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Temperature fluctuations in a heat bath 
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The model of two boxes in thermal contact each filled with an ideal quam- 
classical gas is used to treat, in a unified way, temperature fluctuations in 
both finite and infinite heat baths. One box is regarded as the heat bath and 
the other serves as the thermometer. 
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I. Introduction 

Several years ago Phillies’ posed the following question: Given the mea- 
sured value of a mechanical variable (for example, the total energy) of a 
thermometer in thermal equilibrium with a system, what is the temperature 
of that system and how well does the thermometer determine that tempera- 
ture? 

Phillies presented a critique of the standard treatment of temperature 
fluctuations which can be paraphrased as follows: Equilibrium statistical 
mechanics deals with systems in a canonical state in which, by definition, 
the temperature is constunt; therefore, one cannot use the canonical ensemble 
to calculate temperature fluctuations. This motivated the introduction by 
him of a new ensemble called the “polythermal” ensemble, conceived as a 
collection of canonical ensembles with differing temperatures. Phillies used 
this ensemble to answer the question he posed. In this paper the same 
question is asked and answered from a somewhat different perspective using 
the model of two boxes in thermal contact, each filled with an ideal quasi- 
classical gas of identical structureless particles. 

A description of the ideal gas model can be found in any textbook on 
statistical mechanics.” Usually, however, these descriptions pertain to a sub- 
system connected to an infinite heat bath. Here the model is developed 
so that one can treat the case of a thermometer connected to a finite heat 
bath. This is done in Sect. II, where the energy distribution function for 
the thermometer is derived. In Sect. III the temperature fluctuations in a 
finite heat bath are calculated. Then, in Sect. IV, I consider what happens 
to the parameters of the system as the heat bath becomes very large, while 
the thermometer remains relatively small. This is followed, in Sect. V, by a 
discussion of the sense in which the temperature in an infinite heat bath may 
be said to fluctuate and a calculation of the magnitude of these fluctuations. 
The last section contains some general remarks. 

II. The Energy Distribution Function for an Ideal 
Gas Thermometer 

Consider two systems Ah and A in thermal equilibrium; Ah is the heat 
bath whose temperature is to be measured by system A, that is, the ther- 
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mometer. Let the heat bath have a total energy Eh distributed amongst Nh 
structureless particles in a box with volume VA; the thermometer contains N 
particles with total energy E in a box with volume V. The combined system 
Ah @ A is assumed to be thermally isolated and therefore its total energy 
EO = Eh + E is a constant. In order to compute the statistical properties of 
the thermometer one needs its energy distribution function. 

According to quantum mechanics the single-particle energy levels 
E(n.,ny,nz) of the heat bath and the thermometer are quantized: 

E(~P,%,~Z) = e(n2 + ?I.: + n2), 

with 

therefore, the microstates of each system can be counted. Herr, h is Planck’s 
constant, m is the mass of a gas particle and n,, ny,nz are positive integers. 
A macrostate of the gas is specified by the set of numbers (E, V, N, AE) 
where 

E = E c (n: +n;+n:) 
p~tislc, 

is the total energy of the gas and AE is a microscopically small interval about 
the total energy. In general, a given macrostate can be realised in a huge 
number of ways, each corresponding to a different microscopic arrangement 
of the gas particles. Let that number be R(E) for the thermometer and let 
S&,(Eh) be the corresponding number for the heat bath. In principle, the 
calculation of the statistical weight Cl would entail an enumeration of all the 
possible ways of making a constant sum out of the square of 3N integers. 
However, one can sidestep this combinatorial problem by observing that for 
the gas model the spacing between the energy levels will be extremely small 
for systems of macroscopic size .3 The energy may therefore be treated as a 
continuous variable and R may be calculated accordingly. This calculation 
is outlined in the appendix where it is shown that 

n(E) = (nAE/4e) (x.E/~c)(~~“)-~ / [N!l?(3N/Z)] . 

In general, one would not expect the microstates of the combined sys- 
tem Ah @A to occur with equal probability; however, it is a basic working 
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hypothesis of statistical mechanics that when systems are in thermal equi- 
librium all microstates which satisfy a set of macroscopic constraints (for 
example, a given set of values of E, V and N) occur with equal probability.’ 
If this hypothesis is true then the probability, P(E)cZE, to find the thermome- 
ter with total energy lying in the interval (E, E + dE) will be proportional 
to the total number of microstates of the combined system consistent with 
the energy of the thermometer lying in that interval, that is, 

P(E)dE = ccmst. x n(E) x i-t,,(E,,)dE, 
= cms~.E(3N/2)-‘(& - E)(W+Q. 

