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Abstract 

The single particle equations for the longitudinal motion in a synchrotron can be 
faithfully represented as a one-turn mapping of a particle’s phase space position relative 
to the synchronous particle. Applied t,o a distribution of particles, the mapping can be 
used to model the evolution of bunches to test beam manipulations or to extract the 
time dependence of quantities like the bunching factor, momentum spread, etc. which 
can be difficult to calculate. Such modellingrequires rather few representative particles, 
permitting numerical experimentation and exploratory design trials. By modifying the 
mapping each turn to introduce the collective effects of the distribut,icm, one can model 
such processes as phase feedback, space-charge effects, coupled bunch motion, etc. 
Calculations of this type offer quantitative performance predictions, aid diagnosis of 
existing accelerators, and contribute to the understanding of the underlying dynamics. 
This talk introduces the tools and some illustrations. 

Introduction 

The technique of turn-by-turn tracking of the transverse motion of representative beam par- 
ticles is commonly used to determine dynamic aperture, resonance widths, sensitivity to field 
and alignment errors, etc. for circular accelerators. Longitudinal motion is generally ignored 
or considered only as the cause of a periodic modulation of the momentum spread or momen- 
tum error. In proton synchrotrons transverse focusing produced by the quadrupole magnetic 
field may be 10s times the longitudinal focusing arising from the slope of the rf waveform 
so that the frequency of transverse oscillation may be - lO’/turn while the longitudinal 
oscillation frequency is - l0-3/turn. In such a circumstance the transverse and longitudinal 
degrees of freedom are practically decoupled and are almost always treated independently. 
Far more effort has been devoted to understanding the problems related to transverse motion, 
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and there are now several widely used codes for tracking. Nonetheless, there are processes 
like rf capture and transition crossing depending essentially on longitudinal dynamics which 
can be very important in determining accelerator efficiency. Furthermore, intricate rf manip- 
ulations to optimize longitudinal phase space properties of the beam for special applications 
have been becoming increasingly common, especially with the development of hadron collid- 
ers. 

Preparation of high brightness bunches for the Tevatron collider depends on rf gymnastics 
both to maximize the f, production and to prepare bunches for collision.[l],[2] Simulation 
of these manipulations by tracking appropriate distributions has been used to find opti- 
mum parameters. Usually single particle dynamics are appropriate for modelling the motion 
and often all nonlinearity except that of the rf potential can be ignored. In this case the 
calculations go quickly, and detailed optimization is possible by making many trials. 

Often, however, the collective effect of the distribution on the particle motion through 
feedback loops, wakefields, beam loading, etc. plays an essential role in the process to be 
modeled. Then the map for each particle must be modified to reflect its energy increment 
from the collectively produced field. Wh en this is so, the computing load may prohibit a 
large number of trials. However, if beam and system parameters can be chosen realistically, 
one can get an excellent indication of what to expect from a real accelerator. Such multi- 
particle simulations may be even more useful after a machine is built as one attempts to 
understand beam behavior by establishing a model of sufficient validity and completeness 
to reproduce the observations. A model in good accord with the known system parameters 
and beam observations is a powerful tool in developing a more complete and fundamental 
knowledge of the beam and its environment. The results of the simulation of particular 
systems can also be a useful guide in working out an analytical treatment of the phenomena. 

There are a few computer programs for longitudinal phase space tracking available to 
interested users; see for example refs. [3],[4], and [5]. For the ESME code there has been at 
least some use at several laboratories and some features have been introduced in response to 
the interests of a small community of users. The following introduction to the fundamentals 
and some applications is grounded in the author’s development of ESME but is intended to 
be general enough to be helpful to someone who will use another code or write a new one. 
A number of references are cited which give additional details in a form consistent with that 
of this presentation; no attempt has been made here to identify original sources. 

