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ABSTRACT 

If the dark matter in galsxies and clusters is non-baryonic, it can interact 
with additional long-range fields that are invisible to experimental tests of the 
Equivalence principle. We discuss the astrophysicd and cosmological implica- 
tions of a long-range force coupled only to the dark matter and find rather tight 
constraints on its strength. If the force is repulsive (attractive), the masses of 
gdaxy groups and clusters (and the mean density of the universe inferred from 
them) have been systematically underestimated (overestimated). S&h an inter- 
action dso has unusud implications for the growth of large-scale structure: a 
rcpulsi~ (attractive) force relatively enhances (suppresses) the growth of den- 
sity perturbations on large scdes and automatically generates a hiss (antibias) 
between baryonic and non-baxyonic matter. We explore the consequent effects 
on the two-point correlation function, large-scde velocity flows, and microwave 
background anisotropiw, for modeldw+h initial scale-invariant adiabatic pcrtur- 
bations and cold dark matter. 
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1. Introduction 

The observed flat rotation curves of galaxies and the application of the virid theorem to 

clusters ofgalaxies have revealed the presence of large amounts of dark matter, constituting 

perhaps 90% of the total mass in these systems. Several lines of argument suggest that 

much of the dark matter in galaxies and clusters is not baryonic (e.g., Hegyi and Olive 

1986), while particle physics models provide a gallery of exotic elementary particles as dark 

matter candidates ‘(for a review, see Prima& Seckel, and Sadoulet 1988). 

In keeping with the principle of equivalence, it is generally assumed that the dark mat- 

ter gravitates like the visible baryons, i.e., that it is subject only to gravitational forces. 

However, since the existence of dark matter is inferred solely from its gravitational effects, 

and its nature is otherwise unknown, this assumption is open to question. Although a new 

long-range force of gravitational strength coupled to baryonic matter is experimentally 

ruled out by the spate of recent ‘fifth-force’ experiments (for reviews, see Fackler and Tran 

Thanh Van 1989), there may be an additional long-range interaction which couples to a 

quantum number carried exclusively by non-baryonic matter (e.g., one of the lepton fla- 

vors). Such au additional force clearly evades laboratory tests of the Equivalence principle. 

Its effects would only be manifest in systems where the dark matter is dynamically impor- 

tant, that is, in the outer regions of galaxies and in clusters. In this paper, we investigate 

the implications of additional long-range forces acting between non-baryonic dark matter 

particles (see also Frieman and Grsdwohl1991). 

Long-range interactions have been proposed in the context of a variety of particle 

physics models. For ursmple, in extended supergravity models (Scherk 1980), a vector 

field coupling to particles of mass m and effective charge - m/m~ gives rise to a repulsive 

force of gravitational strength (here rnpl = Gil” = 1.2 x 10” GcV is the Plan& mass, 

and throughout we use units in which h = c = 1). Compactification of higher dimensional 

theories can also yield new vector and scalar forces of gravitationd strength (Bars and 

Visser 1986). Alternatively, ultralight pseudo-Nambu-Goldstone bosons with scalar cou- 

plings, called schizons (cousins of Majorons and familons), can arise naturally in extensions 

of the standard electroweak model (Hill and Ross 1988). 

As a concrete example, consider the phenomenologicd schizon model with Lagrangian 

L = &7PV + m+& + &#Y4 + +5+ _ +$p, (1-l) 

where the fermion $J of mass m+ - 1 - 10 eV constitutes the dark matter (0, 2: l), 4 

is the schizon, and f is a global symmetry breaking scde. For a static configuration, the 
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scalar field satisfies a modified Poisson equation, 

VZd - m$#J = ; (&) . (1.2) 

In the non-relativistic limit, the fermion density n+ = (&), and the static potential 

between two separated fermion sources with masses Ml and Mz has the Yukawa form, 

v, = - 2 MIMZ -,,,+~ 
4~rrn$f2+~ ’ 0.3) 

Thus, on scales + a m-l + , the relative magnitude of the scalar force is a = G+/GN = 

e2m$/m$f2; for E - m+ and f - rn$ it has roughly gravitational strength. In these 

models the scalar mass is of order m.+ - mz+l f, so the range of the attractive force is 

astronomical, X = mi’ z 100a-‘/2(eV/m~)2 kpc. 

As an aside, we make two comments regarding this model. First, the phase space con- 

straint on fermion clustering (Trcmaine and Gunn 1979) applied to dwarf spirals suggests 

that a light fermion constituting the dark matter in galaxy halos should be somewhat 

heavier than above, m+ 2 100 aV (e.g., Spergel, Gott, and Weinberg 1989). Since typ- 

ically R+h2 N (m+/90) eV (where the Hubble parameter Ho = 1OOh km/sec/Mpc), this 

requires entropy production after the fermions drop out of thermal equilibrium in the early 

universe, in order to satisfy constraints from the age and expansion rate of the universe, 

Rh’ 5 1. For neutrinos this is difficult to arrange without adversely affecting big bang nu- 

clcosynthesis (but not impossible - see Schemer, Cline, Raby, and Seckell991); however, 

other more weakly coupled fermions may Geese out earlier, e.g., before the quark-hadron 

transition, and have their cosmic density substantially diluted. Since X - rng’, a heavier 

dark matter fermion implies a reduction in the range of the scalar force. Second, we note 

that the schizon model naturally incorporates galactic-range forces if the dark matter is 

a light fermion. Unless the fermions have additional interactions which reduce their mean 

free path and thus prevent free streaming (R.a&lt and Silk 1987), this suggests we consider 

such a force in the context of hot dark matter models for structure formation. However, 

in other particle physics models, one can contemplate long range forces between cold dark 

matter particles as well. 

Regardless of the particle physics origin of such a force, in general the potential energy 

of two non-baryonic masses Ml and Mz at separation T may be parameterized by 

V(r) = -GN yq1+ ae-‘IX), 

where the range of the additional interaction is fixed by the Compton wavelength of the 
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-changed vector (a < 0)‘0r scalar (a > 0) particle, X = l/m,,,. The resulting force is 

F(r) = - GNFMz[l + a(1 + r/A)exp(-r/A)]. 

We will study the astrophysical implications of and constraints upon the relative force 

strength Q for a range of wavelengths A. Since there are gravitationally bound systems 

dominated by da& matter, we can immediately infer that a > -1 for X 2 10 kpc. In Sec- 

tion II, we consider constraints on additional forces arising from the dynamics of galaxies, 

groups, and clusters. In Section III, we explore long-range forces in cosmology and con- 

sider in detail their effects on the linear growth of density perturbations and the formation 

of large-scale structure. In particular, assuming an initial spectrum of adiabatic pertur- 

bations with cold dark matter, we estimate the modification of the transfer function for 

perturbations due to a long-range interaction and the corresponding consequences for mi- 

crowave background anisotropies, large-scale peculiar velocities, and the two-point galaxy 

correlation function. We also consider a final constraint on Q arising from the response 

of dark halos to dissipational baryonic infall in the early‘stages of galaxy formation. We 

conclude in Section IV. 

Tests of the Equivalence principle have been previously discussed for specific particles. 

The experimental bound (Fackler and Tran Thanh Van 1989) from E&v&-type exper- 

iments on intermediate-range forces between baryons is approximately labi s lo-‘. In 

addition, supernova 1987a has been used to test for additional galactic-range forces cou- 

pling to electron neutrinos (Pakvasa, Simmons, and Weiler 1989 and references therein). 

By contrast, while we will assume that the dark matter on halo and cluster scales is com- 

posed of non-baryonic particles, the constraints we will consider are independent of the 

identity of these particles. For completeness, we note that the cosmological effects of an 

exactly massless Jordan-Brans-Dicke scalar field which couples with different strengths to 

‘visible’ and ‘invisible’ matter has been discussed by Damour, Gibbons, and Gundlach 

(1990). 



2. Constraints on Long-range forces from Galaxy and Cluster Dynamics 

Given the theoretical models and experimental constraints above, we now consider 

the astrophysical effects of a long-range force coupled only to non-baryonic dark matter. 

We parameterize the mass density in terms of the mass-to-light ratio in the V band, 

T = (M/L)v. From the observed mean luminosity density jv = (1.7 % 0.6) x lo’!& 

Mpce3 (e.g., Da& and Huchra 1982, Kirshner, et al. 1983), the cosmic density parameter 

can be expressed as R = 6 x lo-’ h-‘T/T,. Th us, the critical mass-to-light ratio for 

an R = 1 universe is Tc = (1600 h 500)hTa. Clearly a long-range interaction of strength 

comparable to gravity will at&t dynamical estimates of the masses of gravitationally 

bound systems and thus the value of fl inferred from them. 

