeﬁ:ltogotothemblux {,deﬁnedbyx—z+y,f=z—y. We
then have

DX, &) = / X iy 1dnt18Xndln - - - dXodly §(€ns1) Pa(Xos 60y 20)

X H I Xas1s Eut 15 tut1| Xay Eny )
=0

(Xu —3a)* X)’ = (- &) _
( E h i E hzczi ) (5.6)
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Here,

T(Xnt1s Eut1r tir1 | Xus Ear ta) = j‘DX‘DE

x exp (51, €3 tass, ta) = 4(X, &5 tur, ta) (5.7)

where S5[X,£;tass,ta) and $[X, £; ta41,ts] denote the quantities (4.22) and (4.23), respec-
tively, but with the integration domain [0, 7] replaced by [ti,fa+1]. As in the previous
section, Eq.(5.7) may be evaluated exactly with the result

J(Xnt1,En41,tn+1]Xus Euytn) = Fiypy 4 €xP ("S'hﬂ.h - ¢h+:.h) (5.8)
where Fiyi1 a4 = F(taer - ta), with F(t) as in Eq.(4.39). Also,

Sat1h = Sat{ X1, Ene1rtas1]Xn, Easta)
= Kur14Xns1éu41 + Knp1.6Xabn
— Lat1,8Xaén+1 — Nar1 40 Xn4160 @-'-3)

where Kyy14 = K(ta+1 — ), with K(t) given by (4.32), and similarly for Kut1,4: Lat1,e
and Nh+1,.. Likewise,

Sus1h = Avt1a€bp + Brrrabarrbs + Casr1 4l (5.10)

with Ah+1" = A(t..’.]_ - tﬁ) ete.

As an aside, we note the following point. The propagator J from ¢ = QG to t = 7 is
given by Eq.(4.12), which involves the influence functional (4.13). This in turn involves
the density matrix of the reservoir B at time t = ¢, given by Eq.(4.14). The propagator
between slices ¢ = ¢, and ¢t = £33, Eq.(5.7), comes from expressions of identical form,
but with the change of domains of integration noted above. It is perhaps surprising,
however, that the propagator from 5 to #3431 should involve the density matrix pop at

= ¢g. The season for this is that the environment in the Caldeira-Leggett model is taken
to be essentlally infinite. This means that although the the system A is itself affected
substantially by its interaction with the environment B, A has negligible effect on the
dynamics of the environment. To a good approximation therefore, the euvironment is
always in thermal equilibrium, described by the density matrix (4.14) for all time.

Our task now is to evaluate the decoherence functional (5.6), for varions choice of
initial density matrix p4. All the integrations are Gaussian and may therefore be carried
out in closed form. Despite this, a direct assault turns out not to be the simplest or most
transparent way to proceed. Recall that in Section 4, the evaluation of the propagator J
was considerably eased by the simple observation that X occurs linearly in the exponent.
Because of the presence of the projections, X does not occur linearly in the exponent of
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the decoherence functional. However, the following trick turns out to be extremely useful.

Write .
exp (-(Xh ;ﬁX.)“) = 1” fdPhexp (—Pf 4 20 (Xe — 3&)) (5.11)

Th

Now inserting (5.8) and (5.11), the decoherence functional becomes,

DUuy il = [ dXurrdlnsrdXodls "X ¢ P B(gurs) pa(Xor€0,to)

X exp (i [53t+:.a - ¢a+:,a])

= [p2 , 2iP (s — &)
X exp (—2‘[& + -;.—"(X.. -X)+ —"7—%-3-—-]) (5.12)

The exponent of the decoherence functional is now entirely linear in the variables X, and
we may proceed with the evaluation, beginning with the integral over X,.

A change of variables is usefal. Consider the classical solution for X(t) connecting the
initial and final points, (4.29). Write it as

xd(t) = X,..,.l a(t) + x. ﬁ(f) (5.13)

Here, a(t) and 8(¢) are solutions to the field equations for X whose exact form may be
found by comparison with (4.28). They satisfy the boundary conditions

a(te) =0, alty) =1, (5.14)
Blta) =1, Blts) =0. - (5a8)

Now perform the change of variables

X = Xf' + 48X,
= X,.+1 ar+ Xe fa+6X, (5.18)
where ay = afts), Sa = F(ts). It follows from the above that the §X; obey the boundary
conditions
’ 610 =0= EX,..,.I (5.17)
Under this shift of integration variables, one finds that

E gﬂl.l = §¢‘(xf‘l£f‘l tf'xlhshk) + 5(1) (5'18)
=0

where S, is given (from (4.31)) by
§el = I?(T)fo.Xo - N(‘l')foxlf (5.19)
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and

5 = Z [—Lb+1.h£h+1 + (Batrp + Kipm1)a — Nh,k—:fh—l] 6 X (5.20)
k=1

Using the above results, the decoherence functional may now be written,

DiRn,&il = [ dXaradXe dho (6X) T O°P pa(Xoyburto)

X exp (if('(r)xofo —iN{T)Xn+ibo +i§D) — Z Pu+1,5{€n> En+1)
k=0

- i [P: 2iPy (X,.+1 ap+ Xo Ba+6X, — Xh) + Mb-)—]) (5.21)

The integrals over X4 and §X, & pull down the delta-functions

. . b
5 (—Ls+1.b&+1 + (Kns1,6 + Kap-1)6a — Nap—1bp-1 — 2—:)

x & (N(r)eo +2 E an B ') (5.22)

The integrations over §{, and §£, may then be performed. The only contributions come
from

ahPt ' '
bo=— (T) 2 (5.23)
and from the value of £, satisfying the dxﬂ'ereng:e equation,
o - P :
=Latr pént1 + (Kps1,8 + Kop—1)6s — Nap-1éa-1 = 2-—-:- (5.24)

for k = 1,2...n, with the boundary conditions that {n41 = 0. Eq.(5.24) may be solved
explicitly, but the exact form of the solution will not be needed. It will be is linearly
dependent om £5 and P,. We will hereafter assume the integrals over £ and £, have been
done, and umify to denote the right-hand side of (5.23), and §¢£, to denote the solution to

(5.24), The seature of &, lnd&tokeepxnmdutha.t they are both linear in P,. We
now have,

D(Xs, ) ""fdxo dip pa(Xo,80,t0)

X exp ("I;' (1) Xobo — 3 dat1,a(6ns Ens1)

k=m0
2P,

- i: [P,," + (Xo Bu— X)) + (2 ;;"):D (5.25)
[ 5

29



We will now consider the evaluation of this expression for various different forms for the
initial density matrix.