Fundamentals 

The single particle equations for the longitudinal motion in a synchrotron are naturally for- 
mulated as a pair of first order nonlinear difference equations directly from consideration 
of the physical system.[6] One equation gives the phase slip between a particle and a syn- 
chronous reference particle during the passage between rf gaps, and one gives the energy 
change at the gap:’ 

‘The derivation given in the reference is elementary but reasonably complete. Not included are terms 
important only when rf parameters change very quickly, i.e., by a significant amount per turn. The absence 
of an explicit betatron acceleration term is better explained in ref. [7]. 
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(Pi.72 = ZQi,n-1 + 2?rh(Si,, - 1) 

wi,, = ?5r!Aw,,,_, + e 
w.,, -WQo;,n t LL) - v(~.,7z)l w.p (1) 

The quantities appearing in eqs. 1 are understood as follows: 

i refers to a particle of interest. 

8 refers to the synchronous particle. 

n refers to the n-th turn ended by the n-th energy kick. 

h is the integer ratio of rf frequency to synchronous circulation frequency. 

w = hi? = hu/R 

4 is particle phase, i.e., rf phase when particle is at gap. 

Qi,n = 4ip - 4s,n 

wi,” = (a,, - &J/h,“, where the E’s are total energy. 

S+, = w~,,,/w;,,, is the phase slip per turn. 

These equations provide a map of the wp phase space onto itself. The Jacobian is identi- 
cally one, so the map is area conserving to all orders. Someone working with an analytical 
approach might regard them as a symplectic integration scheme for the Hamilton’s equations 
derived from a continuous Hamiltonian for the problem. However, essentially no approxima- 
tion is required to derive the difference equations beyond the two rather physical assumptions 
already mentioned, viz., impulsive energy increment and no significant change in parameters 
between steps. Note in this context that the iteration step need not be a full turn around 
a synchrotron; if some extreme case requires, the parameters can be updated several times 
per turn with partial turn maps. Therefore, one might equally well regard the differential 
equations and their associated Hamiltonian as providing a continuous approximation to an 
essentially discrete process. Certainly if the object is computer modeling, one has nothing 
to gain by numerical solution of Hamilton’s equations; the full dynamical possibilities are 
inherent in the difference equations in a form that is practically an algorithmic statement as 
it stands. 

For convenience in modeling it will be useful to rewrite the difference equations in coor- 
dinates E; = E, - E. and -T < 9; = pi/h 5 ?r, where E; is the total energy of particle i and 
Zp; is effectively’ the particle azimuth in the ring when the synchronous particle is at the gap 
(4 = 0) except that the particles circulate in the -29 direction. This angular variable is not 
entirely conventional, but it has some convenience. 

&,n = ~%,-I + 274.9i.n - 1) 

+I = q,,-, + eV(t9;,,) - eV(0) 

2 “Effectively” but not precisely; see ref. [6], pp 6-7. 

(2) 
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The language used here corresponds to a model in which there is one energy kick per turn. 
The proper generalization for those few cases where there is need for partial turn maps is to 
reduce the range of 29 correspondingly. These new variables are not canonically conjugate. 
However, the rms area of the distribution can be easily converted to units of eVs; this 
quantity is then conserved for a matched distribution. 

Either of the equations 1 or 2 are quite general. No assumption that E; - E. << E. has 
been made nor is there any assumption about V(d) other than [V(9+2*)-V(ti)]/V(ti) << 1 
for all 19, i.e., that 11(19) is nearly periodic with at least period 1; if it has higher periodicity, 
the potential is said to have harmonic number h > 1. If th e initial distribution as well as 
the potential has higher periodicity one can exploit the periodicity in the calculation and 
consider only one period of the azimuthal distribution. Even so, it is a good idea to retain 
the 9 variable with a range of 2~ for the whole azimuth; in any case where rf systems with 
different harmonic numbers are used it simplifies the definitions of relative phases and the 
synchronous phase for the composite potential. 