(3) 

When normalized the energy distribution for the thermometer can be written 
as 

P(E)dE’ = 
(4) 

where B(m,n) is the beta function,s and where, for simplicity, I have intro- 
duced the notation n = 3N/2 and m E 3Nh/2. 

It should be emphasized that this distribution is valid for all sizes of 
the heat bath and of the thermometer. From it, all statistical mechanical 
properties of the model can be deduced. 

III. Temperature Fluctuations in a Finite Heat Bath 

In statistical mechanics the temperature 2’ is defined by the formula 

1,T ~ 8lnfYE) 
BE ’ 

The temperature, defined in this way, is measured in energy units. To ob- 
tain expressions in which the temperature is measured in degrees Kelvin one 
should substitute KBT for T, where KS is Boltzmann’s constant. 

It should be noted that according to this definition of temperature the 
latter can only be defined if n may be regarded as a continuous function of the 
energy, but the definition does not require a system to contain, necessarily, 
a large number of particles. Using the result for Sl given in Eq. (2) and the 
definition, Eq. (5), leads to the expression 

T = E/(n- 1) (‘5) 
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for the temperature of the thermometer. For the heat bath one obtains 

T = EJ(m- l), 

= Eo/(m - 1) - E/(m - 1). (7) 

Equation (7) suggests the introduction of the new parameters, Z’, and Pm, 
defined by 

T, z l/&., z E,/(m -1). (8) 

In the following OUT attention shall be focused on the temperature of the 
heat bath. Some comments about the temperature of the thermometer will 
be made in the last section. In general, the temperature of the heat bath 
will fluctuate. Its moments, with respect to the density Eq. (4), are easy to 
calculate and are given by 

(T") = T~B(m+a,n)/B(m,n). (9) 

In particular, the average temperature and variance are, respecti-vely, 

(T) = T,m/(m+n) (10) 

and 

n$ = (T)2n/m(m + n + 1). (11) 

At this stage the quantity T, appears merely as the parameter which sets the 
scale for the average temperature. In fact, that quantity does have a broader 
significance; but to see this one must take the model to the thermodynamic 
limit. 

IV. The Thermodynamic Limit 

It is instructive to see what happens as the size of the heat bath grows 
to infinity, while the average temperature remains bounded. In the thermo- 
dynamic limit, na + 00, the average temperature and the variance become 

(T) = Tee, 

= 1/L 
u; = 0. (12) 
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One observes two important points: 1) T, is seen to be the temperature of 
an infinite heat bath; and 2) that temperature, T,, is constant. One may 
regard this quantity as an intrinsic property of a heat bath in that it defines, 
and characterises, an infinite sequence of (progressively larger, and hotter) 
heat baths. Presumably, it is T,, rather the average temperature < T >, 
which is the important physical quantity. Actually, it turns out that pm is 
the quantity which appears most naturally in the various expressions which 
follow; accordingly, the subsequent discussion will be in terms of Pm. 

Now the question arises as to how &, is related to a canonical ensemble? 
One way to answer this question is to take the thermodynamic limit of the 
energy distribution function of the thermometer, that is, Eq. (4). To do so, 
one begins by re-writing Eq. (4) as 

P( E)dE = 
C 

F(” + n) 
r(m)r(n)(m - 

pm (&Ey [l - &E/(m - l)j”-’ 0%. 

By using Stirling’s formulas one can show that when m + 00 the expression 
in the first set of brackets goes to l/l?(n); the limit of the expression in the 
second set of brackets is an exponential. Hence, in the limit of an infinite 
heat bath one obtains 

f’(EIP,)dE = Pm(PaE)“-lexp(-p,E)dE/r(n), (13) 

as the energy distribution of the thermometer. This is identical to Eq. (3.9) 
of Phillies’ paper if one identifies Do. with the parameter 0 in that equation; 
that is, the parameter ,& is identified as the parameter which appears in the 
canonical distribution, from which Eq. (3.9) is ultimately derived. Equation 
(13) illustrates a general result, namely, that in the thermodynamic limit all 
details pertaining to a system are subsumed into a few physical quantities; 
here the canonical temperature parameter pm. The further away one is from 
the thermodynamic limit the greater is the amount of detail required to 
describe the statistical behavior of a system. The moments given by Eq. 
(9) afford an example of this: They show that to fully specify the state of a 
finite heat bath one must give both the number of particles in the heat bath 
and in the thermometer as well as the value of the quantity Pm, whereas, 
as indicated by Eq. (12), in the thermodynamic limit the heat bath is fully 
specified by the single quantity &. 
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V. Fluctuations in the Parameter & 