First consider individual galaxies. The observation of high proper motion stars in the 

solar neighborhood (presumably bound to the Galaxy) implies that the local value of the 

galactic escape velocity exceeds 450-500 km/set (C arney and Latham 1987; Cudworth 

1990; Leonard and Tremaine 1990; for a review, see Ficb and Tremaine 1991). In a 

truncated isothermal sphere model, this implies that the total mass-to-light ratio for the 

Milky Way is at least TMW 2 30-f@. This is consistent with the results obtained by 

requiring that distant globular clusters and satellite galaxies are bound to the Galaxy, as 

well as with mass-t-to-light ratios inferred from flat rotation curves in other spiral galaxies 

(Binney and Tremaine 1987; Fich and Tremaine 1991). Dynamical measurements of the 

mass within galaxies rely on baryonic tracers (stars or gas) of the gravitational potential. 

Since we assume that the new interaction does not couple to baryons, the masses inferred 

for individud galaxies, A&(r) N v%/GN, are the true masses, i.e., they are independent 

ofa. 

In systems of galaxies, however, such as binaries, groups, and clusters, galties them- 

selves are used as test particles. If the galaxy mass is dominated by non-baryonic dark 

matter, one must take into account the additional force on the dark mass. Consider two 

gdaxies in a binary system with separation f < A, approaching each other with relative 

speed v,; from Kepler’s law 

mf 0: GNM~ = GN[~ + a(1 - F)]Mtrue , (2.1) 

where A&,,~ is the true (luminous plus dark) mass of the binary system, Afti is the mass 

one erroneously infers without knowledge of the additional force, and F = Mb/?+&,,. is 

the baryon mass traction of the system. Thus, the dynamical estimate of the cosmic mass 
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density satisfies 

%ue rtrue 1 -=-= 
%lf rinf l+cr(l-F) (2.2) 

A repulsive force (a < 0) would delude us into believing that the dark matter density 

is smaller than it actually is. For example, a spatially flat universe with Rtrue = 1 could 

masquerade as an open universe with Ra < 1, perhaps reconciling the theoretical prejudice 

for a flat universe with the observational indications on scales of groups and clusters that 

0~ 2 0.2 - 0.3. Although an intriguing possibility, we show below that the vdue of Q 

required, a N -0.75, is inconsistent with cluster observations. 

To first approximation, the Local Group of galaxies can be thought of as a binary 

system, dominated by our Galaxy and Andromeda (M31), with a separation r N 725 kpc. 

The two galaxies are approaching each other at relative speed vy = 123 km/set. Assuming 

the orbit is radial, eq. (2.1) implies (Binney and Tremsine 1987, and references therein) 

Ts(LG) = 76 - 13OTa. (The range arises from the factor of two uncertainty in the age 

of the universe, to = (1 - 2) x 10” yr.) Since M31 is eected to have a ratio of dark to 

luminous matter and a stellar population similar to those of the Milky Way, and assuming 

M/L is a non-decreasing function of scde, the true mass-to-light ratio of the Local Group 

should at least equal that of our galaxy, Tt,.(LG) X 3OTa. From eq. (2.2) this implies 

the approximate upper bound a s 4 exp(700 kpc/X). Allowing for tidal torqueing and 

mass infall in the Local group does not substantially alter this bound (Fich and Tremaine 

1991 and references therein). 

So far, we have implicitly assumed that the luminous baryons are gravitationally en- 

slaved to their dark halos. In the core of a rich cluster, the outer halos of most galaxies are 

thought to be tidally stripped off by the cluster potentid (Merritt 1984, Pryor and Geller 

1984), and there is some observational evidence for this effect (Whitmore, Forbes, and 

Rubin 1988, Bothun and Schombert 1988, Lauer 1988); farther out, at distances R 2 lh-’ 

Mpc from the center of a typicd rich cluster, the halos of galaxies appear to be relatively 

intact, in the sense that spirals with extended flat rotation curves are found there. Now, 

if a # 0 an additional non-tidaf,~bulk stripping force arises from the fact that the orbital 

speeds of the baryonic core and the dark halo of a galaxy (each treated as test particles) 

at the dame point in the field of a central mass M (another galaxy or a cluster) do not 

coincide. If Q is very large, bulk stripping could conceivably lead to the complete separa- 

tion of baryonic disks from their non-baryonic halos. If a is only moderately large, bulk 

stripping is counterbalanced by the mutual gravitational attraction between the disk and 

the halo. In this case, a spiral disk in a cluster would be displaced from the center of mass 
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of its halo, and its rotation curve would presumably be asymmetric; in addition, the disk 

itself could be warped. 

To estimate the magnitude of this effect, consider the following idealized system: a 

rich, spherical cluster, centered at the origin, with mass M&T), a spherical, non-baryonic 

galaxy halo, with center of mass coordinate +jj(t), central density ph, and core radius rc, 

and a point-like baryonic core, with negligible dynamical mass, at coordinate F*(t). We 

neglect the gravitational backreaction of the galaxy halo and core on the cluster, i.e., 

we treat the cluster potential as fixed. In order to ensure that the rotation curve is not 

noticeably asymmetric, we assume the displacement between the core and halo must be 

small compared to the hdo core radius, A = I<* - ;,,I < ~~ (but see below). For galaxies 

farther than a few kpc from the duster center of mass, this implies A < 161, lp’l. The first 

inequality above means that the halo restoring force on the baryonic core is determined 

completely by oh and A, while the second inequality implies that the duster masses interior 

to the instantaneous core and halo orbits are essentially identical, Mei N Mcl(r,,) 

(corrections to this approximation enter at next order in A/T,,). 

Consider the galaxy core and halo on radial orbits through the cluster, with instan- 

taneous radii ~b = r~, + A and r,,. To lowest order in A/r,,, the core-halo separation 

satisfies 

(rh : A)z I 
(2.3) 

For a = 0, the term in brackets represents the usual tidal force, and the equilibrium 

displacement between the core and halo vanishes, A = 0. Assuming equilibrium is estab- 

lished on a timescde short compared to the crossing time through the cluster, for a # 0 

the equilibrium displacement between the core and halo is 

A 
--NC2 Ph 
rh h(< fh) 

(2.4) 

where ~a(< r) is the mean duster density interior to radius r. 

As an example, consider a typical spiral galaxy ft, = 1 Mpc from the center of 

the Coma cluster. The estimated duster mass interior to this radius is approximately 

Mc,,,(l Mpc) IT 6 x lO”ft&, and this appears to be robust against assumptions about 

velocity anisotropy, variations in M/L, etc. (Merritt 1987); thus, j?c,,,,,,J< lh-’ Mpc) 2: 

1.4 x lo-‘Ma PC-~. This is welI below typical estimates for spiral halo densities; e.g., for 

the SC galaxy NGC 3198, the rotation curve can be fit with central density ph = (0.013 - 

0.58)h2 MQ PC-‘, with corresponding halo core radii in the range T= = (6.4 - l.l)h-’ kpc 



(van Albada et al. 1985). (We note that the important parameter phrt is essentially fixed 

by the observed rotation speed, and is independent of a.) To good approximation, we 

therefore find A/rh N (&(< rh)/ph)a. Spanning the range from maximum to minimum 

disk models, if NGC 3198 were placed 1 Mpc from the center of Coma it would satisfy 

A/r= = (0.2 - 1.6)he2a. Requiring this ratio to be less than unity, we obtain the bound 

Ial 5 5 (where we have taken h = 1 to obtain a conservative limit). We caution, however, 

that without detailed modelling we do not know how reliable this bound is: since rotation 

curves are flat and relatively featureless beyond a few disk scale lengths, the precise signa- 

ture of the asymmetry is not obvious. (In cases where the disk is dynamically significant, 

presumably a feature would arise in the rotation curve at the point where the halo begins 

to dominate over the disk; for a different aspect of this problem, see section 3.6 below.) 