The difference equations eqs. 2 contain essentially all of the dynamical possibilities of 
the longitudinal motion, but in most applications the effects of the momentum dependence 
of velocity or path length above first order are negligible. Generally the higher order terms 
will have a distinctive role only near transition energy, where the first order term in the 
phase slip equation vanishes, or at a very low energy, where velocity is a strong function of 
energy. Eqs. 2 represent slightly different maps for each individual particle. By dropping 
terms above first order one can write a map which is the same for all particles; the only 
remaining nonlinearity is that of the rf potential, which is the fundamental concern in most 
simulations. The map 

fii,n = %-I + j$,_, 

G," = ei,,-1 + eV(&) - eV(0) 

is far simpler than eq. 2 and need be calculated only once per turn. The quantity 11 is the 
time dispersion 7;’ - 7~~. Using this map brings some interesting problems into the reach 
of hand calculator computation. When computer time is a consideration, it can be useful to 
employ this map during the checkout phase even in cases where some effect is expected from 
the higher order terms; when all the mechanics have been worked out one can subst,itute 
the more complete map for final runs. Besides cases at low energy or energy near transition 
the full map may be important in applications like rf stacking or displacement acceleration 
where the difference between particle energy and synchronous energy can be unusually large, 
making higher order terms significant even though the coefficients are small. 

RF Waveform 

The functional form of the rf waveform has not been specified. It is very likely to be a sinu- 
soid of course. By providing for a sum of sinusoids one automatically satisfies the periodicity 
and provides for multiple conventional rf systems or the fourier series representation of an 
arbitrary waveform. When something more complicated than a single sinusoid is employed, 
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the definition or determination of the synchronous phase may not be obvious. This compli- 
cation has been dealt with in ESME by defining all rf phases &,, relative to 9 = 0 at time 
t.,. Thus, 

K(O) = 1 Vkn si*(kfl., t $kn) 
k=l 

(4) 

and 

K(+;,) = c vkn si*[k(fli, t e.,) t $kn] 
k=l 

(5) 

so that B., is the amount by which the arbitrary waveform must be shifted to make 19., = 0. 
If the tracking code is to shift the rf phase to maintain synchronism between prescribed 
momentum and rf voltage programs, 6’,, is calculated by numerical solution of 

P., = ev(~,,)/C., <(k?J x (ET - E.n) > 0 , (6) 

where C,, is the length of the synchronous trajectory and where the second condition selects 
the stable fixed point according to whether the synchronous energy E,, is below or above 
the transition energy ET. This solution gives the amount by which the waveform must be 
translated to keep a bunch centered at -9 = 0 synchronized. This choice of independent 
quantities is typical, but one may just as well choose to have the voltage controlled to follow 
a prescribed phase program, or prescribe both voltage and phase, taking the synchronous 
radius as a result. It is certainly possible to take rf frequency as an independent quantity, 
but this is usually not convenient; the frequency is more often taken as a result. It is unlikely 
that an a priorifrequency program will preserve a constant synchronous orbit without radial 
feedback.s 

Feedback and Almost Independent Particle Motion 

The introduction of feedback to phase, frequency, or voltage based on bunch centroid, radial 
position, or shape oscillation respectively takes the calculation in principle from single par- 
ticle dynamics to collective motion. However, because only first or second moments of the 
distribution enter and they act by altering the map in the same way for all particles, very 
little additional calculation is required. Effects such as space charge or the various mani- 
festations of wakefields which depend on details of the distribution like its fourier spectrum 
and act differentially on the distribution require many more macroparticles to represent the 
beam adequately and more elaborate analysis to extract the relevant beam properties. Col- 
lective motion of the first sort is easily included in small-scale calculations; the second type 
of problem introduces considerable additional complexity which will be addressed in a later 
section. 

Fast feedback from mean bunch phase to the phase of the rf drive is the most funda- 
mental low-level feedback loop. The simplified map makes a good point of departure for 
understanding how it works and how it is implemented. Going from the finite difference 

3Radial feedback is not implemented in ESME, but the radial error history can be used a posteriori to 
improve a prescribed frequency pmgram. 
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equations eqs. 3 to the corresponding pair of differential equations and using just a linear 
approximation for the rf waveform, one may write 

dp 2?rhq 
dn = /3ZE/ 

Combining the first order equations one arrives at a second order equation for the phase for 
small oscillations 

$0” + v&5 = 0 , (8) 

where V. is the synchrotron tune 

This is a linear equation, so not only does it apply to each particle individually but also to 
the motion of the bunch centroid p, so long as all of the amplitudes are small. Adding to 
this equation a term proportional to -ip’ will lead to a damping of the oscillation: 

