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ABSTRACT 

This tall; reviewed the theory of effect,ive strings, with particular emphasis on the manner 
in which Lorentz invariance is represented. The quantum properties of an example of an 
effective string are derived from the underlying field theory. A comparison is made with 
what one would expect if one assumed that quantum effective strings were governed by 
fundamental string actions such as the Nambu-Got,o or the Polyaltov xtions. It is shown 
that the requirements on dimensions for consistent quaMizations of fundamental strings 
imply no contradict,ious for cffect,ive st,rings. 
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There are several contexts when the physics of many particle systems, at some length 
scale or for sOme range of parameters, is simplest understood in terms of effective stringlike 
excitations. In some of these cases, one has a map from an underlying field theory to stringlike 
variables, and one can derive properties of the resulting ‘string theory’ from the field theory. 
This kind of ‘explicit’ effective string is the main subject of this review, which will follow for 
the most part the presentation of [l]. .4s is well known, fundamental strings have critical 
dimensions. One way of understanding these special dimensions is to realize that, unless 
additional degrees of freedom a,re incorporated, quantum fundamental strings, described 
by either the Polyakov or the Nambu-Goto actions. are only Lorent,z invariant in these 
dimensions. The motivat,ion for [l], which calculated the induced Lorentz transformations in 
a theory of effective strings from the underlying field theory, was to figure out how effective 
strings evade the problem of Lorentz non-invariance. 

The resolution we shall find of this apparent paradox is very simple: Lorentz transfor- 
mations of the effective string have a geometric universal term of dimension -1 that leads to 
a mixing between the dimension 2 term in the action t,hat clescribes long distance physics on 
the string worldsheet,. and Ann irrelevant dimension 4 term that does not affect long distance 
physics. The key to this structure is the fact that effective strings have a length scale-they 
are t,hick. Thus one has st,ringlike iufrared loga,rithmic divergences in correlations, just as 
in fundamental strings, but the fact t,hat there is a lengt,h scale alters ultraviolet proper- 
ties. The short distance operator product algebra used to compute the conformal anomaly 
(which is at the heart of the Lore& non-invariance of fundamental strings) is irrelevant for 
the Lorentz invariance of effective strings. 

The problem of the cluantization of fundamental strings in dimeusions other than their 
critical dimensions, or of effective strings wibh conformal invariance (if such strings exist), 
is not addressed here. For a suggestion, see [2], and for further study of this suggestion, see 

[31. 
The rest of the t,alk is as follows. .4fter listing some theories wit,11 explicit stringlike 

variables, an example in 2+1 dimensions is discussed in detail. This system has been well 
studied in the literature, e.g., [4,5.6,7]. It is shown how t,he quantization of the underlying 
field theory induces one in dhe effective string theory. In part,icular. the induced Lorentz 
lransformations are esplicit.ly derived. Comparisons wit,h funda,mental st,rings are made, 
including a reminder of the comparison made in the classic paper by Nielsen and Olesen[8]. 
Some ‘implicit’ effective strings are menbioned for contrast at the end. 

An example of an explicit string is a domain ‘string’ in 2+ 1 dimensions, in an Ising 
model, separating regions on a plane where spins point up from regions where the spins 
point down. In each region, t,he order parameter, the magnetization, has a, definite sign, 
while on the string the magnetization goes to zero. ;\nother exa,mple is a flux tube in 3+1 
dimensions, e.g. a Nielsen-Olesen string in the .-\belia,n Higgs model[8] Physical flux tubes 
include type II superconductors and cosmic strings. The position of the string is specified by 
where the order paramet,er goes to zero (the magnetization for the Ising case, the expectation 
value of the Higgs field for the gauge case). Vortex rings, for example in hydrodynamics, 
can also be described as a string theory, sweeping out, a two dimensional world sheet. The 
antisymmetric tensor coupling in the string world sheet action is related to t,he vorticity[9]. 
Some of these strings have externally preferred directions (a flux t,ube in a superconductor 
has a,n external magnetic field) or are self avoiding. 
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For explicit effect,ive strings, as will be shown in detail, it is possible to rewrite a functional 
integral s D4 eis about a st,ringlike background in terms of modes (f) that correspond to 
fluctuations of the string (referred to as string configurations in t,he following) and other 
modes (u) that are separa,ted from the string configurations by a mass gap. These modes 
excite the internal structure of the effective string. They may be integrated out for the 
purposes of studying the long distance properties of the effective string. Thus one has 

/D+e’S’“‘l 
about a string solution 

= /DfocL ,is(fd = /Df ei.%R(f) 

So an effective string appears a$ a quantized string t,heory, a sum over different string con- 
figurations weighted by some effective string action &.E. 