5(B). Wave Packet Initial States

We first consider an initial density matrix corresponding to a pure state consisting of
a wave packet momentum p centered about the point £y. One thus has

pa(Xo,o,to) = exp (51’50 - M - iz—g) | ' (5.26)

ol

where X, = 22,. Inserting this into the decoherence functional, the integral over X, may
be performed, and one obtains,

D(Xu, &) = f d"P exp (ipfo -3 - E Put1,5(Ens $ata)

+iZe |R(r)0 - 2 M] -z [K( Yo -2 ): """‘
L

_i 'P.z — 2:?‘1. + (fb :56.&)2]) (5‘27)
A=l ™

The important step now is to organize the exponent into terms qua.d.r;tic and linear in P;.
We therefore write the decoherence functional in the form

D[R, &) = j d"P ezp( 22 P..M.,P,+E(U..+:V,.)P. E ) (5.28)
Am] =1 k=l

where

E E PoMy;P; = _{3_ + Eénz.&(&,&ﬂ)
- Bw jee2

+ = [K(-r)f. - E 2 'P‘] + 2 [PE + %] (5.29)

k=1
. ‘UP.=2 —"f 5.30
AP (30

and

2 VaPi = pts + Ko [K(T)En - zE E.'.fi] +2 2 (5.31)
k=2 | 23 ﬁ-l



In particular,

2|ls . P o [ K(7) |
Vh = 0—. [X,, - F(-T—)-Gj - .Xo (—ﬁ—(-;ja;. + ﬂh)] (532)
Now let %
P (r)
Ys= G .+ (N(f)a" +ﬁn) Xo (5.33)

The significance of this is as follows. Consider the classical solution for X(t), given by
(5.13). This is the solution for fixed initial and final X. However, Hamilton-Jacobi theory
together with Eq.(4.31) give

Py(te) = -gé = ~R(r)Xo + N(7)X; (5.34)

wﬁm Py is the momentum conjugate to §, and we can use this relation to obtain the
classical solution for fixed initial X and Py,

Xalt) = Taa(t) + ( NE’}a(tHﬁm) ()

When the decoherence functional is diagonal, z = y = 1 X, and since P; = J}MX, we can
identify p = M2, the momentum conjugate to 2, with P;. We therefore have the result
that Y3 = X () = 22.1(ts), where 24(t) is the classical solution with initial position 2,
and initial momentum p.

The integral over P; may c;.rned out, with the formal result

D[X:.,E..]=erp(+ U"M"‘U--UTM-IV- V"M"‘V 2 ) . (5.36)

b=l

in an obvious matrix notation. Eq.(5.36) may be re-arranged into the form

—Y)

7j

D[Xs, Spmexp (-% > &M - ;v"M'IV -3 (x"d'_; Y")M;,.’ (X;
7] N

(5.37)
where M.,, may be found from the above. It will be positive definite because the decoher-
ence functional is by construction normalizable. Similarly, it follows from (5.29) that M,;
is positive definite.

We may now see that the decoherence functional has the expected qualitative features.
The first term in the exponent of (5.37) shows that the decoherence functional is small for
large values of £;, i.e. that distinct histories decohere. The second term, which is linear in
&4, is purely imaginary. It does not affect decoherence, and in fact vanishes when £ is set
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to zero. The third term clearly shows that the diagonal part of the decoherence functional
is peaked when the slit positions X, lie along the classical trajectory, Xi = Y.

At this stage, the full advantage of writing the slit projections in X in terms of
their Fourier transform is clear. The qualitative features of the decoherence functional
-~ decoherence of distinct histories, and peaking about classical trajectories — are clearly
exhibited. The detailed expressions for the widths of the peaks are rather complicated,
and it is because of this that a direct assault on the evaluation of the integral would lead
to some rather cumbersome algebra. Use of the identity (5.11) leads to a clean separation
of the terms giving the configurations about which the decoherence functional is peaked
from the terms giving the width of the peaks: the former are linear in P in (5.28) and the
latter are quadratic in Pj. It seems likely that this simple trick will be similarly useful in
calculations of more complicated decoherence functionals.

5(C). General Initial States — The Wigner Function

For more general initial states, we have found that some of the qualitative features of
the decoherence functional may exhibited using the Wigner transform of the initial densfly
matrix. We there write the initial density matrix, '

palXo,bosts) = [ dpy et Wipn, Xo) (5.38)
where W(py, X,) is the Wigner function, and is obtained in terms of p4 using the inverse
of (5.38). The Wigner function has many properties shared by classical phase space distri-

butions, and has often been proposed as an interpretational tool [17,18]. Inserting (5.38)
into (5.25), one obtains

D[R, &) = f dpe dXy &P W(po, Xs)
X exp (t'(rc + K(7)Xo) - Z¢a+:,n(€h&+z)
h=0

-—2[?.%

where, recall, §, and £, are given by (5.23) and (5.2¢). Inserting the expression for £,
nmedmtuymgunentofthetmneldsmapmmmhrto (5.28),

22z, p.-x.)+$§9-;§!'f-]) (5.39)

D[X;.,E}.] =j dpo dx. P W(po,XQJ

( E 2 PuMis Py + E(Ua. + ch)Ph Z: —!) (5.40)

=] j=1
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Here, Uy is given as before by (5.30), but My; is given by

n n * n n 3 :
Z Z PuM;P; = E Put1,x(Ers ar) + Z [PE + %] (5.41)

h=1 j=1 h==0 h=1

Also V, = 2(X, — Yi)/ou, where Y}, is given by

Ya= NI? 3 + (Ng ;ah + ﬁa) (5.42)

This differs from (5.33) only in as much as p and X; have been replaced by po and X,.
Again one can formally carry out the integral over Py, with the result

D(2a, &l = [ dpo dXe Wipe, Xe)

- N
x exp ( +=UTM-U - SUTM-'V - ZVTM-'V - %
4 2 4 A=l

w1l

)

In particular, setting £, = 0, we see that the diagonal part of the decoherence functichal
is given by

Tk

p[Xa) '—"/ dpo dXs W(pa,Xo) exp (‘Z‘(&":—Yﬂuﬁ%ﬁl) (5.44)
. aj -

This, then, is the formal result for an arbitrary initial density matrix.