$5” + v,2(gp’ $ Ip) = p” - 2aip’ + “,21p = 0 , (10) 

where 9 is the feedback gain and dp/d n will be determined by differencing the measured 
centroid phase turn-by-turn. The solution of eq. 8 may be written as 

p(n) = &Fan co5 pn , (11) 

where 
pa = v.’ - a2 (12) 

The fastest damping occurs for p = 0 (critical damping) for which the gain is to be 

Although the eqs. 2 describe a nonlinear dynamical system, subtracting 2(lp, - G)/v. 
from the phases pi,,, each turn will damp the motion of the bunch centroid. A simulation of 
phase feedback can be made more realistic by evaluating dp/dn as a weighted average over 
several turns, the weights giving the high frequency behavior of the transfer function of the 
loop and the number of turns averaged giving the lower cutoff.[8] For any case other than 
small oscillations and infinite bandwidth feedback, one may expect that the optimum gain 
is not exactly gc. 
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Application to Bunch Coalescing 

Even in a conventional synchrotron acceleration cycle, there are processes which, though un- 
derstood in principle, are not amenable to quantitative calculation by analytical techniques. 
Examples include rf capture, transition crossing, and response to errors or noise in the rf. 
For these problems the single particle map plus, perhaps, feedback to the rf parameters can 
be used to get detailed results for a specific set of conditions so long as the effects of the beam 
current and space charge are not the important considerations. The process of combining 
several consecutive bunches into a single bunch at the same rf harmonic number will be used 
to illustrate several ideas in a single example. This is not exactly a standard operation, but 
such bunch coalescing is illustrative of the kind of rf gymnastics which are a routine part of 
preparing high intensity bunches for the Tevatron collider.[2] 

Initial Distribution 

For this particular example the exact manner in which the macroparticles are distributed to 
represent the initial bunches is not a major consideration. However, in some cases a realistic 
answer depends critically on starting from a realistic initial phase space distribution; usually 
that will mean a distribution matched to the initial Hamiltonian. A distribution function 
will be matched to the Hamiltonian if it is a function of it. The elliptical distribution[9] 
is a function of the Hamiltonian which is typical of proton bunches. It can be constructed 
for an arbitrary rf waveform by using the difference equations to trace the bunch boundary 
which is then filled by selecting random $ values and choosing a companion e from an elliptic 
distribution bounded by the upper and lower energy at that 19. The failure to use a matched 
distribution will result in fluctuation of the rms emittance. On the other hand, for illustrating 
the phase space structure of the particle motion it is often useful to dist,ribute macroparticles 
on parallel lines or on closed contours. There is only one really general way to achieve a 
matched distribution, namely to start from one for a simple case like no rf voltage and to 
introduce the rf and any other perturbations slowly so that the particle flow can adjust. This 
is the process of adiabatic capture. For what follows it will be appropriate to represent each 
of the initial bunches by an elliptical distribution determined by the initial rf parameters. 

The Coalescing Process 

Coalescing is achieved by changing from the initial harmonic number to a lower one at 
an intermediate stage and then back to the original. If there is sufficient time available 
and bunch momentum spread does not fall b 1 e ow the microwave instability threshold, it is 
possible to carry out the changes so that the coalesced bunch area is practically the sum of 
the areas of the initial bunches. The steps in such a quasi-adiabatic coalescing are illustrated 
by the phase space plots in figs. 1 - 5. Fig. 1 shows nine consecutive bunches of 0.3 eVs 
nearly filling 53 MHz (h=588) buckets produced by 10 kV. The accelerator parameters are 
those of the Fermilab Main Injector given in the table. 