Two strong constraints on the interaction strength Q for ranges X X 1 Mpc arise from 

the dynamics of rich clusters. The first involves the distribution of hot intracluster gas 

(for recent reviews, see Sarazin 1988, Oegerle, Fitchett, and Danly 1990). If the gas is 

isothermal and in hydrostatic equilibrium in the potential well of a spherical cluster with 

mass profile M(r), then 

1 &+,a. -- = 
~,.a. dr 

~BT,,. d 1n~g.x. = GNM(~) 
/.mzp dr - 72 ’ 

where p is the gas mean molecular weight in amu, and m, is the proton mass. Simi- 

larly, if the cluster galaxies have an isotropic, spatially constant, one-dimensional velocity 

dispersion Q, then 

qz d ln~,,a~ = _ GNM(~) 
dr G4 * (2.6) 

Equating eqs. (2.5) and (2.6), the gas density satisfies (Cavalier= and Fusco-Femiano 1976) 

Pg..(~) cc PgdW I (2.7) 

where 

The observed surface density profile for galsxies in a cluster is generally reproduced by a 

King model, with 

ppl a [l + (r/rc)2]-3’2. (2.9) 

From X-ray surface brightness observations, most clusters are well fit by-the gas density 
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profile 

PP.‘(P) = POD + (r/t,)3]-3@f~3, (2.10) 

with Pr = 0.6 - 0.8 (Jones and Forman 1984). We thus expect p, = ,0f if galaxies trace the 

cluster mass. However, observations of the X-ray spectral temperatures and the galaxy 

velocity dispersion of a number of clusters imply (Mushotsky 1984) p. N 1.2 1/ 2/3f; this 

difference is knowri as the P-discrepancy. 

In the presence of a long-range force, if most cluster galaxies retain their dark halos 

(and therefore orbit the cluster as dark matter particles), eq. (2.6) is modified by replacing 

GN + GN[~ + a(1 - F)]. This implies 

P.(a) = P,(a = 0) 
1 +a(1 -F)’ 

(2.11) 

Thus, the discrepancy would be resolved (i.e., fl,(cx) N of) if a 21 1. However, the ‘p- 

problem’ is most likely a reflection of the simplified assumptions used above (Sara& 1988, 

Fitcbett 1990, Evrard 1990) rather than a signal of new physics. For example, the gas 

may not be isothermd, galaxies may not faithfully trace the mass, the galaxy velocity 

dispersion d may be anisotropic and/or a function of radius, and the King model may be 

a poor fit at large radii. Instead, we can use the factor of 2 agreement between the two 

determinations of p to place constraints on Q. For the ensemble of cluster observations, we 

have approximately 15 /?,(a = O)/flf ;5 2. Naively, we would expect @,(a) = j?f, but the 

corrections cited above generally go in the direction of increasing fl,/pf from unity, and can 

adequately explain the P-discrepancy (Evrard 1990). We therefore expect on theoretical 

grounds 1 s P,(a)/flf ;S 2. Using eq. (2.11) with F 5 0.2, we then obtain the bound 

-0.6 S a .S 1.3. 

An independent bound 06 a comes from the giant luminous arcs, high redsbift g&&es 

gravitationally lensed by foreground gdaxy clusters (Lynds and Petrosian 1986; Soucail, 

et al. 1987; for a review, see Mellier, et al. 1990). These arcs are formed when a galaxy 

is nearly imaged into an Einstein ring. Assuming photons do not couple to the new force 

(they are deflected only by the gravitationd potential), from the observed lensing geometry 

one can estimate the true cluster mass interior to the radius of the arc. Comparison with 

the dynamically inferred cluster mass obtained from the vi&l theorem, which is sensitive 

to the additional force, yields a constraint on Q comparable to that above. 

The most useful cluster for our purposes appears to be Abell 370. Using the measured 

redshifts for the lensed galaxy, zarc = 0.724, and the lensing cluster, zc = 0.374, Soucail, 
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et al. (1988) estitiate the cluster mass M(< r) z (1.9 f 0.4) x lO”h;/Ma over the scale 

+ < 150h;; kpc, where the Hubble parameter Ho = 5Oh50 km/sec/Mpc. This corresponds 

to a mass-to-light ratio (M/I;)R N (100 f 25)h 50 on this scale, where subscript R denotes 

the red band. The same group hati also measured velocities for galaxies in the cluster and 

inferred a virial mass. For Abell 370, Mellier, et al. (1988) report (M/L)R = 56f15 (again 

for h50 = 1) based on a line of sight velocity dispersion Q = 1340 km/set obtained from 29 

galaxy spectra; tbiS v&e for the velocity dispersion is consistent with the results of Henry 

and Lavery (1987) for the same cluster, but the resulting vi&J estimate of M/L is almost 

a factor of two below the arc estimate. However, in a more recent proceedings (Moran, et 

al. 1988), Soucail reports that their measured velocity dispersion is Q = 1700 f 170 km/see 

based on 46 velocity measurements. This yields the virial estimate (M/L)R = 96 f 10, in 

much better agreement with the arc estimate. 

One must use some care in comparing these two numbers: the arc value gives the 

mass-to-light ratio averaged over a tube extending along the line of sight through the 

cluster, with tube radius given by the (rather small) radius of curvature of the arc; on the 

other hand, the virial estimate uses galaxy velocities which extend considerably further 

out, and it assumes that the observed galaxies accurately trace the cluster mass (i.e., 

constant M/L). Moreover, Merritt (1987) h as shown that models with radially varying 

mass-to-light ratios are consistent with the galaxy position and velocity data in the much 

better studied Coma cluster (with several hundred measured velocities). Nevertheless, he 

shows that the constant M/L assumption gives .a fairly reliable indicator of the mass in the 

core of the cluster; for Coma, he estimates that the true msss within 1 Mpc is within 25% 

of the vi&l estimate. Now, for Abell 370, we are interested in a smaller region, but the 

velocity data is more sparse. We therefore roughly estimate that the virial mass-to-light 

ratio for the region within the arc, including observational and theoretical uncertainties, is 

(M/L)R = 96flOf25. Comparing this with the (M/L)R ratio inferred from the arc using 

eq. (2.2) and assuming F < 0.2, we find -0.5 < Q < 1.9. (We note that the M/L ratio 

inferred from the arc is consistent with that estimated from the smaller arclets.) This is 

comparable to the bound we obtained tram the intracluster gas distribution, but it extends 

to smaller scales. 

A summary of the approximate bounds on Q (Ial) f or an attractive (repulsive) force 

ks a function of the range X is shown in fig. 1 (2). In this context, we note the recent 

preprint by Kawasaki, et al. proposing that a long-range force could allow neutrinos of 

mass 10 eV to cluster in dwarf galaxies, contrary to the usual phase space constraints (see 

the Introduction for discussion of these constraints). In particular, their required value of 

a w lo4 with X X 100 kpc is strongly ruled out by our results. 
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3. Cosmology and Large-Scale Structure 

3.1 FRIEDMANN-ROBERTSON-WALKERMODELS 

Armed with the observational constraints on a long-range force, we now turn to cos- 

mology, the final arena where the effects of an additional dark matter interaction would 

be played out. First consider the evolution of a homogeneous and isotropic Friedmann- 

Robertson-Walker (FRW) universe; despite the form of eq. (1.4), the grevitationsl constant 

GN is not replaced by e function of a in the Einstein equations. This is most easily seen 

by considering the scaler field example of eq. (1.1). The homogeneous field 4 = d(t) leads 

to two effects: a cosmological density of coherent scalar particles, p+,(t), which behaves like 

non-relativistic matter, and a time-dependent mass for the dark fermions. For f ,S rnd and 

temperatures 2’ 5 m+, both effects have negligible impact on the density of the universe. 

For vector fields, the situation is similar. (There are scenarios where the scalar energy 

density can play an important cosmologicsl role (Frieman, Hill, and Watkins 1991), but 

we do not consider them here. For the cosmological implications of massL~s Bram-Dicke 

scalars in this context, see Damour, ef al. (1990).) C onsequently, we can assume that the 

rtsndard FRW cosmoIogy is essentially unaltered by the additional interaction. 

This is easily verified by e simple Newtonian argument. In the Newtonian limit, which 

holds for non-relativistic matter and for length scales much smaller than the Hubble radius, 

the Robertson-Walker scale factor a(t) obeys 

where the gravitational potential 4s satisfies the Poisson equation, 

v’.&, = ~?&NP. (3.2) 

Here p is the spatially averaged density, p(t), and the spatial derivative is taken with 

respect to physical coordinates. If the universe contained only non-baryonic dark matter 

with an edditionsl interaction, one might naively expect eq.(3.1) to be modified to 

3; = -V2& - V2&, 

where the potential & for the long-range force satisfies 

v2hl - m&h = 4rGtvap, (3.4) 

and m,,, is the mess of the exchanged vector or scaler field. However, for any non- 

zero mass m,,,, eq.(3.4) has the instantaneous, spatially homogeneous solution 4. (h) = 
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-47rG~ap/mIf~, (thi s will be the approximate solution when time dependence is included 

as well). For this solution, V2d$hl vanishes, so the additional force makes no contribution 

to the expansion rate of a homogeneous, isotropic cosmological model. That this must be 

so also follows from a two-component model containing, say, baryons and non-baryonic 

matter: in this case, eqs. (3.1) and (3.3) must both hold, otherwise homogeneity and 

isotropy would not be maintained. Since the new interaction does not violate homogeneity 

and isotropy, the additional potential must satisfy the homogeneous solution above. 