The form of (5.44) is suggestive of an ensemble of classical paths, with the Wigner
fanction of the initial density matrix giving the probability distribution of their initial
values of coordinates and momenta. This cannot be quite correct, however. Firstly, the
Wigner function is not always positive, whereas (5.44) is, by construction. Secondly, (5.44)
is a probability distzibution on a sequence of position samplings, and makes no reference
to momenta. The connection with phase space distributions is obtained by considering
histories consisting of position samplings at two moments of time. By taking the times
very close tagether, one thus obtains an approximate position sampling together with a
time-of-flight momentum sampling over a short time interval. The reaultmg probability
distribution turns out to be the Wigner function smeared over an A sised region of phase
space — just sufficient to make it positive. These results are described in more detul in a
separate paper [19].

5(D). Decoherence

The complexity of expressions such as (5.37) makes it difficult to obtain more than
qualitative information about decoherence and classical peaking. More precise quantitative
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calculations for simpler cases will be the subject of the following sections. Here we note one
particular simple case showing some important quantitative features of decoherence. First
of all take the projections onto the distinguished system to be at every moment of time,
from ¢y to ts. Secondly, take their widths to zero, so that the histories for the distinguished
system are completely fine-grained. From (5.5), one thus obtains,

D{#(t), 9(t)) = 8(2¢ ~ 5) exp (i3(2,9] - 412,5]) Pa(Za,5) (5.45)

Using the density matrix inequality (3.15) for p4, and using the explicit form for ¢, (4.23),
one finds that the decoherence functional satisfies the approximate decoherence condition,

| Di2,g] | < exp (—zmkr [ aa —ﬁl’) (D{z,Dig, g])} (5.46)

This indicates that paths separated by distances of order ¢ decohere on s time scale of
order
tp ~ (2MykT)™? (5.47)

As noted by Zurek, this time can be very short indeed [20].

This simple case therefore explicitly indicates the general tendency of the environment
to induce decoherence. But it also illustrates a subtlety. To obtain decoherence of the set
of histories {2(t)} to some degree ¢ < 1, it is necessary that

exp (-2M11-.T / e[z — g]=) <e : (5.48)

However, the set of histories {Z#(t)} are completely fine-grained. It follows that it will
always be possible to find pairs of histories, Z(¢), #f(t) which are distinct, yet for which
J dt{Z — §]? is so close to sero that (5.48) cannot be satisfied. Clearly what is needed is
further coarse-graining of the histories {#()}, so that Z has significance only up to some
length scale ¢, say [21). The moral of this, therefore, is that to satisfy an approximate
decoherence condition of the form (3.4), in this model, both types of coarse-graining are
necessary - tracing out the environment and smearing over position.

6. EXPLICIT EVALUATION OF SOME SPECIAL CASES

In Section 5, we evaluated the decoherence functional for the case of an arbitrary
number of projections in the Caldeira-Leggett model. Or rather, we evaluated it to the
point where its qualitative features could be seen: decoherence, and peaking about classical
trajectories. However, were not able to evaluate it to the point where we could obtain a
quantitative idea of the degree decoherence. In this and the next section, therefore, we will
evaluate the decoherence functional completely for the simplest non-trivial case, namely,
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the case of histories characterized by projections at just two moments of time. This involves
evaluating (5.6) for the case n = 2.

As we have seen already, the decoherence functional has the property that it is diagonal
in the final projection, although in the present case this is only true approximately, because
the Gaussian slit projectors obey the mutually exclusive property only approximately.
Nevertheless, to the extent that it is true, Eq.(5.6) for the case n = 2 reduces to,

D(XlsXZlEI) =/dxﬂd£3dx1d£1dxﬂd£u J(E:) PA(Xo,fo,to)

x F3, F}, exp A S 4’1.0)

(X2-X%)P (Xi-X)? (&L-&)
“‘"("’ 3 a4 )

(6.1)

where F, § and ¢ are defined by Eqs.(5.8){5.10). For the initial density matrix, we will
take a general Gaussian,

PA(Xo,&0,t0) = exp (—ao X3 — Botd — Yo Xobs + peXo + 10ée + &) (6:2)
Here, ay and fg are real. Clearly ay > 0 for normalizability, Trp = 1. It may be shown
that positivity of p implies that By > ag [19].

To evaluate the decoherence functional (6.1), we could of course just use the method
used for the general case in Section 5, and quite simply evaluate the final expression for
this particular case. However, this turns out to be rather cumbersome, and we have found
it easier to employ a different method. In particular, we shall proceed as follows:

Step (i): Perform the integrals over X, £o, thus obtaining the evolution of the reduced
density matrix from ¢y to #;:

A Xy, b1,t1) = f dXodts FI4 exp (i51, —¢1.o) Pa(Xo,&0,%) (6.3)

Step (ii): Multiply by the projectors at time ¢; and then evolve to time #;; i.e., calculate
the quantity

B(X,,X3,8) =/dX1d£1 F}, exp(i$s, "'h.:)

x (_ (X, :}Xl)3 _ (& :;1)’) (X1, 6, 10) | (6.4)

where we may use the fact that {3 =0in 5‘3'1 and ¢3;.
Step (iii): Finally, multiply by the single projector at time {3 and integrate over Xj:

‘D(xiix?!glj:/dx’ exp(—'L-;gxz):) ﬁ(xlixlifl) (6'5)
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Beginning with step (i), a tedious but straightforward calculation yields the result,

P(-xlgflttl) =7 F:.o A i exp (-a;X, ﬂ1£§ - ‘7’1X1£] + ﬂv:X] + V1£1 + 81) (6.6)

where

1 o
A0 = ao(Bo + C10) — z(‘ro ~ 3K 0)? (6.7)
and
N3 pae
= L 8.8
ay wm ‘ ( )
By = 4; -—.Bf',ao + L% (8o + C1,0) +iL1,0B1,0(70 — "ffx,o)]
10 b
+ A0 (6.9)
"y = 1 .—2%'N1,o.8'1,o¢!o - LI,ONI.U('T& - if{!,ﬂ)] - ‘.Rl,ﬂ (0'10)
48,0 L :
1 [ . : .5 "
p1 = 2810 b—!Nl.oaoVo + %N1.o!&o(’7o - lffm)] (6.81)
¥ = 1 [—iL3,0(Bo + C1,0)10e — B1ecxovn
24,0
1 . ,
+§(‘T¢ = iK,0)(3L1 000 + Bl,wo)] (8.12)
1 .
6 = [(ﬂo + Cr0)p3 + aovd ~ (710 — %Kl.o)ml’b] + e (6.13)
1,0

This completes step (i).