Table: Main Injector Parameters 
mean radius 538.302 In 

YT 20.4 
energy for Tevatron injection 150. GeV 
rf harmonic number h 588 
maximum rf volts 4.0 MV 
harmonic number for coalescing 28 
maximum rf volts for coalescing 22.5 kV 
harmonic number for bucket shaping 56 
rf voltage for bucket shaping -4 kV 
typical longitudinal emittance (95%) 0.3 eVs 
typical protons per bunch 3.3 x 10’0 
coupling impedance Z,,/n 5.0 R 

The beam is debunched by lowering the 53 MHz voltage so that the adiabaticity parameter 
a = y% is constant at -0.45. The debunching is carried out with 250V of 2.5 MHz 
(h=28) and 125 V of 5.1 MHz (h=56) rf p resent. The effects of the low frequency systems 
are not apparent at the initial level of the 53 MHz system, but the 53 MHz voltage is slowly 
lowered so that the h=588 buckets eventually become full and then start to lose particles (fig. 
2). The h=28 voltage is chosen so that at this point the effective bucket is a highly perturbed 
h=28 bucket; the particles lost from the disappearing h=588 buckets find themselves on 
closed h=28 phase space trajectories just outside the h=588 stable areas.[lO] As the 53 MHz 
voltage is further reduced, the h=28 bucket takes on a more normal outline (fig. 3). However, 
the h=56 has been chosen to reduce the curvature of this bucket in the central portion which 
spans the original nine bunches, thereby providing a better match to the baton shape formed 
from the bunches of equal height. The next step is to raise the h=28 and h=56 voltages so 
that the coalesced distribution rotates in a mismatched bucket (fig. 4). In this step the h=56 
amplitude is chosen to make the synchrotron frequency nearly independent of amplitude for 
the amplitudes spanned by the bunch. The final step shown in fig. 5 is to re-introduce the 
h=588 voltage at a high level to match the rotated bunch when it reaches minimum width. 
The emittance dilution following this step could be reduced significantly by adding h=1176 
voltage to provide a bucket better matched to the rotated baton of charge, but no such rf 
system is planned for the Main Injector. Therefore, the effective emittance of the coalesced 
bunch will grow by filament&ion to nearly the area of the capturing bucket. This example 
has not been chosen to demonstrate the minimum possible dilution. Antiproton coalescing, 
for example, does not have this complication of shape mismatch because the initial bunches, 
being produced by adiabatic capture from a single long bunch in the Accumulator, have a 
bunch height sequence which matches the shape of an ordinary bucket. 
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In one respect this is not such a good example of the application of single particle dy- 
namics, because, with the beam current and longitudinal coupling impedance of the Main 
Ring, it is not possible to carry out the initial debunching to such low momentum spread. 
However, it was just this kind of idealized simulation that was used to demonstrate the con- 
cept and work out the basic parameters. In the next section the same process is considered 
with the inclusion of space charge and a broadband coupling impedance as an example of 
some techniques in multi-particle problems. 

Collective Effects in Bunch Coalescing 

Although the coalescing process described above did permit the preparation of bunches of 
> 1O1’ protons for the Tevatron collider, it has never produced the beam brightness or lack of 
satellite bunches shown in the single particle simulations. The observation of a lower limit on 

the attainable momentum spread indicates that the process may be reaching an instability 
threshold. The possibility that the limitation arises from single-bunch coherent longitudi- 
nal instability (microwave instability) was illustrated by simulation,[ll] but it appears that 
there are additional problems of beam loading and longer range coupling as well.[12],[13] 
These sources of coupling can also be included in a simulation,[l4] but it will be a sufficient 
introduction to consider simply a broadband impedance. 

Self Field and Longitudinal Impedance 

Because only the longitudinal coordinates will be considered, the force on individual particles 
resulting from the beam current distribution must be modeled in some way that averages 
over transverse coordinates. Fortunately, as will appear in the following, its effect is usually 
small in proton synchrotrons so that a simple approximation is adequate. There are cases 
like injection in high intensity machines where more precise treatment may be useful. Here, 
following the approach of Neil and Sessler,[lS] the beam is treated as a circular cylinder of 
charge with density independent of radius out to the fixed radius a of the cylinder but varying 
along the orbit. The beampipe is treated as a perfectly conducting cylinder of radius b. The 
electrostatic field is calculated in the beam rest frame and the result transformed to the lab 
frame to find the longitudinal Lorentz force on the beam particles.[l6] By integrating the 
force over a turn one finds an accelerating or decelerating voltage proportional to the beam 
current. The proportionality between the beam current and this voltage is an imaginary, 
frequency dependant impedance: 

