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Abstract 

We investigate domain wall formation in late-time phase transitions. We 

Snd that as in the invisible-axion-domain-walI phenomenon, thermal effects 

alone are insufikient to drive different regions of the Universe to different 

parts of the disconnected vacuum manifold. This suggests that domain 

walIo do not form unless either there is some supplemental (but perhaps 

not unreasonable) .dynamics to localize the scalar field responsible for the 

phase transition to the low-temperature maximum (to an extraordinary 

precision) before the onset of the phase transition,~or there is some non- 

thermal mechanism to produce large fluctuations in the scalar field. The 

fact that domain wall production is not a robust prediction of late-time 

transitions may suggest future directions in model building. 
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I. INTRODUCTION 

. 
There has recently been interest in late-time phase transitions’ as a possible solution 

to the large-scale structure problem. It has been proposed that the domain wslls 

formed in a late-time (after decoupling) phase transition may seed the structure that we 

observe today, without conflicting with the well established isotropy of the microwave 

background radiation. (However, more detailed calculations show that this need not 

be the case.‘) 

Previously, it has been taken for granted that domain walls with interesting sizes 

(100 kpc and larger) can form in a late-time phase transition. In this work, we apply 

the results of a previous investigation into the dynamics of late-time phase transitions3 

to examine the dependence upon initial conditions of the scalar field for the scenarioof 

wall formation. We f3nd that the formation of domain walls is not a robust prediction 

of models with late-time phase transitions. 

Before considering why domain walls might not form in a late-time phase transition, 

it is useful to recall why domain walls do form in standard phase transitions involving 

theories with disconnected vacuum manifolds. Consider a scenario for domain wall 

production in a simple model with a reflection symmetry (4 c-t -d), described by a 

theory with a single scalar field d and potential V(4) = (X/4)(& - uz)*. The sero- 

temperature vacuum manifold has degenerate vacua (4) = fc. At temperatures above 

the critiJ temperature Tc = 20, the ground state of the system is (4) = 0. Fur- 

thermore, @emperatur,es much above the critical temperature, the (thermal) mass of 

the field, 4 = XPs/8, increases with temperature. This has the effect of localizing 

the field about the high-temperature minimum. Below the critical temperature the 

high-temperature minimum becomes a local maximum, and since the field is already 

localized about q3 = 0, small thermal fluctuations will tend to push the field to one or 



the other low-temperature vacuum states. The direction of the thermal kick will be 

random on scales set by the thermal correlation length. Thus, regions of the Universe 

will settle in different vacuum statea, establishing a domain-wall network. 

We will refer to this picture of domain walI formation as the thermal mechanism, 

because it is thermal fluctuations that push the field to different vacua. We also note 

that thermal processes also play a role in positioning the field to a location where the 

thermal fluctuations can drive the field to different minima. 

We will see that a (possibly crucial) ingredient missing in the late-time transition 

model we study is a mechanism to localize the field in a position where thermal fluctua- 

tions will kick the field to different vacua. This problem arises as a result of the peculiar 

thermal properties of the field involved in the transition, essentially due to the fact that 

the weak coupling of the field results in very small thermal fluctuations. This le&ds 

to a scenario where the field will not evolve to a position where thermal fluctuations, 

which will be small, will drive the field to d&rent low-temperature -a. 

There are two ways around this problem. One could arrange for large fluctuations 

of super-horizon size in the scalar field well before the transition. In this case the 

wall network produced in the tsansition will re&ct the initial field con&ration, and 

there is no reason to expect the wall network to resemble the standard network as 

always assumed. A second possibility is to postulate that some dynamics, not part of 

the original model, acts to position the field correctly for the thermal fluctuations to 

operate. We will see that because the thermal fluctuations are so incredibly small, the 

positionir& the field must be done with great precision. 