The new force will, however, affect the growth of spatial inhomogeneities, es we shall 

see below. 

3.2 LARGE-SCALE STRUCTURE: BACKGROUND AND SUMMARY 

The observations of large-scale bulk motion (Dressier, et al. 1987), the sheetlike and 

filamentary structure seen in recent redshlft surveys (e.g., Geller and Huchra 1989), and the 

results of the deep pencil-beam surveys (Broadhurst et af. 1990) provide tantalizing hints of 

structure on large scales. Recent measurements of the galaxy angular correlation function 

(Maddox, et al. 1990, Picard 1991), the variance in gslaxy-counts-in-cells (Saunders, et al. 

1991), and the correlations of rich clusters by a number of groups are beginning to provide 

statistical evidence for this structure. 

Cold dark matter (CDM) with fl = 1 and an initial Harrison-Zel’dovich spectrum of 

*diabetic perturbations from inflation, long considered an attractive scenario for galaxy 

form&ion, appears to fall short in explaining at least some of these observations: there 

is a growing consensus that CDM produces too little power on large scales. There are 

different weys this difficulty might be overcome. The first possibility is to modify the 

primordial fluctuation spectrum. While ‘designing’ an arbitrary perturbation spectrum 

generally involves fine-tuning the potential of the field responsible for inflation, there are 

inflation models which naturally have et least modest amounts of additional large-scale 

power (Frees=, Frieman, and Olinto 1990; Adams, Bond, Freese, Frieman, and Olinto 1991, 

in preparation); in this case, however, one must come close to saturating current microwave 

anisotropy limits in order to adequately account for the additional structure required. The 

second possibility is to modify the transfer function which determines the relative power on 

different scales today in terms of the initial spectrum. In this vein, possibilities include in- 

troducing e small cosmological constant (e.g., Efstathiou, Sutherland, and Maddox 1990), 

a decaying 17 keV neutrino (Bond end Efstathiou 1991), or considering the effects of radi- 

ation pressure (Zurek 1991), the latter which, e.g., may lead to a destructive interference 

between baryonic and dark matter perturbations on galactic scales and therefore to less 

power on small scales. When the spectrum amplitude is normalized in the standard way 
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(e.g., by the second moment of the mass correlation function, Js, or the variance of the 

density field), this yields the needed excess power on large scales. . 

We show in this section that an additional long-range force may have a similar effect 

on the transfer function for density fluctuations. Qualitatively this is easily understood: 

on large scales, beyond the range of the additional interaction, the gravitational growth of 

perturbations is unaffected by the force. On small scales, however, a repulsive (attractive) 

force leads to reduced (enhanced) perturbation growth. If we normalize the present spec- 

trum in the standsrd way, we recover more (less) relative power on large scales. In fact, a 

repulsive force of range X X 100 kpc and strength a X -0.5, consistent with the astrophys- 

ical constraints found above, can provide the edditional large-scale power needed to revive 

the CDM scenario (with adiabatic, scale-invariant initial perturbations), without violating 

microwave anisotropy constraints. In addition, a repulsive force generates a bias between 

baryonic and dark matter perturbations on small scales end therefore might help explain 

the abundance of high-redshift quasars, despite the somewhat reduced amplitude of small 

wavelength perturbations. On the other hand, our analysis shows that the problems of 

the CDM modal in accounting for large-scale structure are exacerbsted by an attractive 

long-range force. 

In the following we study structure formation with an additional long-range force, 

primarily in the context of cold-dark-matter models. In the next section we evaluate the 

transfer function, which describes the growth of perturbations on different scales, cslculete 

the present fluctuation spectrum and matter correlation function, and discuss small-scale 

biasing. In section 3.4, we discuss the gravitationally induced large-scale streaming veloci- 

ties and compare with analyses of velocity flows for different galaxy samples. In section 3.5 

we study the induced anisotropies in the cosmic microwave beckground radiation (CMBR). 

In section 3.6, we discuss the relaxation of non-baryonic halos due to baryonic infall end 

the consequences for the disk-halo conspiracy. 

3.3 PERTURBATION GROWTH AND THE POWER SPECTRUM 

We assume the matter content of the Universe can be described in terms of two pres- 

sureless, ideal fluids, baryons and cold non-baryonic dark matter. As we are interested in 

small-amplitude perturbations inside the horizon, we can apply linear perturbation theory 

in the Newtonian approximation (e.g., Peebles 1980; Zel’dovich end Novikov 1983). Define 

the Factional perturbations in the baryonic end non-baryonic matter densities by 

,q,+) = Pb(X,t) - pb(t) 

pbb(t) ’ 

qxlt) = P"b(%*) -&b(t) 
i&b(t) 
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where &,(t) end &b(t) are the mean baryonic and non-baryonic energy densities. Beryons 

are subject only to gravity, whereas the non-baryonic dark matter is also affected by the 

additional, nongravitational interaction. Expanding the continuity end fluid equations to 

first order results in 

i+2 
(I 

; i = ;;i- v~~g, 

A-l-2 
0 

; ii = $ V5(4g + 40) , 
(3.6) 

where the gradient is taken with respect to the comoving coordinate x and a(t) is again the 

cosmic scale factor. The gravitational potential, &,, satisfies the usual Poisson equation, 

V$#J, = 46’~ a2 (&i& + j&A ) . (3.7) 

The potential associated with the additional force, do, originates solely in the dark matter 

perturbation and satisfies (compare eqs.(l.2) and (3.4)) 

vz4a - a2 d., .$. = 4xaG~a~ &A. (3.8) 

We focus on a spatially flat, matter-dominated universe with zero cosmological constant, 

R = & + fld = 1. Combing eqs. (3.6) - (3.8) and transforming to Fourier space, the 

evolution equations for the density fluctuations become 

(3.9) 
where kp = k/a and k are the physical and comoving wavenumbers of the perturbation. (We 

note that the baryon pressure gradient term can easily be included in’eq.(3.8)~ -) On scales 

larger than the Compton wavelength of the scalar/vector particle, kp < n+, we retrieve 

the standard result for the growth of fluctuations in a flat universe, Ak = 6~ cc t2f3 (for 

the growing mode). The additional long-range force manifests itself only on small scales: 

in the limit kp > m,,,,, the growth rate is modified to 

A,=$tP, (3.10) 

where the “bies” factor B end the exponent p are given by 

B+- 
I 

~(l+n)+[(l-~(l+a))2+4#2}, (3.11) 
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p = -;{1 f [l+24(Bnb+(1+a)R”s)]1’~}. (3.12) 

This result merits two comments. First, although only non-baryonic matter couples to 

the additional interaction, the growth rate of the baryonic fluctuations is equally affected. 

If the baryonic mass density is small, fib < (1 + Q&,/B, and we have &,b N 1, the power 

law exponent p is approximately 

p N -; (1 f (25+24c~)~'*} 

for scales with kp >> m,,,. For an attractive force, a > 0, the growing mode is amplified, 

p > 2/3; for example, for a = 1, we have p rr. 1 for the growing mode. For a repulsive 

interaction, p < 2/3, and the growth rate is retarded; in particular, as a -+ -1, the 

repulsive force completely neutralizes gravity, and p -+ 0. The reduction in growth rate 

is similar to that which occurs for a matter-dominated, flat universe with two matter 

components, one of which is smoothly distributed and does not cluster (e.g., Kolb and 

Turner 1990). 

Second, in the small wavelength limit, the amplitudes of the baryonic and non-baryonic 

perturbations diff’: this is manifest through the bias factor, B(a,&,/Rb) = &/A&, 

which is larger (smaller) than unity for a repulsive (attractive) force. For a repulsive 

interaction, small wavelength baryonic perturbations are enhanced relative to their non- 

baryonic counterparts, leading to a scale-dependent bias between the dark matter and 

the light. An attractive force has the opposite effect and leads to anti-biasing. The fact 

that B # 1 for adiabatic perturbations is a direct consequence of the violation of the 

Equivalence principle. In fig. 3 we plot the bias factor B as a function of the force strength 

a, for various values of the ratio f&,b/Rb. 