-Kc z4 -= z , n WY2 
(14) 

where 2, = (6.~)~’ = 377R, the geometric factor g = 1 + 2log(b/a), and /3 and y are 
the Lorentz velocity and energy parameters. The impedance is capacitive in sign, but the 
frequency dependence is that of an inductance, being given by n-l, where n is the harmonic 
number relative to the circulation frequency. The result applies to other beampipe geometry 
with an appropriate effective ratio b/a. 
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Figure 1: Nine 0.3 eVs Main Injector bunches matched to 10 kV of 53 MHz (h=588) rf on 
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Having expressed the space-charge force via an impedance, one can easily combine it 
with the forces resulting from the interaction of the beam current with its surroundings. 
Consider the image of the beam current flowing in the beampipe. There is clearly a real 
surface resistance and an inductive term. This is the resistive wall term, which is most im- 
portant at low multiples of the circulation frequency. There may as well be several resonant 
contributions resulting from rf cavities, special devices like kickers and beam monitors, and 
miscellaneous discontinuities in beampipe size. Many of these impedances can be calculated 
from first principles and most can be measured on the bench. In the end there is generally 
some broadband residue which can be measured with the beam but can not be definitively 
identified with particular sources. To proceed more or less realistically without the complica- 
tion of the peculiarities of some particular accelerator, a broadband impedance will be used 
which is representative of the general frequency dependence of impedance in many machines, 
particularly in the high frequency region from the microwave cutoff of the beampipe down 
two or three octaves. The widely used model is a resonance at the microwave cutoff w,, with 
Q = 1 and a real value of 21,/n at resonance of a few ohms: 

Zll = 
Rsh 

1 + i(nn/w,, - ~+,/nfl) 

The value of Z,i/n at the resonant frequency w,, is &h/n,,. It is loosely speaking a measure of 
the smoothness of the beampipe and can be reduced to as little as one ohm by careful design. 
Because t,he Q is very low and the resonance is in the GHz range, this impedance represents 
the short range wakefield that couples primarily particles within the same rf bunch. The 
instability arising when this impedance exceeds a threshold 

(1‘3) 

is called microwave instability. Basically it is self-bunching of the beam by the voltage 
resulting from the image current flowing in 211. The threshold can be determined up to a form 
factor of order one by calculating the impedance at which any fourier component of the beam 
current can generate a bucket with height greater than the local Ap/p of the distribution. 
By linearizing the Vlasov equation for the evolution of a phasespace distribution with a small 
sinusoidal perturbation one can find the threshold and calculate the initial growth rate as 
a function of Zll/n.[17] However, if one needs to know the effect of the instability on a real 
process in which the instability develops beyond a small perturbation and where, like as not, 
parameters are changing on a time scale comparable to or faster than the growth time, there 
are no simple formulas. One can simulate the entire course of the process realistically, but 
the amount of computing time required may be a practical limitation. 

Binning, Statistics, and All That 

The particular harmonics of the beam circulation frequency present in the beam current 
spectrum depend on how the buckets are filled. However, for a typical cutoff frequency of 
1.7 GHz the decay time of the wakefield in the Q = 1 resonator is 7~ = 2Q/w z 0.2 ns. 
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Because this is usually much less than the bunch length it is only necessary to calculate for 
a single bunch, and it can’t make any difference how the ring is filled. The power in the 
high frequency spectrum will depend on the bunch shape; with the resonance covering many 
circulation harmonics it matters little exactly how the power is divided between them. These 
facts make it plausible that one can model the microwave instability problem realistically 
without including all circulation harmonics. If one takes all harmonics of the rf frequency 
one can represent the physical situation adequately.[lS] 