We will be interested in comparing .Seff with natural geometric actions that one would 
consider for structureless ‘fundamental’ string theories, e.g., the Nambu-Goto action, which 
is just the area in spacetime of the string worldsheet, S - J” - det 1?,,,7c’&,Xi An early 
comparison for a string in t,he Abelian Higgs model is [S], more recent comparisons include 
the 1988 TASI lectures[lO] which focuses on cosmic strings. In the long wavelength limit 
for the effective string, nnd for the structureless string in light cone gauge, the action is 
proportional to (+f’)’ where the f’ are the t,ransvcrse coordinates of the string in spacetime. 
(That is, i = 1,. D - 2, fD-’ hes along the string and fD is time.) In addition an explicit 
effective string has a scale, a width, m -l. Its field theory is nonrenormalizable. There are 
corrections to the purely geometric action which depend upon the short distance physics of 
the underlying field theory: 

S- J (a,‘f’Y + b[(~J’)2]2 t 

Here a - ~n-l, i.e. the expansion is a long wavelength expansion. 
One way to quantize the Nambu-Goto string is to lise the Polyakov action. whose classical 

equations of motion a,gree with those of Nambu-Got,o. The Polgakov act,ion has a larger 
invariance, the freedom of Weyl resealings of t,he intrinsic metric. The conformal anomaly 
implies that this classica, gauge invariance is not a symmetry of the quantum theory. In 
conformal gauge, this anomaly means one needs eit,her D = 26 or the Weyl degree of freedom 
does not decouple. 

Another approach to t,he Nambu-Goto string is to attempt, qua,ntization in light cone 
gauge. There one finds that unless D = 26, Lorentz invariance is lost (t,he anomaly in the 
Lorentz algebra vanishes for D = 2,3 but there are st,ill problems with interactions). There 
is no known consistent quantization of Nambu-Goto strings in any dimension between 3 and 
25, which is one of the reasons for interest in how effective strings evade the Nambu-Goto 
string‘s problems. 

One procedure for studying effective strings is to take .Se~ and write the terms relevant 
for long distance physics in geometric form. Quantizing the resulting geomet,ric classical 
action results in the usual Nambu-Goto string. However, s Df eiScA(f): induced from the 
underlying field theory. a,lready defines a quantum string theory, and it is the properties 
of this theory which will be discussed in the following. We shall see that there is some 
universal stringlike behavior even though conformal invariance. a usual cha,ract,eristic of 



fundamental strings, does not appear. The steps involved in going from a theory with a 
stringlike solution to the equations of motion to an effective string action are: (1) to look 
at fluctuations around the string background; (2) to introduce a string coordinate, integrate 
out the massive excitations (possible since there is a mass gap between internal excitations 
and the zero mass excitations which arise due to broken translational symmetry); and then 
(3) to use the field theory quantization to find the string quantization (e.g., the Lorentz 
transformations). Another possible route to writing an effective string theory is to assume 
a string solution and expand in t,he width of the string[Il]. 

The specific example in the following is a domain st,ring in 2 + 1 dimensions. The 
Lagrangian is 

L = ; 
[ 
a,.$wc$ - X(c)2 - $)2 ( 1 

the metric lI;j has signature + - -) and the coordinates are z” s (t, y, z) E (y“, z). This 
is an Ising-ferromagnetlikc syst,em. Some of the classic references for the string description 
of this theory (called t,he ‘drumhead model’ in some contexts) are [4,5,6,7] and references 
therein. This example is used here because it has been so thoroughly studied t.hat many of 
the calculations can be done explicitly. 

There are two minima of t,he potential, $I = !cm/fi. The equation of motion is 

824 +2x(42 - $3 = 0 

which admits a solution interpolating between the two minima. Choosing this interpolation 
to take place along the 2 direction, the solution can be written as 

&l(z) E 2 tanh mz. 