Our discussions are based on the particle physics models for late-time phase transi- 

tion discussed in Ref. 3. The simplest model associated with phase transition consists 

of a single real scalar field 4 with self interaction Ad’. However, as pointed out in 

Ref. 3, in the context of a late-time phase transition, the more reasonable models to 
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consider e the ones in which phase transition is driven not through 4 self interactions 

with the background, but rather by # interactions with a background of some other 

field 11, perhaps a fermion. The essence is to have q5-$ interactions weak enough to 

provide a late-time, soft-wall transition, but rl, can have additional interactions that 

can establish the background by thermal interactions. 

This paper is divided into four parts. In Sec. II we calculate the thermal fluctuations 

of the scalar field involved in the transition. In Sec. III we consider the dynamics of 

the evolution of the scalar field in the early Universe. In the final section we conclude 

and discuss the prospects for wall production in late-time phase transitions. 

11. THERMAL FLUCTUATIONS IN SOFT-WALL MODELS 

A. YUKAWA MODEL 

First, let us consider the simple model of a single real scalar field q5 interacting with 

a fermion 11, with a potential: 

WA 4) = -+m2 + 244 - h&& (2.1) 

where the parameters mc, Xc, and h are the unrenormalised mass and coupling con- 

stants. Following the analysis of F&f. 3, we assume that the fermion loops dominate, 

which is tlq case if h > Xc and the boson tadpole is neglected. The renormalized, 

one-loop wive potential at finite temperature is 
.-- 

W4) = -& (hd)‘ln $ -I- AVr(d), (2.2) 

where p is an arbitrary mass scale related to the values of coupling constants, and 

AVr(d) = -4g j* 
0 

dxx’ln[l+exp(-j/w)], 
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At high temperature, A&(d) N +h2#T2/3. Hence the curvature at 4 = 0 (which is 

negative for T = 0) will be positive for high T, and 4 = 0 becomes the global minimum 

of the potential. De&ring the critical temperature for the phase transition to be the 

temperature when #V/aaq5 vanishes at 4 = 0, we have Tc N h-‘m+. We want the 

phase transition to occur after recombination (but well before the present epoch) and 

to produce “soft” walls. These requirements lead to restrictions on mg (m+ 5 10-24eV) 

and Tc (eV 2 TC 2 10b3eV). By making h sufficiently small, it is possible to have 

Tc > m+ for a late-time, soft-wall phase transition. 

Thermal fluctuations in the field are found by examining the finite-temperature, 

two-point correlation function. The two-point correlation function is given by t&e 

Green’s function 

(d(~M(ONT = G=(Z) = I$$ e-'"&(k), (2.4) 

where Dr(lc) is the 4 propagator at finite temperature. In keeping with the assumption 

that 4 is very weakly coupled, we will sssume that it is not in equilibrium and there is 

no thermal 4 background. Thus the thermal eRects enter only through the interactions 

of 4 with the thermal background of +s. To compute &(k), consider the one-loop 

diagram in Fig. 1. Recall that the fermion propagator at finite temperature is4 

ST(P) = i(# - m+)-’ - 2*fd&J(II + m+)W - m$), (2.5) 

where f+ is the phase space density for $. Let us assume that the phase space density 

for $ is that of a thermal distribution (i.e., a Fermi-Dirac distribution with temperature 

T). With this we have 

&(k) = i(P - rni)-’ + i(P - rni)-’ . loop. i(k* - rns)-l, (2.6) 

where 
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IwP=(-1)/g+ Tt {ihST(p) ihST(p - k)} . 