The title of this section may appear somewhat contradictory. After all, it 
has just been argued that the parameter Pm is a constant. So in what sense 
can it be said to fluctuate? To answer this question one notes that the value 
of Pm (or T,) must be inferred from the measurement of some mechanical 
quantity. Since the latter will fluctuate, so to will the inferred values of &. 
The pertinent question to ask then is: To what accuracy can one assert that 
the temperature of the heat bath has such and such a value? Such a question 
clearly belongs to the realm of statistical inference, and I shall assume that 
the task here is to infer a value for ,& given that one knows the total energy 
of the thermometer. 

The most ~general way to make statistical inferences is to treat all un- 
certainty probabilistically and to do so using Bayes’ theorem.’ Bayes’ theo- 
rem, applied to the problem at hand, can be stated as follows: If P(EIP,) 
is the likelihood for the thermometer to have a total energy E given Pm; 
P(&,IE)d& is the probability that the temperature parameter could have 
the value & given E (this is the probability of interest here, called the poste- 
rior probability), and II(&)@, is the prior probability over the parameter 
space of Pm, then 

P(PI-WP = P(EI13)W)dPIjb P(EIP)W)@ D 
in which, for simplicity, the subscript on /3 has been dropped. It will be 
understood, for the rest of the paper, that p really means ,& and likewise 
for T. It is assumed that fl is defined in some interval [a,b] determined by 
the form of the conditional probability P(EIP)dE. 

This elegant formula provides a direct method of making inferences about 
the value of the parameter p. To use it, however, one must specify the prior 
probability distribution for that parameter; and herein lies the rub: By what 
set of principles is the form of the prior probability distribution to be derived? 
One could simply make the intuitive choice 

qw = @. (15) 

In fact, one can interpret Phillies’ use of the polythermal ensemble as a 
Bayesian inference procedure with the uniform prior distribution 

II(T)dT = dT. 
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While this is the obvious choice I shall argue that its use in this case is 

questionable. This is not to say that the use of a uniform prior distribution 
is incorrect but merely that the prior distribution may not be uniform in the 
parameter T. 

It is surely reasonable to demand that ones’ conclusions, about the heat 
bath and the thermometer, not depend upon how the probabilities are pa- 
rameterised: It ought not to matter whether one uses T, ,0, or any other 
quantity as the parameter. Therefore, if one were to use a uniform prior 
distribution for the temperature then, to be consistent, one would be obliged 
to use the prior 

WWlJ = @IPa 06) 

for the parameter p. One could not choose the prior for p to be uniform 
because the prior cannot be uniform in both T and p simultaneously, The 
difficulty is that given that one is ignorant of the value of T and p one has 
no reason to choose the prior to be uniform in T rather than in /3 or, for that 
matter, vice versa. Something is amiss and one needs a guiding principle to 
resolve the issue. 

Jayness has proposed a principle by which prior probabilities can be de- 
rived. Briefly stated it is this: In the absence of any prior knowledge about 
the value of a parameter, other than a knowledge of the set of transforma- 
tions with respect to which the problem is invariant, the prior probability 
distribution should exhibit the invariances of the problem. It is clear that the 
problem is invariant with respect to a change in the energy scale E -+ qE, 
p -+ ,9/q. Therefore, according to Jaynes II(p)dp should be invariant under 
the aforementioned transformation. This will be the case if 

UQ@ = @IA 

which, if one transforms to the parameter T, implies 

(17) 

II(T)dT = dT/T. P3) 

It should be noted that this prior distribution for T is consistent because 
it is precisely what one would have obtained by an application of Jaynes’ 
principle to the problem had it been parametized in terms of the temperature 
rather than in terms of p. Incidentally, the parameter for which the prior 
distribution will be uniform is A N In T. 
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In terms of the parameter ,kI the posterior probability is 

WI-WP = E pE/(m - l)]“-’ [l - PEl(m - l)]“-’ d@/(m lP(m,n) 
(19) 

from which all questions about the value of/J, or T, can be answered. Note 
the interesting duality between P(,BIE)d@ and P(E(P)dE: One can go from 
one to the other by the interchange p ++ E. The moments of ,f3 are readily 
calculated to be 

(P”) = [(m - l)/E]“B(m,n + a)/B(m,n). 