This describes a domain string at z = 0. Other solutions with the same boundary conditions 
exist, corresponding to multiple string configurations, but will not be considered. It should 
be kept in mind that a long straight string is unstable: as will be seen, its motion is described 
by two dimensional massless bosonic fields, which have an infrared logarithmic divergence 
in their correlators. To define things carefully appropriate boundary conditions, or a small 
mass term, should be included in the discussion. 

The field theory in this background is 

Q&l + i, = L(h) - i(O + n(z))i + o(p) 

where 0 = 3: - 8; and R = -(a, - 2&&(z))(& +2&$+1(z)) The explicit form of &.I was 
used to rewrite L. The spectrum a,nd eigenfunctions of the quadratic fluctuation operators 
around t,his backg~owld are known. For 0 the eigenfunctions are plane waves in (t, y): 
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eigenvalue eigenfunction 

0 $0 = $$ech2(m2) s g&(z), 

* * * gap 

372 $!q= 
d- 

$secli(mz) tanh(m~), 

k2+-4m2 *k= 
fiexp(iki) 

\/A? + 5k2m,2 + Imf [ 
3 tanh*(m,z) - g tanh(mz) - $ - 1 1 

- co<k<cc 

These modes have the following physical significance: 
(a) The zero mode &, cc a,@,, is the ~alnbu.Golclstone boson corresponding to the trans- 

lation invariance b~OliCl1 by the string, &l(Z + 13) = &l(Z) + Gm3/3&(2) + 

(b) The mode with mass v&n is also localized on the string and is referred to as the kink 
‘excitation’ in the literature. It corresponds to a squeezing of the string: Q,.(z(l+/3)) = 
&l(z) + ,~z&&(z). For this specific case, the normalized overlap of --d&/dz and $1 

is 7rfi/Jm = 0.978. 
(c) A continuum starting at mass 2111, with 6 taking arbitrary real values. These ex- 

tended modes are the counterparts of the spectrum obtained when expanding about a 
homogeneous background dcl(~) = +m/&. 

Naively in quantizing this system one would assume t,hat fluct,uations < around the 
background are small. This is not true of the zero mode. which describes a fluctuation with 
no damping. One could have put rile domain string anywhere. To quantize this system 
correctly one treats the zero mode exactly by introducing an (implicit) collective coordinate. 
.4s a result of introducing t,he collective coordinate the position of the string f(t, y) will be 
introduced into the classical solution, &(z) -+ &(z - f(t. y)), All f(t: y) will Ix integrated 

over, and the zero mode in i will be projected out. 
The introduction of collect,ive coordinates is done by analogy with Fadeev-Popov ghosts. 

Collective coordinates for sohtons are due to [12], the method a,pplied to implicit collective 
coordinates is due to [13.14]. A pedagogical treatment of the general idea can be found in 
[IS]. Use the identity 

J Df(t, Y) M!)]$l = 1 
inside the functional integral for 4: s D4 e is(Q) For the case here choose y(f) = s dZ&&(z- 

f(t, g))$(z) In the functional integral, S(g(f)) projects out the zero mode, i + < and in- 
troduces an integral over the position of the string f(t, y) imo the measure. 

The explicit form of &r describes one kink, so it is being assmlred that there are no 
overhangs, that the string is only at one 2 position. This means multikink solutions are 
neglected. These are down by e-“lR m the functional integral, where R is the length of the 



string, when the kinks are widely separated. The Jacobian, 

I@=/ dz&&,l(z - f(t, y))&@(z) = A(<) 

is independent of f(t, z/). It can be set to one using dimensional regularization[4,7] 
To introduce the collective coordinate f(t, y) into the rest of the action write 

4(hy,z) = 4Jc1(t - f(hY)) +E(t,Y,r - f(hY)), 

and plug in to the functional integral to get 

2 = J WC Y, ~)Df(t, Y) eis(4C1+o A(<) + multistring configurations 

All the f dependence is in the action S only, not in A. The measure for f is ultralocal, 
depending only on the value of f at a given point, not, upon derivatives of f The measure 
for < is that implied by its decomposition in berms of eigemnodes of R; 

S(t, y, 3 + a) = q(t, y) $l(Z + a) + J dX- Uk(L Y) !bk(f + a) 

and the coefficient of @a has been set t,o zero by t,he delta function in the functional integral. 
The integral over k is schematic, it is not necessary to be precise since loop effects will not 
be considered. 