. 
(2.7) 

We will ignore the temperature-independent contribution of the loop to Dr(k), as 

it is absorbed in the renormalization of the 4 propagator, and concentrate on the 

temperature-dependent contribution. Denoting the temperature-dependent part of the 

loop as loopr, we have 

loopr =g J 4 [tip - 1~) + mi] { -ihTtp -f$F ms ~(p* - rns) 

+4~‘f~(Ep)f~(E,-~)a(P2 - m$)6 ((p - k)* - mi) } . (2.8) 

The leading term in this expression corresponds to taking the thermal part of one 

fermion propagator and the temperature-independent part for the other, i.e., the ‘et 

term. The temperature-dependent two-point correlation function is then given by 

G=(z) = i$$ J ab fdWG2 - 4) 
J Crk 

x FYe-‘” 

h-k)+mi 
(k2 - m:)2 [(k - p)2 - m$] ’ (2.9) 

Now at finite temperature there are three length scales in the problem that appear 

in G=(Z): m;‘, m;‘, and T-‘. It is useful to define the following dimensionless length 

scales: 

~4 s Ixl/mgl; ~4 = Ixl/m;‘; pi E Ix//T-‘; 2 = PdPT. (2.10) 

After musfi manipulation, we may express GT(I) in terms of sums and integrals in- 2,~ 

volving medifkd Bessel functions: 

Gdbd) N g$@-ly+‘{*-~ [-K$%fo(pa) 

1 I(1 (*Jiqizjqg) 

+/, de lco (\/cl - e)*p: + ep;) 
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(2.11) 

where we have used rn+ < rn+, which will be true in the context of late-time phase 

transitions. Note that for 1x1 = 0, we have 

GT(O) = &$s (-rl K,(nz), (2.12) 

which for T > rn+ gives GT(O) = (h’/Q6r)(m+/m+)~, the familiar T2 dependence of 

thermal fluctuations in @. 

For 1x1 # 0, we are able to obtain an upper limit for GT(IxJ): 

Gdlxi) I (2r), mu lrhZ*K(pc)h (I +e-=), 

again assuming that mg < m+. 

For the analysis of domain wall formation, we will be interested in correlations in 

4 on length scales comparable to the scale of the correlation length in the transition, 

(xl - ma’, i.e., p+ - 1. Since Tc N m+/h, and TC 5 0.1 eV - rnti as discussed 

previously, it follows that that h N m+/m+ Hence 

GT(P+ 2: 1) 5 m$Kl(pg). (2.14) 

Since p+ < p+ S pr for late-time phase transitions, it is no surprise that the relevant 

length scale is pd. Note that K,(p+ - 1) is of order unity, while K,(pd >> 

1) - JG%bP(-P+). It is clear that the correlations in d are rather insubstantial 

on scales relevant to domain wall formation since rn+ < Tc - m+. 

This simple model for late-time phase transition involves a very small, perhaps 

unnatural dimensionless coupling constant h. In the next section we study a more 
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realistic model in which there is physical motivation for the origin of smali coupling 

constants. 

B. CHIRAL MODELS 

Let us now consider a theory with the Lagrangian proposed by Hill and bss:s 

’ = ;@%‘+ + FL i p, + CR i @R + (m~LV,&d~f + cLvR + h.=.) 

+z-P cos (2.15) 

Note that the above theory has non-linearly realized chirai U(1) symmetry when the 

c-term and the Z-term are not present. The Z-term has been added to give d a msss of 

unspecified origin, this usually comes from some deeper (compared to the spontaneous 

breaking of the original chiral U(1) symmetry) symmetry breaking in the theory w&h 

breaks the continuous U(1) down to a discrete subgroup &. The c-term can ‘be 

interpreted as the additional manifestation of this deeper symmetry breaking, similar 

to the o-term in the nucleon-pion system. It breaks the chiral symmetry explicitly. 