In deriving an approximate transfer function T(k) = Ak(t~)/Ak(ti), which relates the 

perturbation amplitude today (to) to the amplitude when it was formed (ti), we make 

the following approximations: i) We neglect the baryon density, i.e., we set nnb z 1 and 

use the approximate growth rate of eq. (3.13). ii) At early times, the physical wavelength 

of a given mode is smaller than the force range, k;’ < rn;:, but at late times may be 

conformally stretched above it. We treat this transition as discontinuous, i.e., we use 

eq. (3.13) until k;’ = m;f , and the usual growth law thereafter. iii) We neglect the small 

logarithmic growth of adiabatic perturbations during the radiation dominated era. To 

reduce the sensitivity of our results to these approximations, we also apply the last one to 

standard CDM perturbations and normalize the computed T(k) to the fitted CDM transfer 
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function of Davis et al. (1985), 

TCDM(k) = A/(1 + Ek + wk’.’ + rk’) , (3.14) 

where E = 1.7 hm2Mpc, w = 9.0 h-3Mp$.5 and 7 = 1.0 hm4Mpc2. That is, we define the 

present fluctuation amplitude by 

Ak(to) = TCDM (k) Adti) [ 6$$;;,] .pprol = 6:DM(to) P(k) > (3.15) 

where F(k) = [Ab(t~)la,C~~(to)].~~,, denotes the modification factor with respect to 

standard CDM fluctuations. We calculate F(k) using the three approximations above; 

the result is shown schematically in fig. 4. According to the second approximation, a 

perturbation of comoving wavenumber k is subjected to the additional long-range force 
. . - 

until time a,~( = k/m. Furthermore, a perturbation crosses inside the horizon (in a matter 

dominated universe) at ah&k) = (g)‘k-’ N 2.47 x 10-ik-2 (k is given in Mpc-I). The 

characteristic wavenumbers in fig. 4 are then defined by ahor(kep) = aepr aho. = G,(k”) 

and ake(k,,) = w = 1, where %q is the scale factor at equal matter and radiation energy 

densities. (For our choices of m,,,,, k, < k., < k..) Perturbations with k > k. never 

stretched beyond the force range and were therefore always subjected to the additional 

interaction. In contrast, fluctuations with k < k,, were already outside the range at 

horizon crossing and thus always experienced standard gravity. 

The i&id spectrum of perturbations AA(&) is taken to be scale-invariant, IAt(ti)l’ a: 

k. We normalize the power spectrum by the second moment of the mass correlation func- 

tion, evaluated from the CfA red-shift survey (Davis and Peebles 1983), Js(lOh-‘Mpc) = 

270 h-‘Mpc’, where 

sink+ - kr eos kz) $f . (3.16) 

(Normalizing by the variance of the density field at 8h-lMpc with a top-hat window func- 

tion yields a similar result.) Note that in choosing this normalization, we have implicitly 

made two assumptions: (i) that the characteristic normalization scale, r - 8h-’ Mpc, is 

large compared to the Compton wavelength X SO that the bias factor B(a) does not enter 

the normalization (B(a,8h-‘Mpc) = 1) (h owever, see the discussion at the end of this 

subsection); (ii) that there are no other sources of bias in linear perturbation theory. * . 
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Fig. 5 shows the processed power spectrum for different values of the force strength 

a and force range X. (In our numerical calculations we assume the Hubble parameter 

is Ho = 50 km set-IMpc-‘, i.e., h=1/2.) In the long-wavelength limit, where the ad- 

ditional interaction is inoperative, the spectra exhibit identical slopes, end differ only in 

overall amplitude due to the normalization on small scales. On smdl scales, however, en 

extra force generates distinctive features in the fluctuation spectrum. The deviation from 

the standard CDM result becomes evident with increasing force range and/or enhanced 

strength. As noted above, an attractive force diminishes the power et long wavelengths 

and is therefore less successful than standard CDM . m explaining structure formation on 

large scales. On the other hand, a repulsive interaction reduces the amplitude of small 

wavelength perturbations end therefore relatively enhances the power on large scales. 

The magnitude of this effect becomes more transparent by studying the spatial two- 

point mess correlation function, 

IWo)12 F-k2 dk . 
0 

(3.17) 

In fig. 6 we plot t(r) for Q = - 0.3 and -0.5 for several values of the force range X. Here the 

short-dash-dotted line shows the standard power law fit to the data on scales + 5 lOh-’ 

Mpc, t(r) = (r/5.6h-’ Mpc)-‘.‘, and the solid curve presents the standard CDM result 

(a = 0). Since this is a linear perturbation theory calculation, it is only to be trusted on 

scales larger than f N 20 Mpc (for h = 0.5); the key point is that models with even a 

modest repulsive force can have substantial excess large-scale power. 

To compare with observations, in fig. 7 we show the angular two-point correlation 

function w(0) for models with a repulsive force, 01 = -0.3 and the same values of X 

as above. The angular two-point function was calculated Corn E(r) (here normalized to 

[(4.6h-‘Mpc) = 1) using the relativistic form of Limber’s equation (see, e.g., Peebles 1980) 

assuming fl = 1, with the Schechter luminosity function of Maddox, et al. (1990); the 

observer selection function wss assumed to be unity over the apparent magnitude interval 

17 < bJ < 20, corresponding to the depth of the APM galaxy survey. For comparison we 

show the dsta Corn the APM galaxy survey (Maddox, et al. 1990) and the POSS-II survey 

(Picard 1991), which has nearly identical depth. (Note that the data has not been resealed 

in depth.) The standard cold dark matter model (solid curve) falls short of the APM data 

on large angular scales (Maddox, et al. 1990), while a CDM model with a repulsive force 

of strength a = -0.3 end range X = 100 kpc fits the data out to 5O remarkably well. 

17 



Throughout this discussion, we have been assuming that the Compton wavelength of 

the additional interaction is short compared to the characteristic normalization scale for 

large-scale structure, X ,$ 8h-’ Mpc. As a final comment, we note here the results for the 

opposite case of a very-long-range force, X X lOOOh-’ Mpc. In this csse, perturbations 

on all observable length scales are equally affected by the additional force, so that, aside 

from a change in overall normalization, the perturbation transfer function T(k) is just that 

for cold dark matter, eq.(3.14). That is, the modification factor F(k) entering eq.(3.15) 

is k-independent; the only change from standard (unbiased) CDM is that the A spec- 

trum should be normalized by setting Js(lOh-‘Mpc) = B-‘(a) 270he3 Mpc3, where the 

bias factor B(a) is given by eq.(3.11) (Fig. 3). Th e implications for microwave anisotropy 

constraints will be discussed below. 

3.4 LARGE-SCALE VELOCITY FIELD 

One of the major drawbacks of the standard CDM sce&rio lies in its apparent difficulty 

in reproducing the observed peculiar velocity field on large scales. Here we study how an 

additional long-range force affects this problem. As we would expect from the preceding 

section, models with a repulsive force lead to additional large-scale power and can help 

cure this difficulty. 

F5om the continuity equation, we cl~~l evaluate the gravitationally induced (linear) 

comoving peculiar velocity (Peebles 1980; Zel’dovich and Novikov 1983) 

ut(f) = -+ b(t) = -is Ho Ak(to) f(k,to) , (3.18) 

where the ftinction f = d(lnD)/d(lna), and D(t,k) describes the time-evolution of the 

fluctuation amplitude, Ah(t) = D(t, k)Ak(to). In contrast to the standard (a = 0) scenario, 

fis now k-dependent: f(k,to) = 1 (3p/2) for k Q: m,,,, (k > m,,,), where p is the power 

law exponent given by eq. (3.12) or (3.13), and we heve set ag = 1. Note that a does not 

appear explicitly in eq. (3.18), but only indirectly through its modification of the growth 

rate p. nom (3.18) we can estimate the expected mean square bulk velocity of a spherical 

volume of radius r (Clutton-Brock and Peebles 1981; Kaiser 1983), 

f*W,to) IA&o)12 W,z(kr) dk , 
0 

(3.19) 

where W,(kr) is a window function. 
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Fig. 8 shows the rms bulk velocity, eq. (3.19), calculated with e Gaussian window 

function, W,(kr) = exp(-k2r2/2), using the seme values of X es before. We also plot two 

fitted data points with their estimated error bars. The higher velocity of 600 f 100 km/set 

on a scale of 60 h-‘Mpc (120 Mpc with h=1/2) was obtained from a sample of nearby 

elliptical galaxies by Dressier et al. (1987). The lower bulk velocity, 570 f 60 km/set, of 

a volume of size 43.5 h-‘Mpc, corresponds to the fitted value in the “Greet Attractor” 

model (Lynden-Bell et al. 1988). Th e standard CDM model, shown by the solid curves, 

predicts velocities of order 200 km/set on these scales. A repulsive force does considerably 

better than standard CDM in generating the large-scale streaming velocity: a scenario 

with a N -0.5 and 1 Mpc 2 X g 10 Mpc is consistent with the observational data. (Note 

that a force of strength cr = -0.3 still falls short in explaining the observations.) At the 

same time, an attractive force of range X X 10 kpc exacerbates the velocity problem, end 

is essentially excluded in the context of the CDM scenario with adiabatic, scale-invariant 

primordial fluctuations. 

