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Abstract 

We have used a lattice gauge theory calculation of the lS-1P splitting in 
the J/g system to obtain a determination of the strong coupling constant. 

Extrapolating our result to Mz yields cum(Mz) = 0.105 f 0.004. We review 
the details of this calculation and report on current efforts to clarify and reduce 
the corrections and uncertainties. 

INTRODUCTION 

An important task in understanding quan- 
tum chromodynamics (QCD) is the determi- 
nation of its coupling constant, a,. The Re- 
view of Particle Properties quotes values for 
cy,(Mz) G g*/4n in the range 0.10-0.14.1 
Most perturbative determinations of (Y, con- 
tain nonperturbative contaminations which 
become small only at high energies. On the 
other hand, high energy determinations yield 
a, at lower energies only imprecisely. Lattice 
gauge theory calculations provide a nonpertur- 
bative means of determining the strong C&u- 
pling constant from low energy quantities. 

A lattice determination of the strong cow 

pling constant consists of 1) the identification 
of a system for which systematic errors are 
small, 2) a calculation of the lattice spacing 
in physical units (which sets the scale of the 
running coupling constant), and 3) a determi- 
nation of a renormalized coupling constant. 

Because heavy-quark systems are nonrela- 
tivistic it is easier toanalyze and evaulate their 
systematic errors than those of light hadrons.2 
For these systems no extrapolation to light 

quark masses - an important source of uncer- 
tainty in the light hadron system - is nec- 

essary. In heavy quark systems, contrary to 
the light hadron system, errors arising from 
the omission of sea quarks (and also from the 

finiteness of the lattice spacing) may be sys- 
tematically analyzed and quantitatively esti- 
mated. Moreover, existing lattice calculations 
of the light hadron spectrum depend on the 
light quark masses in a way that is difficult to 
control or to analyze quantitatively. 

The lattice spacing in physical units may 
be provided by a comparison of a lattice cal- 
culation of any dimensionful quantity with its 
physical value. Many of these have been per- 

formed over the last 10 years: the mass of 
the proton may be the canonical example, but 
as discussed above it has drawbacks. Heavy- 
quark systems offer a better choice, the IP-1s 
spin-averaged splitting, which is independent 
of the (heavy) quark mass for a wide range of 
masses spanning charm and bottom. 

The determination of a renormalized cou- 
pling constant for a given lattice calculation 

may be obtained from a perturbative rela- 
tion between the bare lattice coupling and 
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the renormalized coupling constant using im- 

proved lattice perturbation theor> ‘3 as wa,s 
done in our initial paper.4 In ongoing work. 
we have checked and improved this estimate by 
relating the renormalized coupling (e.g. in the 
/MS scheme) to short-distance lattice quanti- 
ties, which are easy to calculate precisely in 
Monte Carlo simulations. It remains to be 
shown rigorously the extent to which such cow 
plings are identical with continuum renormal- 
ized couplings. 

Ail existing determinations of o,, includ- 
ing ours, contain corrections and uncertainties 
from nonperturbative effects which are esti- 

mated phenomenological1y.I For example: 

Analyses of deep inelastic scattering 
must cope with higher-twist effects. 

The jet and hadronic event shape analy- 
ses from e+e- annihilation rely on model 
caiculations of hadronization. 

In T decays nonperturbative corrections 
to R, are estimated using QCD sum 
rules. 

In the case of our calculation. 111~2 corwctio~~ 

which is currently difficult to incorporate (Ii- 
rectiy from first principles is the effect of sea 
quarks. This shortcoming is ten~~~wcw~ and 
will be removed over the next few years \vith 
the improvement of algorithms and computers. 
yielding an entirely first principles determina- 
tion. 

An important aspect is to determine ill 
what energy regime a renormalized coupling 
runs as predicted by perturbntive asymptot,ic 
freedom. Ref. 5 proposes a progra,m to ca,rry 
out this search using lattice gauge theory. The 
lattice calculations are dimensionless. so once 
the perturbative regime has Iheen ittcutificd, 
the scale must be set in GeV. as discussed 
above. Once the effects of sea quarks have 
been t,reated exactly, a coupling of this lype 

wiil have been determined with no perturba- 
tive or non-perturbative uncertainty. There 
will still be uncertainties arising from finite 
statistics in the Monte Carlo and from extrap- 
olations to zero lattice spacing. 