As an aside, and by way of a check, we compare these results with the calculations of
Caldeira and Leggett for the evolution of the reduced density matrix {16]. They took as
their initial state & wavepacket of approximate momentum p, centered around z = 0 and
with width . The corresponding initial density matrix is,

pa(Xoytorte) = (2mo?)H exp (ipgy - ZELE)) (8.14)
From the al.gws, we find the reduced density matrix at time ¢; to be

_ -3 N}, . 2
P(xnfn‘:)"" “"an,o Ay g exp W (X; N”) - A

x exp | $K; 0 X161 — -ﬁ%_(“ KioLy o~ By ) (Xx - -ﬁ;-.') Ex) (6.15)

where . L .
Br= Aro +20° Ll = g5 (Bis — 40> L1 Kise) (6.16)
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and

320210 = 807K}, + 4 (cl,o + 's%?) (8.17)

This agrees with the results of Caldeira and Leggett (up to a number of numerical factors
which we take to be typographical errors in their paper).

Now consider step (ii). With the results of step (i), Eq.(6.4) may be written,

D(X1,X3.6) = = F}, F, A;,é jdxldfx exp (1'5':.1 - ¢z,1)

X exp (-a,x; ~5i8 ~mXabs + B Xa + Brbr + 51) (6.18)
where,
G =art o, Bi=F+o (6.19)
a; = a; a;l,, 1= P a‘f .
. 2 . . P
#1=F1+%, V1=91+§:, ¢1=¢1—(—'—x"1-;,?-€2')' (6.30)

But the integral (6.18) is now of the same form as (6.3), and we may use again the res ;ts
of step (i), recalling that we may set £ = 0 in the expressions for S3; and ¢$3,;. We thus
obtain

D(Ry, X2, &) = Fiy F2o 873 A7 exp (—aaX? 4 i Xs + &) (6.21)
where L
Agy =&1(f +Cay) - Z(‘h -iK;,)? (6.22)
and .
_ Nja&
Qg = TLA;: (6.23)
1l . - - 1 - .
ba =3 A [-'Nz.zdlvz + %Nz,wl(‘n - 'Kz.l)] (6.24)
1 N
o = M—a,; [(ﬁ:l + C31)ad + @19 — (11 — iKz,x)ﬂlf’l] + & (6.25)

We could at this stage proceed to step (iii), but it turns out to be easier to first
simplify the expression (6.21). Some lengthy algebra leads to the result,

_ e S I IOV (N Ik SN T
D(xlixz’gl) - ﬂ" thl 'Pl‘llo A:,l Al'o exp ( 0':1' G?Aj,]] é?)

_.Nz,;&; 1 - s X,
X exp ( ‘;-}T,;x’& + m [40191 - 2(11 —iK3,) (ﬂ'l + 2?1)] & )
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N3, P Y
X exp( MA, - [X3 -l::———Nz'l —i(y1 — ng,i)Nz'l]
2
QIN:,:I .
"4l [X, + 'Nz,x i — ik 1)201N3 1]

an = > 23] #:1'
";;l—A';':(Cz.l +51) [Xl - E] +e + r.l) (6.26)
The final step, step (iii), is now readily performed using the ideatity,
_ .2
/d.X', exp (—E!-;,;}gi —a(X; — a)? — b(X2 - B)? +icxzfx)
e X,
r—m“sj[ Tarie(Graarar)d

-—-5,;(1-.- - ﬂ)z - ?z(x: - ﬁ)z - ﬂb(a - ﬁ):]) (6'27)

= = (677 +a+p)} erp(

Using the above identity, we obtain the final result, which is conveniently written'in
the form,

D(%1, 22,8) = =2 F2, F2o 873 A7) (057 + aa)}
X exp ('. &1 Na [—-&1(.?3 -1 +‘.('n —iK:,x)(_xl _ Yx)])

od(azed +1)As, o Na,x
X exp (-z B (X=-Y)TMEX-Y)+ea+ 4‘“‘ (6.28)
EHere,
P PR . N}, &
o] il 4(0‘2 +o; ]""Au
1 Gl
o " 7iesed + Dl (629
As in Section's we have introduced the notation,
X _(h |
e-(5). ()
where |
=B .
= 21::1 {(6.31)
S . .
Yg = —IN—”- + t(‘h I.Kz j)zalN"l (6.32)
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Also,

— Mll M12 6.33
: M"(Mn Mzz) (6:33)

where

1 (Caa+5) (11 ~iK2,)* N3,

Mu = 5~ 4, 160%(as + 07 2)A3,
4 2
-5~ o34
Mz = My = 421’2;’_1(’1)‘22:1 (6.35)
My, qa,f:ﬁl) vy (6.36)
Using this notation, and also using (6.8)~(6.13), Eq.(6.28) may be rewritten,
D(%i, %0, &) = «*/ Ff, Fly 873 871 (077 + a0)"
x exp (- 458 (Ma(fs - 15) + Mis(£: - 13))
X exp (-z-'e} -(2-Y)TM(X -Y)+ e + %) (8.37)

In the next section we will evaluate this expression for particular initial states.

7. DECOHPRENCE AND CLASSICAL CORRELATIONS

We will mow evaluate the decoherence functional (6.28) for specific choices of initial -
state contaigied in the Gaussian ansats, Eq.(6.2). We will look for decoherence and for the
degree of pdilliiig about the classical paths.