Based on a potential flow reconstruction algorithm. (Bertschinger and Dekel 1989; 

Dekel, Bertschinger and Faber 1990), Bertschinger et al. (1990) have recently constructed 

maps of the large-scale velocity and density field from redshift-distance samples. Their 

selection function for the bulk flow estimates on a given scale + is a convolution of a top- 

hat window function, Wth = S[sin(kt) - krcos(kr)]/(kr)‘, with a Gaussian filter of radius 

t, = 12 h-lMpc, W - = cxp(-k2rf/2). The additional Gaussian smooths the data on 

small scales. The expected large-scale streaming velocity is then defined by 

H,z a 
4d2 = Tg J f2(k,to) [At( W,2,(kr) W&(k,,) dk . (3.20) 

0 

From the reconstructed three-dimensional velocity field, Bertschinger et al. (1990) estimate 

aversge streaming velocities u(r) = 388f67 km/set end 327f82 km/set in spheres of radii 

40 h-lMpc and 60 h-‘Mpc. The expected velocities in the standard CDM model are only 

N 30 % below these values. Fig. 9 shows the bulk velocity u(r) for various model parameters 

a and X. A repulsive force of strength Q N -0.5 and range 1 Mpc g X 5 10 Mpc, 

although consistent with the rms bulk flow v r,,(r) estimated by Dressier et al. (1987) as 

seen above, produces streaming velocities u(r), according to eq. (3.20), well in excess of 

the observations. For consistency with the date on u(r), we must either limit the range of 

the additional interaction to X N 10 kpc or reduce its strength to Q = -0.3 (with range 

100 kpc z$ X 5 10 Mpc). 

An alternative, normalization-independent test of the power spectrum using velocity 

date is the Cosmic Mach number, M(r) (Ostriker and Suto 1990). The Mach number 
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characterizes the ratio of the coherent bulk velocity of en ensemble of objects to the 

internal velocity dispersion of the objects, 

1,” kWo)12 W,(kp) Kfm(W dk 112 

&- lA~Jto)[~ [ 1 - (1+ y) W,(kr) ] W.&.,(k~) dk ’ 
(3.21) 

where we have again smoothed the velocity field by an additional Gaussian window func- 

tion, W,,(k~); Ostriker and Suto (1990) consider a smoothing length [ = 5 h-‘Mpc. From 

the peculiar velocity samples, they extract M(16 rh 3.6 Mpc) = 2.2 rt 0.5 for spiral galaxies 

and M(36 f 7.0 Mpc) = 1.3 f 0.4 for elliptical6 (Ostriker and~Suto 1990). Fig. 10 shows 

the expected Mach number for various values of a and X within the context of CDM. The 

standard CDM model with o = 0 again appears to be incompatible with the observations, 

due to the shortage of power on large scales. A scenario with an attractive force is even 

less successful then standard CDM, while a repulsive force can increase the Mach number 

of the CDM model to be compatible with the observed values. 

By inspection of figs. 8 - 10 it appears that the large-scale bulk flow found by Dressier et 

al. (1987), the average streaming velocity from the redshift-distance samples (Bertschinger 

et af. 1990), and the Cosmic Mach number results (Ostriker and Suto 1990) are mutu- 

ally incompatible. Coupled with the CDM model, a relatively weak and/or ‘short range’ 

repulsive force can reproduce the average velocities found by Bertschinger et al, while 

a stronga interaction of long range is required to obtain the high velocities reported by 

Dressier et al. 

3.5 ANISOTROPYOF THE MICROWAVE BACKGROUND RADIATION 

The angular isotropy of the CMBR provides one of the most sensitive constraints 

on fluctuation spectra. We focus on large-scale, sub-horizon scale irregularities in the 

background tempersture due to the Sachs-Wolfe effect (Sachs and Wolfe 1967; Peebles 

1980), which dominetes on angular scales larger than a few degrees. After an integration 

by parts, the temperature fluctuation can be written as 

AT/T = C f s. (3.22) 

Here, D is the familiar boundary term due to the gravitational potential ip et the last- 
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scattering surface, 

3 
c = -p po-+ 

( > 
qx = x0) , 

while E includes an integration along the line of ,sight (Peebles 1980;‘for a recent discussion, 

see e.g., Sahni, et al. 1991), 

to 

2= 
I 

V-‘A(t,,x(1)) l?(l) dt , 

ld.. 

(3.24) 

where 

x(t) = x0 + fi 
la dt 

I 
- , 
a 

I-(t) = -g+(t) . (3.25) 
t 

Here, po E p(k, to) is the power law exponent given by eq. 13.12) or (3.13), fiis the direction 

vector along the line of sight, and tas is the cosmic time at the epoch of last scattering. In 

the case of standard (linear) CDM fluctuations in a spatially flat universe, the fluctuation 

growth rate D(t) o( a(t), so that the line of sight term Z z 0, and the E-term reduces to 

the familiar result, C = -$5(x = ~0). 

If, however, D(t) $ a(t), then the gravitational potential associated with growing mode 

perturbations is time-dependent; as a result, the line-of-sight term due to the photon blue- 

and redshift as it falls into and climbs out of a developing potential well does not cancel 

out. The expected mean square anisotropy in any direction is then given by 

(AT/T): = (ICI’) + (I+) + 2 (IX 21) , 

where 

(IW) = & H; Jdk p;(,. - ;)” I”$),, , 

0 

(ply = &Jd* ]dh ]dta r(h) r(h) 
0 td.r k.. 

x sinklx(tl) - x(tz)l IAk(to)l’ 

klx(t,) -x(h)1 k2 ’ 
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(3.27) 

(3.28) 



(IX Zl) = -& H; ydk ]dt+o-;) l?(t) 

0 Ld.. 

x sinklx(t) - xol IAt(to)12 
k(x(t) -x01 k2 . 

(3.29) 

We have numerically evaluated the three terms of eq. (3.26) and find that, except in the 

extreme case of a strong and very long-range repulsive force, a s -0.8 and X X 1 Mpc, 

which is ruled out by the considerations of Section II, the last two terms are subdominant 

and can be neglected to first approximation; hence (AT/T), N (lB~2)1~2. 

To.compare with the observational constraints, we calculate the temperature autocor- 

relation function on angular scale 0 

- ;)’ lA$)lz 

0 

(3.30) 

x jo(ky) - ji(kRE) - 3 cos 8 jf(kRa) 
[ I 

, 

where j, are spherical Bessel functions, RH = ~/HO is the present horizon scale, fir *iis = 

cost?, and y = 2R~sin(O/2). In eq. (3.30) we have subtracted the monopole and dipole 

t- from the total autocorrelation function (Peebles 1982; Martinez-Gonsaez and Sans 

1989; G&ski 1991). The monopole component corresponds to a small change in the mean 

temperature and is unobservable kom a single location. The dipole moment is attributed to 

the peculiar motion of the Local group with respect to the comoving frame; it dominates the 

higher moments of the CMBR anisotropy and is usually subtracted from the observational 

data. 