Since a nonzero Z term will always be induced by the presence of a nonzero E and 

m, let us write down the following Lagrangian which contains N Dirac neutrino species 

and is invariant under a 2N discrete symmetry: 

L = iat$8Nr$ + Tgi7; i PVj -f- Tg (m l Ceig’f+zij*‘N) FjLVjR •k h.c. (2.16) 

First consider the N = 2 case. The effective low-energy theory (energy scales much 

less than fi has Yukawa couplings of the form: 

&WC = ~+C4,Tod% + M-(4)&!h 

M:(4) = m2+2f2mecos(qS/f). (2.17) 

It has been shown in Ref. (3) that the finite temperature potential for o in the Zz 
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case is 

-$ ($)‘j~m~-d=~2++~x%’ (-d-l] (2.18) 

where we have defined 

m*=mfc; r E m+/m-; rni E V”(d = 0). (2.19) 

The corresponding temperature-dependent mass is defined as m:(T) z V;(,$ = 0): 

ForT>mA,weget 

mc 
m:(T) = mi + - T 

r*f 
mtln-- 

T 
mtln- . 

m+ m- 1 (2.21) 

Obviously, at high T, we have m:(T) > 0, i.e., we have a phase transition with Tc 

satisfying m$(To) = 0, provided that rni < 0. 

By expanding the mass functions M*(d) in Eq. (2.17), we find the lowest-order 

coupling of4 to the ferrnions: 

Li = h+-#&&o + f-,W&h 

(2.22) 

To compute the two-point function, we need the lowest-order correction to the d 

propagator, see Fig. 2. The correlation function is still given by Eqs. (2.4) and (2.6), 

with 
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LOOP= J$f, Tr (ih+S+(p) + ih-SF(p)) , 

. 
where 

S: = i( # - m&)-l - 2*M-&J(li + m&VP* - ml). (2.24) 

(2.23) 

Let the temperature-dependent part of loop be Ioopr. We then have 

loopr = loop; + loop;. 
M-1 

loop$ = ih*rn$T 5 ‘-‘,’ 
(2~12 

K, (n?) . 
n=1 

(2.25) 

Eq. (2.4) now gives 

Gdlxl) = - 2(2;)2 -Ko(po) loopT. (2.26) 

Hence we obtain 

mcT 
GT(IXI) = 2(2,+FKo(~d 

x g (-yl [m-K1 (n?) - m+K, (ny)] . (2.27) 

For T >> m*, we have 

WI41 N & 

2 

Ko(pd h(T/m). (2.28) 

Note that GT(/x[) is singularfor 1x1 + 0, which is natural since the effective Lagrangian 

of Eq. (2.15) is not renormalizable. 

GT(~s# is well behaved for 1x1 # 0 and gives us the correlation function between 

two spate separated points in the 4 field. Note that 

Zc,(p+ B 1) N 
/- 

6 exp(-Pd, (2.29) 
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while K&Q N 1) < 1. Obviously, the correlations in 4 field are suppressed severely on 

the scale of 1x1 w m;‘, sin&c 5 m < f. 

In soft-boson particle physics models associated with late-time phase transitions 

we have the typical scales m+ m O.leV; f N 10’sGeV; Tc - m+; and rn+ N m$/ f. 

The domain walls are cosmologically interesting because the walls have scale m;’ N 

m;‘(f/m+). The smallness of (m+/f) is essential in making the wall scale large enough 

to be of interest to large-scale structure, however, it also leads to suppression of the 

correlation in the 4 field due to thermal effects. Stochastic noise is washed out in the 

large volume rnz3. 

III. THE EVOLUTION OF qi 

In the last section we demonstrated that a generic feature of the late-time, soft- 

wall models is very small thermal noise in the system. This means if wall formation 

follows the standard scenario, there must be some mechanism to poise the field at a low- 

temperature m&mum to an extraordinarily high precision, one part in (f/m)? N loss. 

Is this reasonable? Well, since the low-temperature maximum is a high-temperature 

minimum, the field naturally will evolve toward the desired point and undergo damped 

oscillation about that point. In this section we show that, as one might expect, the 

oscillations ,will not be damped enough to set the field to the desired point to the 

necessary pcision. 