Substituting, scaling out ITL,X and making all the f dependence explicit, the action 
becomes 

s = -y J 1 d3z 4:,’ - $tfahtf [& + t’] 2 - ;< (-a,,w - ‘i) < 

+ 2&,1<3 + it4 + a,,,@Y f E’ 
> 

The operator fi has no zero modes and primes denote 8:. This action describes the two 
dimensional field f (t. y) interacting wit,h the massive bhree dimensional field <(f: y, z), cor- 
responding to the rest of the degrees of freedom in this background. This procedure also is 
the One used for studying field theories in soliton backgrounds. 

Here the goal is to consider t,he effective field theory of the domain st,ring wit,h position 
at 

x2 = f (t, y), A-’ = y, x0 = t. 

As a two dimensional field theory this is a string (in a certain gauge) interact,ing with massive 
fields ak(t, y). To get the theory of the string alone, eliminate the other degrees of freedom, 
<, by using the equations of motion. (This is leading order in k and corresponds to a saddle 
point expansion for the heavy field < in the functional integral): 

E = -i=r’o;,(af)2 + k-1 [a:(af j2 - Gm,,fi-‘g(af)q i2-‘q‘$,(af )* 

+ H#l~*a~,,a~(af)2 + “’ 

This is a long wavelengt,h expansion (a N 1n-l ). Since 6 has no zero mode it, is invertible. 



The action for one domain string, with the massive fields integrated out is then 

S(f) = - dtdy J [ $1 - ;(af )? - ;((af )Y - @f )Y + ‘. .) 

+o(af)20(af)2 f”’ 1 
1 m 

- = - 2no’ x J dz(@:1)2, b = 2 J dz(z4;,)2. 

As f is a Nambu-Goldstone boson, coming from the breaking of translation invariance, only 
derivatives of it appear. The first three terms in the derivative expansion (including the 
constant) come from the kinetic terms in the original action They are independent of the 
details of the potential except for the overall factor of a’. The top line in S (as was shown 

by [5]) is the Nambu-Goto a,ction for the string S,~-G = dm = ,/=T. The 

induced metric on the string world sheet h,,, is h ax’ as. _ 
I’” = qF* - qlv - a,f&f. The second 

line is partially the intrinsic curvature. but also has a cont,ribut,ion that is not in any obvious 
way geometrical. Since t,he coefficient of this term is not, universal, t,his is not surprising. This 
expansion is up to O(@, fi., boundary terms). To include higher order f2 effects, one needs 
to include loop effects in the underlying field theory and then find the new solution to the 
equations of motion and expand around it. If regularization schemes other than dimensional 
regularization are used for t,he Jacobian A, it may also contribute at order tl. 

The quantization of the underlying field theory induces a quantization of the string 
theory. For instance, to find the Lorentz transformations in the t,heory, start with the 
transformations in the 4 field theory. This example is worked out in detail in [l]. The 
canonical Lorentz generators are M,., c s dyd: Ijurs, - jss~,.] , where j,., = -/I,.~,!.? + &@,cP 
are the translation currents. Upon quantization, M,, becomes an operator: in t.he usual way 
P+ = &#J = -d/f5cj where 

[P+(y; z), f#J(y', z')]e,t. = -4(y - y')d(z - 2') 

This induces a quantization of t,he string coordinate, [Pf(y), f(y’)]e.t. = -i6(y- y’). One can 
rewrite P4 using the chain rule (using t,he components of [, the e.k, and (g]!~) = s dtg(z)h(z)): 

P+ = -I --#&(~ - f(t>Yi) 
A(&) 

&,(z - f(~>Y)FQ(+w4 + $.(- _ f(t 

A(i) 
I” ? y)) 1 4 6Ui 

Ordering ambiguities will cha,nge the t,ransformation in subleading order in Tr. These will 
not introduce anomalies because it is known that it is possible to regulate the underlying @4 
theory and keep Loremz invariance. So in terms of the field theory for f and the components 



of <, the Lorentz transformations become 

WOy,fl = j(qrf + Y3Of) 