7(A). Single Wave Packet

Let the initial state be a wavepacket centered around the point a, with width o, and
momentum centered around p:

\h(z) = exp | ip= —~ (8 ;’a)’) = (7.1)
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The associated density matrix is

2 a .
po=exp( Li;}-h X+p€—-2—) (7.2)

That is, it is of the form Eq.(6.2), with

a° ﬂo - 2 z 1 70 = 0 (7‘3)
2a ; 2a2
Be=—3, W=ip &=——x (7.4)

One can now calculate all the terms entering Eq.(6.28). One finds that a,, 5; and
g1 are real, 71 and »; are imaginary, and ¢, is complex. The quantities Y; and Y; in
Eqs.(8.31), (6.32) are real. Denote by z(t) the classical solution at time ¢ with initial
position ¢ and initial momentum p. Then Y(¢;) = 224(%:1), and Y(tg) = 2z.(t1). The
coefficient of §; in the decoherence functional (6.28) is purely imaginary.

Consider now the condition the decoherence functional must satisfy for the probabiﬁty
sum rules to be satisfied to order ¢. It is given by (3.6), which in the present case reads,

|ReD(21, 2215, 22)| < e[D(2:,%:2:,2:)D($h, Zalth, &)} (7.5)

for #; # §;. Inserting the expression (6.28) for the decoherence functional, it is not difficult
to show that this condition will be satisfled if

exp (—(£1 - #:1)°(£™? — Mu)) < e (7.8)

(apart from prefactors, which are of order 1).

To see what this implies, we need to be precise about what is meant by “2; # #” in
the condition (7.5). Recall that we are using not true projections, but the Gaussian slit
projections, (2.3). At a ixed moment of time, these projections partition the configuration
space into reglihs with sise of order a few times the width o;. The variables #; and §; label
the regions, s thus have significance only up to a few times the width. It follows that
“%, % §" ouminx that |§;| should be greater than a few times the width. How many times
~ the width? The Gaussian slit projections are exclusive only to the extent that exp(—£3/07)
is approximately sero, and we should not expect to obtain decoherence to a degree better
than this. If we seck to obtain decoherence to ordu ¢, therefore, we should choose |&;] to
be sufficiently large that

exp(—%) << e (7.7)

to ensure that the non-exclusivity of the projections cleanly separates from the issue of
obtaining decoherence. The rapid decay of the exponeditial will ensure that this condition
is readily satisfied.
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Inserting the explicit forms for £-? and M, one finds
Cii+ 5 — ey + (o N],

3 t--"l - M - 7.8
0'1( 11) a?(agdg +1)A1’1 ( )
and some straightforward manipulation shows that
0 < ad(f?-My) <1 ' (7.9)

It follows that the decoherence is most effective when o3(£72 — M) is very close to 1.

After decoherence to the requisite degree is achieved, we are interested in determining
the degree to which the diagonal part of the decoherence functional is peaked about the
classical paths. The diagonal part is given by,

p(Xl,X;) = exp (—(X - Y)TM(X - Y)) (7.10)

(apart from prefactors). The degree of peaking is determined by the size of the cigenvalues
of the matrix M, in comparison to quantities of the form (X; — ¥;)?, (X; - ¥3)2. The
latter quantities are greater than a few times o3, o3, because X;, X; are defined only #p
to these widths. A convenient measure of the degree of peaking, therefore, is the quantify,

. -1
1 m:,; '
ololdet M = (1 = rol oy Ni:) (7.11)

One has .
oloddetM < 1 (7.12)

and thus the probability measure (7.10) is most strongly peaked when o33 det M is very
close to 1.

We now evaluate expressions, {7.9) and (7.11) in » variety of interesting cases, and see
whether the requirements of deeoherence and classical peaking are met. We will consider
the cases of the free particle and the harmonic oscillator, with and without environment,
in the limits of the time intervals (3 — 1;), (#; — #3) both large and small.

(1) No envijgonment. In the case of no environment, we may set A, B and C to sero,
and also the fesipation v to sero.

In the short time limit, with both (¢; — ¢;) and (#; — ¢9) small, the free particle and
harmonic oscillator cases coincide, and one has,
- o M '
K(r)=K(r)=L(r) = N(1) = 5 (7.13)

Also, Agy =~ K3,/4, Ao = Ki,y/4, and a; = aq. It follows that

A - My) ~ [1 i ol (% + é-)] - (7.14)
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-1
. 1 1
clel det M =~ [1 + 20° (-&? + -;?-)] (7.18)
Each of the quantities has to be close to 1. (7.14) indicates one should take oy << ¢
and ¢; << o3, whilst (7.15) indicates one should take ¢ << ¢; and ¢ << ;. There is
therefore a certain amount of conflict between the demands of decoherence and classical
peaking, but a compromise is possible. For example, if one takes 2¢? = ¢ = o}, then

1
0’;(‘_, - M11) ~ 0’{0‘; det M ] 5 (7.16)

which can be sufficient for satisfactory decoherence and classical peaking.

In the long time limit for the free particle, K,K,Land N all go to zero, as do ay,
A1, 71 and Az ;. One thus has

a3 -m,) -0 (7.17)

and therefore there is no decoherence. Similarly,
olo} detM — 0 (r.58)

Both of these features might have been anticipated given the spreading of the wave packet
for the free particle. However, by choosing the mass of the particle to be sufficiently large,
one could ensure that that it remains decohered and peaked about the classical path for a
long period of time.

For the harmonic oscillator, the quantities ¢3({~? — M);) and 003 det M oscillate
without tending to fixed values in the long time limit, but return to their short time limit
values when both w(?; — t;) and w(t; — #p) are simultaneously equal to integer multiples
of 2x.

(3) With environment. In the short time limit, the quantities 4, B and C are all linear
in time (see Section 4), and it is not difficult to see that all dependence on the environment
drops out, reducing to the case of no environment.

In the loag time limit, 8; and 4; tend to oscillatory functions, C(r) and N{(r) grow
like ¢?77, and,
Nio ~ M+ o)

ay ﬂ‘ 40],. 8ET (7.19)
The quantity ¢7(£~2 — M) is dominated by C;; and Nj,, and one has
. : 1 ) i
A - My) ~ —— 7.
1( 11) (alcg +1) ( 20)
Similarly, it is readily shown that
o g 3oia}
olo? det M- ~ T1%1% 7.21
T (@107 + 1)(@r0] +1) (r2)
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Decoherence and classical peaking are therefore controlled by the quantity aio3 (or ayo3).