Let us now turn to the evolution of the 4 field in the potential VT(~) given by 

Eq. (2.18). In Fig. 3, VT(~) is plotted for several different temperatures. The phase 

transition occurs when the potential turns over at T = Tc. Solving Eq. (2.20) numeri- 

cally with m:(T) = 0, we obtain To as a function of (-mzf’/m!), given r E m+/m-. 
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The result is plotted in Fig. 4. Note that the high temperature behaviour of the To 

curves agreea with the formula obtained from Eq. (2.21):3 

G/b:-4 
The issue at hand is if the “initial” value of 4, d(T B Tc) is displaced from the high- 

temperature minimum, will it relax su&iently close to the high-temperature minimum 

by Tc so that it can receive random thermal kicks to different regions of the low- 

temperature vacuum manifold. To address this issue we follow the equation of motion 

for the scalar field: 

. avT 
4+3Hd+T=o 

where we have assumed a radiation-dominated Universe. 

Using the dimensionless quantities 

e= ;; Thai 
m- 

vT(e) E a.$; f s -z;f’, . 

after some manipulation, the equation of motion becomes 

There is no analytical solution to this equation. A numerical solution is shown by the 

solid curve of Fig. 5. As expected, the d field oscillates about the high-temperature 

mimmum@ere 4 = 0), then after the phase transition it evolves to a low-temperature 

minimum 6&e 4 = -r/2). The reason the field evolved to d = -n/2 rather than to the 

degenerate low-temperature minimum I$ = +x/2 is simply because at the temperature 

of the phase transition the field was negative in its oscillations about 4 = 0. 

In order for walls to form we want some mechanism to send the field to .$ = -x/2 in 

some regions and d = +n/2 in other regions. Now if we wish we can model the thermal 
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noise in the system by the well studied stochastic appr0ach.s However for thermal 

fluctuations to push d to different regions, they must have an amplitude comparable 

to the oscillation amplitude. We saw from the previous section that the amplitude 

of thermal fluctuations are very small indeed. Is there any way for the amplitude of 

oscillations about d = 0 to be damped sufficiently to empower thermal fluctuations? 

Clearly for the parameters of Fig. 5 the answer is no. 

We can explore the sensitivity of the oscillation amplitude at Tc upon model pa- 

rameters by considering the adiabatic invariant of the oscillating system.’ 

For oscillations near 0 = 0 

dvT f ah 
ae=- 

- = -$ m:(T)e, 
mi 34 (3.5) 

and we have @e/d? = -X28, with 

(34 

If X were constant, the system would be closed and would execute a strictly periodic 

motion with a constant energy E and a &red period A-‘, i.e., 0 = A cos(XT). When X 

is variable, the system is not closed and its energy not conserved. If X changes slowly, 

the rate of change in E will be small. The dependence of E on X can be expressed ss 

the adiabatic invariant I = E/X z XA’, when the adiabatic condition IX-‘dX/dFj < X 

is satisfied. 

The +fiakl tit begins to oscillate at t N m;‘. Since T2 = ,/m(MpL/2t), 

T,2 T(t = ma’) 0 (gg-J’~~- O(l)E. (3.7) 

It is straightforward to show that at T, we can use the adiabatic approximation. Of 

course at T = Tc, the adiabatic condition breaks down, because m+(Tc) = 0 leads 

to X(2’,,) = 0. If we are only interested in a lower limit to the amplitude of the 
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oscillation, we may set mg equal to a constant, say its zero-temperature value. b this 

case A cc X-‘/2 - T3’2, and-A(Tc < T < T,) u A(T,) x (T/T-)3I2. 

Now we can compute the amplitude of the classical oscillations near 0 =: d/f = 0 

for T close to TC (assuming TC < T -; if the inequality is not obeyed, there is no 

damping): 

A(T II Tc) N A(T = T,) ($-)3’2, (3.8) 

and use Eq. (3.1) for To and Eq. (3.7) for T,. 

An example of this approximation is shown in Fig. 5. The solid curve is a result of a 

numerical integration of the equation of motion, and the dashed curve is the adiabatic 

approximation for the oscillation amplitude. The parameters chosen for the figure 

axe ffMpL = 10b4, 7 = 1, m+ = 3m-, and q+(T > Tc)/f = 1. We find that @ie 

adiabatic approximation holds for the range of parameters of interest. For the ent&e 

parameter space the amplitude of oscillation is never reduced by more than a few orders 

of magnitude. 