[MOy,El = i(%C + z/a00 

[M,,,f] = i[ - Yp + ft&f + ~nj(oIzaz/3) - ~(Ol~l~)] 

[Mp*, Uj] = i [a,,U,(~~Z~k) - i3pUiUk (“lz’,~‘$‘“’ 

- 8pf 
( 

(j[ZlO) + (jIZl3*lli)CLl; -a;ur’“‘i~~~~~~‘i%“)) + f?lpClj] 

Again it is possible to get rid of [ by substituting its derivative expansion (good for low 
energies) in terms of f. Since < scales as a2, t,he first terms depending on the massive modes 
< in the Lorentz t,ransformations come in at order ~3~. In the xtion dependence upon < 
enters first at order 8. The universal (independent, of the potential) parts of the Lagrangian 
for a theory with canonical kinetic term are 

& [l - $fJ2 - @] 

and the corresponding universal parts of the L,orentz transformation which are symmetries 
of this up to O(@) are 

W,,z,fl = i[-Y,, + fa,‘f] pfo,, fl = i(ta,f + Y3Of i 

One can see that to this order the Lorentz generators form a reprcsentat~ion of the Lorentz 
algebra. The irrelevant krm in the action proport,ional to (8f )4 gives an indication that S is 
proportional to area (the preceding lower order term is the action for a free scalar field). Since 
the Lorentz transformations begin with a universal dimension -1 term, VJ,, (for a standxd 
kinetic term for t,he underlying field theory), there are cancellations between renormalizable 
and nonrenormalizable terms in Seff under the symmetry group. The nonrenormalizable 
terms reflect dependence upon t,he short dist,ance behavior of the underlying field t,heory. 
These symmetries are up to order 8 G, t2’ and boundary terms. One can also check explicitly 
the invariance of the measure to this order. 

The nonlinear transformations for the field f are appropriat,e for a Nambu-Goldstone 
boson. One can turn the logic around and say that since the string breaks translation 
invariance, the action for it,s Nambu-Goldstone bosons is determined by the nonlinear trans- 
formations under the broken symmetry. Using the \~‘oll<ov-Akulov formalism, [16] did this 
for the super Nielsen-Olesen vortex. 

It is possible to compare this to the fundamental string in the light cone gauge, where 
one imposes t,he conformal invariance constraints T++ = T-- = (8,X + 2&Y)’ = 0 on 
the Polyakov string in conformal gauge. One chooses .Ti+ = CC+ + 1>+7 and then uses the 
constraint on T** t.0 solve for S- in terms of 9. LVith this choice the complete action is 
s = Jp(a/J2)*, which is rcnormalizable. However, t,hc conformal anomaly for dimension 
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D # 26 means that the constraints cannot be imposed, i.e., solving for some of the degrees 
of freedom using the constraints is inconsistent. One way this shows up is that the Lorentz 
transformations do not close in dimensions larger than 3. In 3 dimensions, there is only one 
nonlinear Lorentz generator a,nd there is no problem with the closure of the algebra-one 
has to go to the interacting string to see problems. 

To compare directly to the induced string theory in light cone gauge, one would need 
to quantize the 4” theory in light cone gauge. Quamization in light cone gauge is rather 
difficult to do for interacting (non-integrable) scalar field theories. The gauge implied by the 
standard quantization of the underlying d4 field theory is not light cone, as one can check 
explicitly. Another comparison of light cone gauge fundamental and effective strings was 
made by Olesen[l7]. He put unusual boundary conditions on Nambu-Goto strings of length 
R and showed that the Lorentz anomaly was proportional to d/R*, which disappears as R 
gets large. 