Loosely speaking, this is the ratio of the energy of the particle to the thermal enezgy of the
environment. Classical peaking is obtained when this quantity is large. Physically, this
is not surprising since it is the condition that the particle has sufficient inertia to resist
the thermal fluctuations of the environment. However, decoherence demands that ao?
be small. This is again to be expected physically, because on general grounds decoherence
demands a certain amount of interaction from the environment. Again, therefore, there is
a certain amount of competition between decoherence and classical peaking, but again a
compromise can be reached if the parameters of the models are chosen such that ayod ~ 1.

An important feature to note is that the quantity {7.20) controlling decoherence is
independent of the initial density matrix. We have therefore exhibited the degree of deco-
herence as a function of the coarse-graining for the class of initial states contained in the
Gaussian ansatz (6.2), not just for wave packet initial states. :

It should also be noted that the fact that we obtained decoherence without an envi-
ronment in the short time limit is a feature peculiar to the initial state consisting of a single
wave packet. The density matrix for this initial state is peaked along the history traced out
by the wave packets evolution, and is essentially zero elsewhere. The off-diagonal termsiof
the decoherence functional essentially sample the density matrix along two different higho-
ries. But if the density matrix is non-sero along one and only one luttory, the oﬂ'—dugﬂl.l
terms of the decoherence functional will clearly be small.

7 (B). States Corresponding to a Set of Classical Solutions

Because of the special nature of wave packet initial states, it is important to consider
other initial states more representative of the general case. A more general initial state
leading to classical behaviour will generally predict not just one classical solution, but a
set of classical solutions, with a probebility measure on that set. A simple example of a
wave function of this more general variety is one of the form

¥o(z) = exp (- Fz?) (7.22)

For the special value F = 1 Mw, this is of course the ground state of the harmonic cscillator
and remaing s this state under unitary evolution. However, if F = Fg 4 iF7 is allowed to
be an arbitragy complex number, with Fr small and F; large, F will evolve from its initial
value. Wave functions of this type arise as wave functions for scalar field fluctuations in
inflationary universe models. An earlier heuristic analysis suggests a prediction of a set
of classical histories, satisfying Mz = p = ~2F2, and with probability proportional to
exp (—2Frz?) for a given initial value of z [17). We will show how these features emerge
from the present approach.

An initial wave function of the form (7.22) gives an initial density matrix of the
Gaussian form (6.2), with

1 - i
ag = By = EFR’ ~o = iFr (7.23)
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and g¢ = vy = €y = 0. It follows that Y7 = Y3 = 0.
In the short time limit, ~

o3 - My,) = [1 + ] (a. + %)] B (7.24)

so decoherence can be achieved if @yo] << 1, and ¢; << 3. In the long time limit, with
an environment, the degree of decoherence becomes independent of the initial conditions,
and the discussion reduces to that of the single wave packet case discussed above.

The diagonal part of the decoherence functional is given by
HX1, Xs) = exp (-2TME) (7.25)

This probability for history is not peaked about a particular classical path, but as men-
tioned above, we aaticipate that it predicts a set of classical paths. One way to exhibit
this feature is to appeal to the results of Section 5 and Ref.[19], which show that one has
a set of classical solutions for which the distribution of initial positions and momenta sre °
given by a smeared version of the Wigner function for the initial state. In particular, the
Wigner function for the initial state (7. 22) is peaked about p = —2Fz, if Fy is large and
Fp is small [17]. Here, however, we will give a different treatment.

The probability of finding a given value of X; at time ¢, is,

§R) = j df, p(X1, %1)

det M ,
= exp (—TX ) (7-26)
One can then ask for the conditional probability of X;, given X;. This is given by,

o(Xa, X))
PR =Sy

= exp [-Mzz (xz + M x:) ] (7.27)
The eonditiogn.l probability (727) is pea.ked sbout

a)
N’,l(d'?al -: l)x (7.28)

Xy = -Mn X;

which may be shown to be a classical solution in (3 — ;). Letting (£3 —t;) go to zero, one
finds

_ 1 > 2iy;
X = -——-—-——(cgm +1)X,, MX; = ————(dal m I)X, | (7.29)

" :



where a dot denotes a derivative with respect to (tz —¢;). Then the heuristic interpretation
deseribed above may be maintained if a;0] << 1. :

The degree of peaking is determined by the quantity

a;a'g

M = G D)

(7.29)

and thus the discussion of classical peaking is very similar to the single wave packet case.

8. SUPERPOSITIONS

We now study an important but simple illustrative case, namely that in which the
initial state is taken to be a superposition of two wave packets. This example lhmn sost
clearly how interference is an obstruction to assigning probabilities to histories, and how
interference is destroyed by coupling to an environment. This example is essentially e
double-slit experiment, but paired down to its most basic form.

8(A). Without Environment

Consider a particle moving in one-dimension, in & pure state whose wave function at
t = tg is a superposition of wave packets far apart, but moving towards each other. So

19(te)) = 94 (t)) + |2(to)) o (sa)

where |¥..(tg)) is & wave pu:het at 2 = L > 0, with width ¢ << L, and with momentum
—p. Similarly, |®_(t)) is located at # = —L, has the same width, but momentum p.
Explicitly,

(=194 (t0)) = exp (-epc - ‘—’%"-’1)  (82)
(ot —(s0)) = exp (170 - LT ) (83

The wave packets are therefore uppronmtely orthogonal at ¢ = ¢4, up to terms of order
exp(—L?/c?). Let them meet at the origin at time ¢;, where they will have substantial
overlap. We will assume that the parameters such as the mass of the particle are cliosen
so that the wave packets do not spread appreciably. In fact, we could consider a harmonie
oscillator in which they do not spread at all.

The form of the wave function might tempt one to ascribe definite properties to the
history of the particle. In particular, one might wish to say that the particle is in the
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neighbourhood of either ¢ = L or z = —L at time %5, and then in the neighbourhood of
the origin at time #;, with some probability for each of these two histories: We shall show
explicitly, however, that this view is not tenable, because this pair of histories do not form

a decoherent set.