The conclusions are clear: There are insufficient oscillations between ZY, and TC to 

damp the amplitude of the oscillations to the desired scale of [see Eq. (2.28)] 

(d2)g2 = J(4(O)d(Pi - UT = &Gii = & (7) 6% (3.9) 

which would correspond to A(Tc) - me/f u lo-so. 

Since thermal e&&s can not pin I$ to a value where thermal effects can kick the d 

minima, d has to be initially localised (to extreme accuracy) to Q = 0 

ermal mechanism for domain walks to form via the thermal process. 

Finally, Pn mention that although we have only studied the 22 model, our conclu- 

sions also hold for g&.2 models as weli. In fact, for these models the high-temperature 

d mass is driven to zero, JO there is even less of a force driving d to the appropriate 

position. 
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IV. CONCLUSIONS AND PROSPECTUS 
. 

We have studied the thermal effects on the two-point d correlation functions for 

two models associated with late-time phase transition. The &st model is the simple 

Ad’ theory with Yukawa coupling between d and some thermal fermion +, the second 

model is more natural and involves a cosine potential for d induced by its coupling to 

thermal neutrinos $0 and $1.~ We have shown that in both cases the thermal effects 

are suppressed due to the smallness of m+ compared to mv. Since the essential feature 

of a late-time phase transition model is to have domain walls with cosmologically large 

scales caused by the smallness of mg, we conclude that domain wall formation does not 

follow the usual thermal scenario unless there is non-thermal mechanism for localizi$ 

Q to zero initially. 

Of course one might imagine that the formation of domain walls in late-time phase 

transitions does not follow the thermal scenario, but results simply because long before 

To there are large, non-thermal fluctuations of the field, and the classical evolution of 

the field takes the field to different regions of the vacuum manifold. In some sense, the 

walls are present as initial conditions at T c. If one adopts this approach, a domain wall 

network will result with characteristics (wall sizes, distributions, velocities, etc.) that 

reflect the initial conditions, and need not resemble the properties of walls produced by 

the thermal process. One must be careful to arrange these fluctutions before inflation, 

since i will erase them on scales of interest. 

This a-thermal scenario is far from impossible, since the starting Lagrangian is 

of course only a low-energy approximation to the complete theory. It may well turn 

out to be natural that the seemingly highly contrived conditions necessary for domain 

wall formation are a natural result of the ultimate theory. Until such models are 

constructed, it is impossible to make predictions sensitive to the domain wa,ll network, 
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since the network depends upon initial conditions. 

Our work suggests that iflate-time phase transitions play a role in structure forma- 

tion, it is more likely to be through slow-roll scenarice like those studied by Frieman, 

Hill, and Watkins’ than through formation of domain walls. 
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FIGURE CAPTIONS 

Figure 1. One-loop diagk of the d propagator for the model with simple Yukawa 

couplings. 

Figure 2. One-loop diagram of 4 propagator for the 2s soft-boson model. 

Figure 3. The total potential VT(~) for the Z, model, plotted for several different 

temperatures. The phase transition occurs when the potential turns over at T = Tc. 

Figure 4. NumericsJ solution to m:(To) = 0. TC is plotted ss a function of 

(-m~f*/m~), for several different values of r E m+/m-. Read from top to bottom, 

the curves are for r = 1.01, 1.05, 1.5, 2, 3, and 5, respectively. 

Figure 5. Example of the evolution of the d field. The solid curve is a result&f 

numerical integration of the equation of motion, and the dashed line is the adiab&c 

approximation for the oscillation amplitude. Parameters for the model are f/MpL = 

10T4, f = 1, m+ = 3m-, and +(T > Tc)/f = 1. 
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