The effective strings approximate structureless strings for length scales > m-1, Besides 
the long wavelength limit. one can make another comparison with structureless strings, as 
Nielsen and Olesen did in their original paper on flux tubes in the Abelian Higgs model[S]. 
The solution &l(m,, fi. ;) depends on the parameters m, X of the potential. They asked 
the question: is it possible to tune X so that fluctuations on t,he scale m-r don’t excite 
the string width? (They were looking for structureless strings in D # 26.) The energy of 
fluctuations associated with t,he field f to leading order is S - 5 J(af)* where the tension 

cl’ - [L2], scales as length squared. So for large o’ fluctuations have low energy, and for 
small a’ fluctuations have large energy. Asking t,he energy of fluctuations t,o be too small 
to excite the internal structure of the string means v’?? > m-r In terms of the model 
discussed in this talk, l/o’ = s dz(&)* - 1n3/A. So the constraint becomes X >> m Since 
the effective field theory was a derivative expansion assuming m large, taking X larger is 
very strong coupling- analysis done in perturbation theory cannot be trusted anymore, and 
all bets are off. (For t,he Nielsen-Olesen vort,es their constraint was also strong coupling, 
e >> 1.) This is like the tL -t oc limit, <as they put it, so expanding about a classical solution 
in a functional integral is meaningless. For example t,he Q’ theory, when Euclidean, is in the 
universality class of the high tcmperat.urc Ising model in this limit,. 

Before closing, it is worthwhile to mention some implicit strings for contrast, For these, 
stringlike behavior is seen or expected but the strings are not fully characterized. One 
example is compact, QED in 2 + 1 dimensions. Polyakov[l8] 1 cemonstrated t,hat there is a 
linear potential between charges, which could be attributed to a string. Another classic 
example is QCD, where string theory was first used. At long distance, quarks and gluons 
are confined and one wants to use variables providing a natural description of the physics. 
Strings a,re a popular paradigm, but the specific definition of a QCD string is unclear. For 
perspective, we mention three clues that suggest strings as a good description, 

First of all, in the data Regge behavior was observed, i.e, for mesons and baryons, one 
found the relation A!* - J which one can model by a relativistic st,ring (all the energy 
comes from stretching it,, p = T, densit,y = tension), and t,he ends move at the speed of light. 
Then J 0: MvR = ML a,nd A4 = TL, and so one gets the above mass/angular momentum 
reIation. This rule has been seen to be a good heuristic up to J = 19/2, with t,he relation 
getting better and better at higher spin[l9]. 

Secondly, strings were cspectecl from lattice descriptions of QCD. ;\t, strong coupling(201, 
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one can rewrite the sum of gauge configurations as the sum over surfaces. Initially, it was 
thought that this rewriting was in terms of noninteracting surfaces, but Weingarten showed 
otherwise[21]. One could try t.o fix up the noninteracting surface theory to account for the 
interactions in various ways, for example by adding degrees of freedom, but the resulting 
models became quite involved and hard to work with. 

4 third connection between strings and QCD was found in the field theory description 
of QCD by ‘t Hooft[22]. In the large N limit of $X(11;) gauge theory (fixing g*N), planar 
diagrams dominated and could be viewed as tracing out the world sheet of a string (in group 
space). Large N accounts for some aspects of phenomenology, so it might be expected that 
the stringlike picture coming from large N has some validity. In addition to t,he vast amount 
of work done on QCD and strings several years ago, there have been a few attempts to look 
at strings and QCD again. I would like to mention in particular t.he paper by Polchinski[23] 
and the review [24]. In [25] there is a summary of a lot of the older data with the aim of 
isolating what particularly stringy properties it implies. 

In conclusion, this was a review of the quantization of effective strings, in the case where 
there were explicit stringlike solutions to the equation of motion. The procedure was to 
rewrite the field t,heory in the one string sector, introduce collective coordinates for the 
position of the string and use equations of mot,ion to substitute for the massive fields. Only 
physical degrees of freedom were present in the action. The result was a nonrenormalizable 
effective field theory on the string worldsheet, which had terms to arbitrarily high order 
in the derivative expansion, and leading order in h. The fundamental string’s constraints 
had no relevance for the effective string, which was not conformally invariant and at short 
distances was no longer a, string. For example, Lorentz transformations mixed relevant and 
irrelevant terms in the action for the effective string. It was possible to take the thin string 
limit by going to long wavelengths. Naively, strong coupling would also give a thin string 
limit., but on closer inspection, in this limit, a,11 of the a,nalysis has dubious validity, 

J.D.C. thanks the orga,nizers for a chance to lecture a,nd the students for their interesting 
comments and quest,ions. V.P. was support.ed by D.O.E. grant DE,-FG02-9OER.40542. J.D.C. 
also t,hanks L. Brekke for pointing out reference [17] and 0. .4lvarez for comments on the 
preprint. 
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