At time g, it is sufficient ask whether the particle lies on the positive or negative
z-axis. This is effected through the projections,

Py = jo ~ dz |2)(e], P_= f_ _dz (el (8.4)
It is ea.siiy seen that |

PplWs(te)) = |¥x(to)), Py|®%(te)) = 0 (8.5)

up to terms of order exp(—L3/o?). At time ¢;, when the wave packets meet, we will ask
whether the particle lies in a region of size A around the origin, where A is somewhat
greater than the wave packet width o, but much less than L. This proposition is effected

by the projection,

a/2 y
Py = : ’dz |z}{=| (%)
One has,
PalR+(t1)) = |¥x(t)) (8.7)

An exhaustive set of alternatives at time ¢; consists of Py together mth its complement,
1— Pa.

The candidate probabilities for the histories in which the particle was either in z < 0
or 2 > 0 at £y, and then near the origin at ¢, are given by the diagonal elements of the
decoherence functional,

D(%, ) = 'n[m e H{ti—to) P, 19(2,))(¥(te)| Px e“m“'_’“)] (8.8)
Using (8.5), and then evolving to time ¢,, this becomes
| D(,+) =~ Te[Pa [¥4(t:))(Rx(ts)]
rs (W ()| F£(81)) (8.9)

But if these probabilities are to satisfy the probability sum rules, it is necessary that
the off-diagonal terms of the decoherence functional are sero, or at leut small. The off-
diagonal terms are given by

D(+,¥)=Tr [PA e~iH{#1=t) P, |®(20))(¥(2e)| Py e‘x(""‘)]
m T [P MO R (1) (P (t0)] ]
= (Rx(t ¥ £(t1)) (8.10)
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again using (8.5). But (z|¥4(t1)) and (z|¥_(2;)) are essentially equal, both being wave
‘packets peaked about z = 0. One therefore has

|D(%,¥)| = D(+,+) =~ D(-,-) (8.11)
and it is not possible to satisfy the condition of approximate decoherence,

ID(£,9)| << [D(+,+)D(-, )|} (8.12)
The set of histories are therefore not decoherent and the assertion, “the particle was either
in 2 < 0 or z > 0 at ¢y, and then near the origin at #,”, is meaningless.

8(B). With Environment

Suppose we now couple this system to an environment using the Caldeira-Leggett
model described in earlier sections. The main difference is that the evolution of the initial
density matrix is no longer unitary, but is instead described by the Caldeira-Leggett pitp-
agator, (4.39). A second difference is that the environment introduces dissipation intoXhe
classical equations of motion (sccording to which the wavepackets move), and the tim@i4,
ot which the wavepackets meet is modified. The initial density matriz has the form

P=P+4) + Am) ¥ Pla-) + A4 (8.13)

where, from (8.2), (8.3),
P++)(Ze,¥0) = exp (ip(a -y} (2 :,LP _b :,L)’) (8.14)
peslznm) = axp (ip(a +3) - ESEL - WEEY - qaag)

P(—y and p(_4) are obtained by letting p — —p and L. — —L'in (8.14) and (£15)
respectively.

The dediference functional is given by
. pA/2 '
D(G,G’) = fA ds; / dz, j dye p('n,y.,fg) J(21,21,1%1 20,40, %0) (8.10)
. -Af2 a o _
Here a and a' denote the integration ranges at time 5, which may be the positive or neg-
ative axes. The four possible terms of the decoherence functional, D(£,+) and D{+, F),
are thus obtained by integrating over each of the four quadrants in the 2oy plane. J is
the Caldeira-Leggett propagator, (4.39), which we write,
J(z1,21,t1|Ze, 10, 20) = exp (15' — C(ze — yo)’) (8.17)

47



where C = C; ¢ and is given by (4.43) with 7 = t; — to. The explicit form for S will not
be needed. .

The desired result will be obtained by focussing on the size and location of the maxim
of the integrand of (8.18) in the zoy¢ plane. Let '
fr+)(2o,%0) = exp (=C(z0 — 1%)?) logr+)(20,30)l (8.18)
Fer-)(20,30) = exp (—=C(20 — %0)*) lo(+-)(20,30) (8.19)

and similarly for fi__) and fi_,). Then, in the coordinates X =z +y,{ =2z —y, it is
readily shown that one has

Ji+4)(20,30) = exp (—5’6' - %) (8.20)
| 2
f(+—)(=ow0) = exp (—C-‘ (f - a"—LC:) - _f‘_:_) exp (—2%’% (8.21)

where G = C + 3ly. Similarly, f;__) and f_4) are obtained from (8.20) and (8.21) by
letting L — —L. -

The integrand of (8.16) is the sum of the four f’s, apart from phases. From (8.20),
(8.21), it therefore has four peaks: at z =y = + L, and at z = —y = +L/(202C). When
C is small, the latter pair are close to 2 = —y = £ L, but for large C they approach the
origin. The widths of all four peaks are the same. But most importantly, the size of the
peaks of fi13) are suppressed in comparison to fi14) by the exponential factor,

exp (_2-5_’.9_') (8.22)

a3C

Consider now the evaluation of D(+,+). It is obtained by integrating zo,ys over the
first quadrant, z¢ > 0, g0 > 0 in (8.16). Recall that we are assuming that L >> o.
The peak of f(__) is far from the integration domain so its contribution will be very
small, of order exp(—2L?/s?). The peaks of f(+ 7) on the other hand can be close to
the integration domain (depending on the value of C) but their magnitude is suppressed -
by the factor (8.22). These terms therefore contribute at worst the same as f(, ), but
multiplied by (8.22). By far the dominant contribution to the integral, therefore, will come
from f(,4), whose peak lies well-inside the integration domain. Similarly, D(—,~) will be
dominated by f;..), and will be the same order of magnitude.