The coupling determined from lattice 
gauge theory can be related to more famil- 
iar ones. such as the 114s coupling, by per- 
turbation theory. Thus one can eliminate one 
in favor of the other. Since perturbative ex- 
pansions in :\fS a,lways have some error as- 
sociated with the truncation of perturbation 
theory, it makes more sense to eliminate CX~ 
form those expansions and use the coupling 
with the smallest uncertainty. 

DETERMINATION OF THE 
LATTICE SPACING .~ 

The lattice calculation yields a (dimension- 
less) mass or mass splitting crtn. The lattice 
spacing u is determined by comparing am with 
the experimentally measured value for m. It 
is desiarable to use a quantity in the char- 
monium spectrum that is independent of the 
quark mass m, and insensitive to systematic 
C1L’L’O1‘S. The spin averaged splitting between 
the IP and IS states is known to be quite in- 

dependent 01‘ the quark mass. Ibecause it is so 
similar in the 1:’ and T systems. Since it is a 
spin averaged quantity. it is also expected to 
be insensitive to the (3((r) finite lattice spacing 
errors. which are dominated by a quark-gluon 
0. B interaction. 

The details of the lattice calculation are 
described elsewhere.’ 4 ’ The 0((l) corrected 
Wilsotl actioll for quarks wa,s used.’ We used 
:3 different la,tticrs (12” x 24. 1G” x 32, ‘24’) at 
different couplings ($ G 6/g; = 5.7,5.9,6.1), 
such that the spatial volumes are similar. The 
lattice spacing \.aries from l.lie coarsest lattice 
t,o the finest I,!; a, factor of two. This allowed 

us to study residual lattice spacing errors, ex- 
pected to be 0(Cl”). 
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Figure 1. The wave function of the J/e meson 

Finite volume errors were estimated using 
Coulomb gauge wave functions, as described 
in Ref. 4. 6. Figure 1 shows as an example the 
wave function of the J/$ meson calculated on 
the 244, ,!3 = 6.1 lattice. 

To obtain the lattice spacing at each WIIIC 
of p, we calculated the difference of the spin 
averaged mass of the 1s states (the J/i 
and the a) and the mass of the recently 

discovered ’ spin singlet 1P state (the /rc) 

in lattice units, and then compared it with 
the experimentally measured splitting, Al*,. - 

(~MJ,$ + M,,,)/4 = 453.6 3~ 0.4 MeV. 
In Ref. 4 we argued that only negligible er- 

rors arose from the uncertainties in the values 

used for the quark mass and the coeficicnt c 
of the 0(a) correction. In the last year we 
have checked this by direct calculation. Our 
new results are displayed in Figure 2. where 
the lP-1s splitting is shown as a function of 
the mass parameter (x) for \\‘ilson fwmions 

with (c = 1.4) and without (c = 0) the C)(CL) 
improvement term on the lG3 x 32 lattice. As 
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Figure 2. The IP-IS splitting vs. K on the 16s x 32 
lattice. The circles are for c = 1.4, the squares are 
for c = 0. 

expected. the quark mass dependence of the 
IP-IS splitting is very small. Spin splittings, 

such as the J/$ - rlc splitting which we have 
a.lso investigated are, on t.he other hand, very 
sensitive to the tuning of the quark mass and 
of the improvement term. This is shown in 
Figure 3. 

F’ ~guw ‘2 already demonstrates that the 
spin averaged IP-1S splitting does not depend 
on the 0((l) errors of the Wilson quark action, 
which a,nywa,y have Ibeen removed by adding 
the improvement term. To test for the size 
of the remaining higlier order lattice spacing 
errors. the calculation was performed at three 
lattice spacings. 
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Figure 3. The J/y!-qc splitting vs. ti on the 163 x 32 
lattice. The circles are for c = 1.4, the squares are 
for C = 0. 