We can compare the theoretical temperature correlation function C(e) from eq. (3.30) 

with the observational limits from the COBE satellite (Smoot et al. 1991), 

c(e) < I.O.IO-9 , for ls” < 8 < 165’ . (3.31) 

In fig. 11 we plot our results for various sets of parameters a and X. The shaded area 

represents the region excluded by the COBE results. Aside from the model with a repulsive 

force of strength Q = -0.5 and range X X 10 Mpc, the CDM scenarios with an additional 

force are clearly consistent with the measurements. 
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We can also evaluate the quadrupole moment of the CMBR anisotropy and compare 

it to the observational limits from the RELIKT experiment (Strukov et al. 1987) and 

COBE (Smoot et al. 1991). Both groups place the bound Csr’2 < 3.0. lo-’ at the 

95 % confidence level. The temperature autocorrelation function can be expressed as a 

multipole expansion, normalized to the quadrupole moment of the CMBR anisotropy. For 

scale-invariant fluctuations, one can then find the quadrupole moment from (Efstathiou 

1990) 

c(e) = & c2 [ ln(l-fose) - 1 - +], 

with tJ >> 1”. In models with a repulsive force, C(0) ’ d 1s ominated by the long wavelength 

regime, where the shape of the power spectrum coincides with the standard CDM spectrum. 

In this case, the anisotropy is mainly affected by the change in small-scale normalization 

and is therefore expected to have the same e-dependence as in eq. (3.32). For attractive 

interactions, however, the temperature autocorrelation function is also influenced by the 

large fluctuation power on small wavelengths, where the-shape of the power spectrum 

deviates significantly from the standard CDM result. In this case, we cannot rely, a priori, 

on the relation (3.32), but must evaluate the quadrupole moment explicitly, 

C2 = g Ho’ 7 dkpz(po-5>’ ‘“‘~~)“j~(kRa). 

0 

(3.33) 

In fig. 12 we plot the quadrupole moment, C:“, as a function of a for different values of the 

force range A. The shaded area denotes the region excluded by the RELIKT and COBE 

experiments. We again note that only very long-range repulsive forces, with LI 5 -0.4 and 

X X 10 Mpc, are ruled out. In particular, CDM with an extra force of strength LI X -0.5 

and range X 5 1 Mpc can reproduce the large-scale velocity field and yet is consistent with 

both CMBR anisotropy constraints and our previously derived astrophysical bounds. 

Finshy, we mention the CMBR constraints on the very-long-range-force models dis- 

cussed at the end of section 3.3. Recsll that in this case, X X 1000h-r Mpc, we recover 

the usual CDM spectrum, modified by the oversll bias factor l/B(a). From fig. 3 and 

eq. (3.23) it is clear that the amplitude of the large-scale anisotropy will be altered from 

the standard unbiased CDM prediction. In particular, the rms Sachs-Wolfe anisotropy is 

given by 

qo, = $0) ; p(a) (p(a) - ;) R-‘(a) (3.34) 

where B(a) and p(a) are given by eqs(3.11) and (3.12). For example, for an attractive 
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force with strength o = 1, the anisotropy is increased by a factor of about 5.8 compared 

to standard, unbiased CDM; this is in conflict with the COBE and RELIKT bounds. 

Requiring the enhancement factor on the RHS of eq. (3.34) to be less than 3, we find the 

CMBR constraint Q 5 0.6 for a very long-range attractive force. 

It is worth repeating that our analysis of structure formation has been carried out 

exclusively in the framework of a CDM-dominated universe with adiabatic, scale-invariant 

primordial perturbations. An extra force may have significantly different effects in other 

scenarios for large-scale structure formation. 

3.6 HALO RESPONSE AND NON-LINEAR CLUSTERING 

A final bound on the force strength a results from considering the response of dark 

halos to dissipational baryonic infdl in the non-linear stages of galaxy formation. For 

a collisionless dark matter particle in a circular orbit in a protogalaxy, conservation of 

angular momentum implies a relation between its initial radius r; (before baryonic infall) 

and its final radius 7, after the baryons have cooled and collapsed into a disk (Ryden and 

Gunn 1984, Blumenthal, et al., 1986, Barnes 1987). We first review the argument for 

the standard ease, ct = 0, following Blumenthal, et al. (1986). Let Mi(ri) be the total 

(baryon plus non-baryonic) protogalaxy mass interior to the initial halo particle radius fi, 

A&(r) be the final dissipational baryon mass distribution in the disk, and M.(r) be the 

tind dark matter distribution, and assume that initially there is no segregation on the 

protogdaxy scale, i.e., the initial dissipationd baryon mass fraction, F = M*(ti)/Mi(r;), 

is independent of radius. If the halo orbits do not cross, then M,(r) = (1 - F)Mi(ri) is 

the find halo mass inside radius I, and the initial and find particle radii are related by 

f; = Mb(r) + Mz(r) = f(t/I)F + 1 _ F . 
r Mi(ri) 

(3.35) 

Here, the function f(v/I) is determined completely by the disk scale length I and the ratio 

of the core radius to the outer radius of the initial mass distribution (assumed to be a 

truncated isothermal sphere); it is independent of F. The resulting rotation curve is found 

to be relatively flat and continuous from the baryon-dominated core to the dark-matter- 

dominated halo only if F lies in the range (Blumenthal, et of., 1986) 0.05 < F < 0.2. That 

is, for this range of parameters, the relaxation of the halo due to dissipational infdl of the 

baryons can account reasonably well for the disk-halo ‘conspiracy’, namely, the fact that 

rotation curves do not have a prominent feature where the halo begins to dominate over 

the disk (Bahcdl and Casertano 1985). 
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Repeating the above procedure allowing for a # 0, the conserved quantity is now 

r[(l + a)&(r) + L’&(T)]. In place of eq.(3.35) we now have 

Ti M*(p) + (1+ a)&(r) 
- = Mi(r;)(l + a -aF) . T 

Defining a new variable, 

p= F 
I+a--CZF’ 

(3.36) 

we can rewrite eq.(3.36) as 

; = f(i”/I)@ + 1 - F . (3.38) 

Since this has the same form as eq. (3.35), the requirement of flat rotation curves now 

yields the constraint 0.05 < 2 < 0.2. 

To translate this constraint into a bound upon a, we must introduce an additional 

assumption. First, if we assume that essentially all baryons cluster dissipatively with 

g&xies, we expect the dissipational baryon fraction to be F = Mb;/Mi II f&. From big 

bang nudeosynthesis, we have the conservative bounds on the baryon density 0.007 < Rb < 

0.21 (e.g., Kolb and Turner 1990). Using nucleosynthesis to constrain F, and the rotation 

curve bound on p’, we find the constraint -1 < Q < 4 for a force range comparable to 

the galaxy scale or larger. However, this argument does not take into account the scale- 

dependent bias, eq.(3.11), between the baryons and the dark matter. For a perturbation 

with bazyon mass a?& and nonbaryonic mass JM,, we have, on small scales, 

-=B”= Bnb 6Mb 
6Mmb J%b i=T&’ 

(3.39) 

where B(a, fib) is the linear bias parameter given in cq.(3.11) and we have again assumed a 

spatially flat universe. Thus, the expected baryon fraction in the protogalaxy perturbation 

is 

F=!t?& Bnb 
I+%@--1) ’ 

(3.40) 

Using the nudeosynthesis constraint on &$ and the rotation curve bound on F’, we now find 

the constraint -0.8 < a < 1.3. (Alternatively, one could constrain Q as a function off&.) 

If Q is outside this range, spiral rotation curves would be sharply rising or steeply falling 

instead of nearly flat. This constraint is also included in Fig. 1. (We note that, unlike the 

other bounds shown there, the latter constraint depends on the additional assumptions 

about linear clustering and CDM introduced above.) 
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4. Conclusion 

We have touched upon only a few of the many interesting phenomena which arise if the 

dark matter violates the principle of equivalence in the sense of interacting with ‘hidden’ 

long-range forces. From mass-to-light ratios in galaxies and binaries, the gas distribution 

in clusters, luminous arcs, and the relaxation of dark halos due to baryonic infall, we 

conclude that the relative strength of such an interaction must satisfy -0.5 2 o ,$ 1.3 

if its range X X a few hundred kpc. Even so, such an interaction can alter the apparent 

density of dark matter and profoundly change the spectrum and amplitude of large-scale 

density fluctuations. 
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FIGURE CAPTIONS 

1) Astrophysical bounds on the strength Q of an attractive force as a function of range 

X. The limits arise from: M/L of the Local group (solid curve); rotation curves of 

cluster galaxies (dotted curve); intracluster gas (short-dashed curve); luminous arcs 

(long-dashed curve); and halo relaxation (dot-dashed curve). 

2) Bounds on the strength 101 of a repulsive force as a function of range X: gravita- 

tionally bound halos (solid curve); intracluster gas (dotted curve); luminous arcs 

(short-dashed curve); and halo relaxation (long-dashed curve). 