From this one obtains 

(20) 

(P) = Km - 1)lEl bl(m + n)l (21) 

as an estimate of the value of the temperature parameter p, while 

fJ$ = (P)’ m/n(m + 12 + 1) (22) 

quantifies the degree of uncertainty in the estimate (p). One sees again 
that these quantities depend upon the details of both the heat bath and 
the thermometer. However, for an infinite heat bath these quantities are 
determined by the size of the thermometer only: 

(P) = n/E, 
CT; = (/3)‘/n. (23) 

It is noteworthy that the behavior of the ratio up/ < p > accords with ones’ 
expection: 

4 (P) = l/J;;. (24) 

The corresponding ratio for the temperature T (really, T,) does not, however, 
behave quite so tidily: 

q/(T) = l/m. (25) 

Recalling that n = 3N/2, one sees that the ratio is undefined for a ther- 
mometer containing one particle! However, one should be wary about draw- 
ing strong conclusions from this because the small n behavior of the above 
equations is influenced by the form of the prior distribution for Pm and T,. 
Phillies used a uniform prior distribution for T, and, consequently, obtained 
a different small n behavior. 
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VI. Concluding Remarks 

When two systems are in thermal equilibrium their temperatures are 
equal. Well, not quite; this depends upon the size of the systems. Consider 
averaging over the expression for the temperature of the thermometer, given 
in Eq. (6). This leads to the expression 

(T) = T,n(m - l)/(n - l)(m + n) (26) 

for the average temperature of the thermometer. This differs from that for 
the heat bath, Eq. (lo), by an amount 

AT = T&m - n)/(m + n)(n - 1). (27) 

So while it is true that for thermometers and heat baths containing a large 
number of particles the difference in temperature between the two is negligi- 
ble it is not necessarily so for small systems. This is yet another indication 
that thermodynamic reasoning applies strictly to systems containing a large 
number of degrees of freedom. It may be possible to apply the methods 
of thermodynamics to small systems, however, one needs to be extremely 
cautious. 

If, indeed, the temperatures of two finite systems in thermal equilibrium 
are not quite equal then one must look for some other quantity to characterise 
the notion of equilibrium. This quantity will be more fundamental than the 
temperature in that it will be equal for the two systems irrespective of their 
size. One such quantity is 

T = T,(m - l)/(m + n) (28) 

which is equal to 2/3 times the average energy per particle. This quantity can 
be used to write some expressions in a more symmetric manner; in particular, 
the average temperature of the heat bath and of the thermometer can be 
written 88 

(T) = m/(m - 1) (29) 

and 
(T) = m/(n - l), (30) 

respectively. It should be stressed that the quantities < T >, T, and r are 
distinct physical quantities. However, in the thermodynamic limit they lose 
their separate identities and become numerically identical. 
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VIII. Appendix 

Consider a gas consisting of N structureless, identical, particles. If G(E) 
is the number of microstates of the gas with total energy 5 E then, by 
definition, 

a(E) = G(E + AE) - G(E). (31) 

Let dG; be the number of states available to a single particle i with momen- 
tum in the interval (pi,p; + dpi); dGi is given by the phase space volume 
divided by h3, that is, 

dGi = V4Tpfdpi/h3 (32) 

where V is the volume of the enclosure containing the particle. For a gas of 
N particles G(E) is given by 

G(E) = ; LE dE’ [,i i- dGi] 6(E’ - ,$ ‘j) (33) 

where E; = pf/2m are the single-particle energies. The delta-function is most 
easily treated by using the identity 

6(z) = $&f&de’-, 

whereupon the expression for G(E) becomes 

G(E) = x$$ (2n)N(2m)3N/2 /gE dE’--& l: id~e”“~’ ,& lm dqc:“e-iw’j. 

(34) 
Each integral within the product sign contributes an amount I(3/2)/(iw)3/a 
to the integral over W. The integral over w, which has a pole of order 3N/2 
on the real axis, can be performed by contour integration after displacing the 
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pole a small positive amount 6 off the real axis. At the end one takes the 
limit 6 + 0. A final integration over E leads to 

G(E) = (nE/4~)~~‘~ / [N!l?(3iV/Z + l)] , (35) 

where e is defined in Eq. (1). From the definition of R, given in Eq. (31), one 
obtains Eq. (Z), in which terms O[(AE/E)‘] have been dropped. 
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