DETERMINATION OF THE RENORM- 
ALIZED COUPLING CONSTANT 

In Ref. 4 we obtained an estimate of the 
:WS coupling on each lattice with the formula 

1 
= -L $0.025 

g&c:) & 
(1) 

where g& = g~/(Trll~).!~ Replacing the per- 
turbative formula for (TrUp) with the non- 
perturbative value for the plaquette yields a 
mean field improved relation between the m 
and bare lattice coupling consta,nts which in- 
corporates a Monte Carlo estimate of some of 
the higher order effects relating renormalizetl 
coupling constants with the bare lattice cou- 
pling constant. The (non-perturbative) values 
for (TrUp) are 0.549, 0.5S2, and 0.1305 at 3 = 
5.7, 5.9, and 6.1, respectively. 

Using Eq. (l), the lattice spacings calcu- 

lated as discussed in the previous section, and 

the parameterization for o, of the Particle 

Data Group, we extract values for A& for 
each lattice spacing. In Figure 4 the results 

are plotted versus a’. Within the statistical 
uncertainties there is only a small dependence 
on the lattice spacing. 

The extent to which Eq. (1) correctly es- 
timates the higher order corrections has since 
been tested by comparing Monte Carlo results 
for several short distance quantities with per- 
turbative predictions using the improved cou- 
pling constant of Eq. (l), following Ref. 3. The 
conclusion is that Eq. (1) correctly gives the 
bulk of the corrections, but that the Monte 
Carlo results are typically a few per cent 
higher than the perturbative predictions. For 
example. one can use the plaquette expec- 
tation value to define the coupling constant 
g$ = -3 In (Z’rLlp) and relate gs to the m 
coupling perturbatively by: 

1 1 

g&s(:) = 3 
- 0.040 (2) 

This procedure raises the value of a,(5 GeV) 
a few per cent over that obtained from Eq. (1). 

RESULTS 

The dominant source of uncertainty in our 
final result arises from the conversion from the 

zero light quark running coupling constant of 
the lattice calculation to the four quark run- 

ning coupling of the real world. This effect 
has not yet Ibeen included from first princi- 
ples. For t,he masses of light hadrons, there 
is no way of estimating this correction even 
pl~enomenologically. For a nonrelativistic sys- 
tem. the dominant effects of the omision of 
sea quarks we expected to lie in their effect 
on the static potential. We used this effect as 
an estimate of the corrections and uncertainty 
arising from this source. The procedure used 
t,o obtain this correction and systematic error 
estimate is described in detail in Ref. 4. The 
resulting correction is Ag-’ = -0.110*0.030. 



FUTURE PROSPECTS 

Over the next few years. Monte Carlo 

simulations directly including the effects of 
sea quarks will eliminate the uncertainty that 
currently dominates the total error. They 

will leave residual errors of only a few % in 

a,(5 GeV), a level of uncertainty far below 
what is currently obtainable with conventional 
determinations. 

.4s lattice and perturbative determinations 

of the strong coupling constant improve, it will 

eventually become necessary to replace the 
MS coupling constant with a standard of com- 

parison defined from some physical process. 
This will insure that uncertainties such as 
those associated with the convergence of per- 

turbation theory, which are intrinsic to only 
one regulator, not be propagated to all deter- 
minations. The process used for the standard 
of comparison should be one which is easy to 
calculate in all regulators. The heavy quark 
potential at short distances is one possible can- 
didate. 
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Figure 4. Ag(5GeV) as a function of a’. 

The final result quoted in Reef. 4 is 

q&5 GeV) = 0.174 i 0.012. (3) 

We do not expect the further investigations 
discussed in this talk to change this result sig- 
nificantly. This result corresponds to A$ = 
160”‘,3 MeV, using the parnmeterization of 
the Particle Data Group. Extrapolating 1.0 
the mass of the 2, we obtain c~m(~lfs) = 

0.105 zlz 0.004. 

This is about 20 below the combined re- 
sults from LEP analyses of event shapes: 
cy(M~) = 0.120 i 0.006, using O(a:) pertur- 
bation theory.” 

.4 similar calculation to ours has been per- 
formed for both the ,ti~ and T systems us- 
ing t,he nonrelativistic formulation of lattice 
fermions.” For the T system, the systematic 
errors and corrections are quite different from 

the ones reported here. The results are com- 

patible. 
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