To calculate rr amplitudes and phases of the fourier decomposition of the beam current 
corresponding to a bunch, the azimuthal interval 2r/h is divided into 2n bins. The calcu- 
lation of the highest frequency component involves an integral like 11(G) sin nff d9 so that 
it is roughly a sum of differences of adjacent bin populations. A statistical argument for 
the number of macroparticles required for the tracking follows from the proposition that 
the error of the bin populations should be less than the systematic difference between bins. 
When a smooth distribution is binned into Nn samples, the difference between adjacent bins 
will be - O(N~-‘). The error for the i-th bin is O(nr*‘s ), where 7~; is the bin population. 
The bin population is O(N,/N n , w ) h ere NP is the number of macroparticles. Requiring the 
systematic difference to be greater than the bin error gives 

t 
=+ N, > N; (17) 

So, for example, for 32 harmonics one needs 2” bins and should track - 2’s Y 2.6 lo4 
macroparticles. These are numbers which are appropriate to the Main Injector coalescing 
example treated above. Because the tracking takes > 10-s s/particle-turn even on a fast 
computer and the debunching requires tens of thousands of turns, the simulation requires 
hours of computer time. 

Coalescing for Ibeam # 0 

The part of the bunch coalescing sequence which is critically dependent on the beam intensity 
and the longitudinal coupling impedance is the debunching of the high frequency bunches 
to low momentum spread. If the debunching proceeds to the threshold momentum spread 
and is carried out slowly so that the single particle motion is practically adiabatic, the 
minimum momentum spread attainable will be about the threshold momentum spread for 
the instability. To optimize coalescing when beam current is a limiting factor one will explore 
faster debunching and alternative schemes where the momentum compression is obtained by 
bunch rotation. 

For comparison with the previous result calculated without regard to the effect of the 
beam current, Main Injector coalescing is modeled with the design parameters of 3. 10” 
protons for the coalesced bunch and a broadband Z,l/n = 50. Figure 6 shows the debunched 
distribution when the effect of the proton charge is added to the sequence previously shown; 
it is to be compared with fig. 3. Figure 7 shows how well this can be captured in an h=588 
bucket after rotation. Other parameters need to be changed to fully optimize the coalescing, 
but the given result is already better than what is now possible in the Fermilab Main Ring. 
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Detailed optimization for this example is tedious because the computing time is large. A 
debunching scheme based on bunch rotation proceeds much faster and is therefore simpler 
to explore with a modeling approach. However, at this intensity, the voltage reduction 
debunching is better for the coupling impedance specified. 

Remarks 

The underlying intent~ion in the foregoing is to introduce basic tools for realistic modeling 
of the longitudinal phase-space behavior of beams in synchrotrons and storage rings in some 
detail. The process of coalescing several bunches into one was chosen more to illustrate 
some of the versatility of these tools than to exhibit a polished optimization. In the ten 
years or so that ESME has been available, it has been used for everything from quick trials 
of half-baked ideas to detailed simulation of the dynamics of complex extended processes. 
In the natural course of things, the first type of application may evolve by degrees into 
the second when the idea proves promising. Therefore, it is advantageous to employ these 
tools within an open-ended program design. Although a code can pick up a wide variety of 
features during years of development, the user should need to be aware only of those relevant 
to his immediate problem, and he should be able to introduce new features without overall 
reformulation. ESME has a combination of data-driven program flow and global storage for 
physically significant variables that has proven rather adaptable and extensible. The tools 
themselves should be minimally dependent on special features of the higher level code so 
that they can be easily deployed in more particular programs. In this context the “tools” are 
the basic equations, not ESME subroutines which embody them, because ESME achieves its 
flexibility partly through the superstructure of global variables which subroutines can exploit 
as needed. There is no software toolbox which contains separable modules for generation 
of distributions, mapping, calculation of beam current effects, plotting, etc. Perhaps the 
next person to write a general program in this area can make a start by designing it with a 
criterion for full independence of functions to the lowest practical level. 
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Figure 6: The debunching process at 0.36 s with beam current effects calculated for 3 . 1O’l 
protons. The distribution may be compared with the zero-current distribution in fig. 3. The 
high frequency bucket drawn is that corresponding to the initial 10 kV. 
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Figure 7: The distribution shown in fig. 6 after rotation in a linearized h=28 bucket. The 
h=588 contour indicates the reduced efficiency of the recapture compared with fig. 5. 
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