Now consider the off-diagonsl term, D(+,—~). It is obtained by integrating the same
integrand over the fourth quadrant, 29 > 0, 3o < 0. The peak of f(,_) lies inside the
integration domain and one would expect this to provide the dominant contribution. The
peaks of fi) are far from the integration domain, but they are not suppressed by (8.22).
Their contribution would therefore be comparable to that of f(+-)- Similarly, the peak
of f(—+) may also be comparable, since it can be close to the integration domais. The

.



important point, however, is that it is clear that all four terms are suppressed by the
factor (8.22) compared to the contribution f(,,) makes when the same integrand is used
to calculate D{+,+). A simila# argument goes through for D(—, +), and we may therefore

write
DG, 9 =~ exp (~252 ) (DC+H)D(-—, - (8:23)

In the short time limit, C = 3 MykT(t; — tg), s0
2
exp (—22) % exp (—EMﬂykTL’(h - to)) (8.24)
o3C 3

In the long time Limit, C goes to infinity like e37(t1—%), 50

o (229 = (-Z) e

‘We therefore have very effective decoherence. Probabilities can be assigned to the histories, -
and it becomes meaningful to say that, “the particle was either in z < 0 or 2 > 0 atity,
and then near the origin at ¢;".

8(C). The Double-Slit Experiment

Finally, it is perhaps enlightening to comment on how these considerations might
affect the the fully-fledged double-slit experiment. Consider the standard double-slit ar-
rangement, in which one has a source (of electrons, say) incident on » pair of slits with a
screen behind, with the whole set-up in an evacuated box. The probability distribution
of the electrons position at the screen will be the well-known interference pattern. Now
ask whether it is poesibls to think of the electroms producing the interference pattern as
having gone through ome slit or the other. Differently put, ask whether the probability
distribution for the interference pattern might be regarded as & sum of two probabilities
- the probehilities for the histories in which the electron went through one or the other
slit,. This o is affected using projection operators of the form (8.4) at the time
at which Msetrons were in the neighbourhood of the slits (where the z direction is
parallel to'ilf.etireen and the slits). However, from an snalysis very similar to that given
above, it is readily shown that due to the presence of interference terms in the decoherence
functional, one cannot write the interference pattern probability distribution as the sum
of these probabilities. It is therefore not possible to think of the electron as having gone
through one slit or the other.

Now suppose we gradually introduce an environment into the box, say a gas of photons.
As in 8(B), the environment will induce decoherence of the histories, and then it will be
possible to assign probabilities to the two possible histories of the electron. The interference
pattern may then be written as the sum of the two probabilities. But, the interference
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pattern will be changed. It will, however, be changed gradually as the environment is
introduced into the box. In particular, one will find that there is complementarity between
the sharpness of the interference pattern and the degree of decoherence.

This sort of analysis of the double-slit experiment is well-known (see for example,
Ref.[22] and references therein). Typical analyses involve the notion of actually measuring,
to some precision, the position of the electron in the neighbourhood of the slits. They thus
vield a complementarity relation between the sharpness of the interference patiern and the
precision of the measurement.

In the decoherent histories approach, measurements do not play a central role. Pre-
cision of the measurement is replaced, in the complementarity relation, by the more fun-
damental notion of the degree of decoherence - the degree to which probabilities may be
assigned. Of course, the distinction is perhaps not so great, in that an actual physical
measurement might involve observing the photons scattered off the electrons, from which
the location of the electron could be deduced. It is, however, perhaps satisfying to see how,
in the decoherent histories approach, the notion of complementarity appears, but without
reference to any notions of measurement.

9. SUMMARY AND CONCLUSIONS

The purpose of this paper has been to explore some of the features of a formulation
of quantum mechanics for closed systems which deals directly with quantum mechanical
histories. ARter reviewing the formalism, we addressed the issue of approximate decoher-
ence. A condition for approximate decoherence was proposed. The form of this condition
is partially motivated by a simple inequality satisfied by the decoherence functional, which
we derived. We argued that our condition ensures that most probability sum rules are sat-
_ isfied to approximately the same degree. Our argument, however, relied on an assumption
about the statistical distribution of the off-diagonal terms of the decoherence functional.
It would be interesting to understand the significance, if any, of the situations in which
this assumption does not hold.

We calculated the decoherence functional for the Caldeira-Leggett model, and derived
the general foem of the decoherence functional for linear systems, for histories consisting
of approximaié samplings of position at an arbitrary number of moments of time. It was
seen to display the desired formal properties, namely, decoherence, and pesking about
classical paths along the diagonal. Both types of the coarse-grainings employed (tracing
over the environment and smearing over position) were found to be necessary to achieve
decoherence. We also found that the probabilities for the histories involved a smeared
version of the Wigner function in an essential way.

A more precise evaluation of the decoherence functional was achieved by specializing
to the case of histories characterized by approximate position samplings at two moments
of time. We studied initial states consisting of a single wave packet, and a wave function
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corresponding to a set of classical paths. In each case we obtained a gquantstative meesure
of the degree of decoherence and classical peaking, as a function of the coarse-graining
parameters — the temperature of the bath and the width of the position projections. We
found that there is an element of conflict between the requirements of classical peaking
and decoherence; but in our cases at least, there seemed to be a compromise regime in
which each requirement could be adequately satisfied.

An important case we considered is that of an initial state consisting of a superposition
of wave packets. Perhaps more clearly than any other, this example illustrates some of
the key features of the decoherence histories approach. Firstly, it provides a very concrete
example of a set of histories which do not decohere, and therefore, to which probabilities
cannot be assigned. Secondly, it clearly shows how decoherence can be very effectively
achieved by coupling the system to a larger environment and then tracing it out.

Some of our work, and in particular that of Sections 5 — 8, has much in common with
that of Gell-Mann and Hartle {3,8,9]. We have not attempted to be as general as they were,
and indeed, some of our results, such as the observation of the tension between deccherence
and classical peaking, and the appearance of the Wigner function, are special cases of their
results. We have, however, been more explicit and precise in our calculations, and have
exhibited in detail the features of the formalism for specific choices of initial state.

Decoherence and classical correlations have been studied extensively using dendty
matrices at a fixed moment of time [15]. In these approaches, the woed “decoherence” was
associated with the destruction of interference, but lacked a precise definition. As stressed
in Refs.[3,8,9], and aa should be clear from this paper, interference is most properly thought
of as the failure of classical probability sum rules for Aistories. Decoherence as destruction
of interference is likewise best understood as recovery of these rules. As evident from
Eq.(2.33), these rules are automatically satisfied for histories consisting of events at a
single moment of time. The significance of these earlier approaches in the context of the
present one is therefore somewhat unclear. It seems o us, however, that there is at least
some connection between these approaches, and to explore it would be an interesting issue
for investigation. These and other questions will be the topic of future publieations.
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