3) Bias factor B(a,Rda/Rb) = &/A& in the small wavelength limit, kp W m,,,, as a 

function of force strength CI, for various values of t&/&.: solid curve 0.95/0.05; 

short-dashed, 0.9fO.l; long-dashed, 0.8fO.2 and dashed-dotted curve, O-7/0.3. 

4) Schematic modification of the transfer function for adiabatic density perturbations, 

F(k), due to a repulsive (solid line) or attractive (dashed line) long-range force; 

q = !f - 1, where p is given by eq. (3.12) or (3.13). A fluctuation with k < kn 

(k > k,,) has never (always) been subject to the additional long-range force. 

5) Present linear power spectrum as a function of wavelength, for various values of 

a. The solid line represents the spectrum of the spatially flat CDM model with 

scale-invariant primordial fluctuations (Davis et al. 1985), our ‘reference model’. 

The short-dashed curve shows the power spectrum with an additional interaction 

of range X = 10 Mpc; short-long dashed curve, X = 1.3 Mpc; long-dashed curve, 

X = 100 kpc; and dashed-dotted curve, X = 10 kpc. 

6) Spatial two-point mass correlation function, t(v), for repulsive forces of various 

ranges, X. The curves have the same meaning (correspond to the same values of 

X) as in fig. 5; here, the dashed-dotted curve shows the power-law ((7) = (r/r,,)-‘.* 

with 7s = 5.6 h-‘Mpc (h=1/2). a) Force strength a = -0.5; b) Q = -0.3. 

7) Galaxy angular correlation function, w(0), for repulsive force of strength a = -0.3 

and the same values of the range X as in fig. 5, at the depth corresponding to the 
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magnitude limit of the APM survey. The data are from the APM (filled circles) and 

second Palomar Sky surveys. The APM intraplate data, which does not require in- 

terplate corrections, is shown separately by the u&led circles. The POSS-II data for 

the northern (fiIled squares) and southern (crosses) skys are also shown individually. 

8) Expected rms bulk velocity v,,,(r) f or various values of force strength, a, and range, 

X (curves are X-coded as in fig. 5), averaged with a Gaussian window function. The 

dashed-dotted curve (X = 10 kpc) coincides with the standard CDM model. We also 

in&de the fitted large-scale streaming velocity of 600 f 100 km/xc (Dressler et al. 

1987), and the smaller value of 570 & 60 km/set from the “Great Attractor” model 

(Lynden-Bell et al. 1988). 

9) Average large-scale streaming velocity u(r) defined with a top-hat selection function 

and additional (Gaussian) smoothing on scale 7, = 12 h-‘Mpc. Different curves 

represent different force ranges X ( as in fig. 5). The two data points indicate the bulk 

flow from the reconstructed velocity field (Bertschinger et al. 1990): 388*67 km/set 

and 327 f 82 km/see on scales 80 Mpc and 120 Mpc (with h = l/2). 

10) Cosmic Mach number for different parameters Q id ranges X (as in fig. 5). The 

two data points indicate the obserwtional estimates from spiral and elliptical galaxy 

samples (see text). 

11) Temperature auto-correlation function on angular scale 6 for various values of a and X 

(as in fig. 5). The shaded area indicates the region excluded by COBE measurements 

(Smoot et al. 1991), C(f?) < 1.0 - 10-s in the range 15’ < B 5 165”. 

12) The quadrupole moment of the CMBR anisotropy as a function of force strength a. 

Different curves correspond to different values of X (as in fig. 5). The shaded area 

represents the experimental limit from RELIKT (Strukov et al. 1987) and COBE 

(Smoot et al. 1991), C:‘2 < 3 . lo-’ at 95 % confidence level. 

30 



/ ’ i ! 
’ -1 

/ / /I 4 

z 
.bJ 

0 It 
d 

‘;; 

2 

x 

s 
4 

0 
4 



c- 
c- 

c- 
#CC 

.c 
#H 

___--- 
d. 

1 / ‘/’ i[ I I. 
, i’ 

//I 
j 

;,j ,:’ 
/’ 

.L’ I 

./I 
, 
I 

/’ , 
I 
, 
I 
I - 

: 

/ 

/ 
/ 

- 

s 

g 
4 

cd 

if= 

z 
0 
4 

‘;;‘ 

.2 

4 

5: 
4 

0 
4 

.+ 
N 4 Ln 

a - 



0 



I 
--I 

\ 
\ 

- 



I I $9’ // ‘/ 
1 J 

i’ 
I 

- ii 

1 

w 0 
I 

II 
I 

Ii 
a 

I 

I/J , I 
02 0 CQ 

I 

I 

’ ‘/ ‘/ /‘/ / I// “/ 

I -i 
/ 

F 
JI 

jy 
u3 
6 

ij 

~~ , ,‘, 
I’ll 

II 

jl a 
I’ r’ I 

J 

1 l-l 
O-2 0 02 

I 

m 

cu 

d 

0 

I I 
1 

I I V/ 

7 

I 

/5:, - 
, //:j’ 

/ 1:’ 

G-’ I 
- 

/ 
,. 0 
/ 

- /’ 
/i 

7 
.l II 

02 0 cl2 
I 

I I I I I I ,, I A /Jf /4’ + 

~ 7 
g 

I ,!’ / 6 /- P (i + 
II 

,! /f a 

f’: 

cv 0 CQ 

0 & 8or 

/ / I 

1 

m z; . 
z2 

Y3 
2 CQ .?I- 
OM 4 

0 

m 
- 
Ei 
r, 

Y4 
2 
02 

d- 

2 h 
0 



WIII I I IIll I IIIII c 

I- 
, I /’ , 

t- 
, 

1 .’ 

L- /. 
- /’ 

./ /’ 
1 ;i 

/’ 1: 

m 
d 
I 
II 
ts L 

,i i/? 
/’ I ,‘/ 

/’ 
t1 I I 

! I$ 
IV1 I I Ill1 I I I III1 I 

0 0 4 4 
0 4 . 

4 



i-till I I lllll I lllll I I- 

/P 
/ . . Y 

0 0 4 
0 4 
4 

( J 13 

- -ii L9 
z ,I r 
4 

% I 
“a tl 

0- 
4L 

m 



- 

c-3 
d 
I 
II 
a 

,I.,$ 0 
r-/ 0 -o-z/ 

Xg’ 0 l , / 

Y”/ 0,’ XI ’ 
%:I/ d x J/ XII , / 

_-. 
.’ 

0 

- x ‘I r q / 

Q) 
% 
“a 
z 
2 

z 2 4 4 

l 0 

0 

m 



I I 
I 

I I 

cl2 , 
d , 

, 
I 
I 

II :I 
8 ‘I 

: ’ 
I’ .I: 

l-e-i /I /, 
G’/ 

,+ / / 

$1 II ,I IJ 
I 

I 
I I I 

‘I I/ !I I 
If 

; I 

I I I- 
, ’ I I I 1 I I II I. 

ts ,I/ i i 
,’ / / , /’ 

; ; 
i’ I * 

3-l 

z - 
p3 

z - 
N 

z - 
d 

0 - 

- 



I 

- 

- 

I 

I 
i 

I 

u 

- 

1 

I I 

Lo 
6 

- + 
II 
u 

- 

I 

7-l 

0 

z m 

z 02’ 
ii 
ZJ 

Ok 
0 
T-4 

0 



10 

5 

2 

1 

.5 

.2 

.l 

I I I 1 I I= 

a = +0.5 
I x , 

10 20 30 50 70 100 

r [MPCI 

.2 - 

.1* 
10 20 30 50 70 10 

10 L I I 1 I I= 

5- 
a = +l.O rl 

.l - 

0 

10 20 30 50 70 100 

r LIMP4 i 



- --__ --A- 

10 
-12 ---_ --__ 

10 
-13 - I 

-. - 
I I . 

\ 

10 
-10 

10 
-11 

10 
-12 

10 
-13 

r 
-\ 
? - \ -\ _ 

F 
---+ r; 

---- 

--_ 
-. 

I >--- 

0 10 20 30 -0 10 20 30 

8 [degrees] 19 [degrees] 

=E 
J 

II 



. *- 

1’1’ I I’ IIIII I4 I I 
I I 

I : 
; 

I 
I I I ,:I -/ 

1 
I i ; ,I 

L\\\ I : /I ,I’ 
i ! ;’ / 1 

l- 

;r 
u3 co z- 

I I I 
0 0 0 0 
4 r-l T-i T-i 

0 


