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DRIFT CHAMBER TRACKING WITH NEURAL NETWORKS

Clark S. Lindsey} Bruce Denby, Herman Haggerty
Fermi National Accelerator Laboratory!
P.O. Box 500, Batavia, [1. 60510

Abstract

We discuss drift chamber tracking with a commercial ana-
log VLSI neural network chip. Voltages proportional to
the drift times in a 4-layer drift chamber were presented
to the Intel ETANN chip. The network was trained to
provide the intercept and slope of straight tracks travers-
ing the chamber. The outputs were recorded and later
compared off line to conventional track fits. Two types of
network architectures were studied. Applications of neural
network tracking to high energy physics detector triggers
is discussed.

1 Introduction

With the very high event rates projected for experiments
at the SSC and LHC, it is important to investigate new ap-
proaches to on line pattern recognition. The use of neural
networks for pattern recognition in high energy physics de-
tectors has been an ares of very active research (see review
in ref. 1). Charged particle tracking with neural networks,
in particular, has been studied extensively. A major goal
of these studies is to determine whether neural networks,
which have highly parallel siructutes, could provide real
time patiern recognition for triggering if they were imple-
mented in hardware. At high energy collider experiments
an interaction can produce a great number of tracks. In
the central tracking devices, close to the interaction point,
the large number of track and background signals make
the track finding networks quite complicated, especially if
there is track curvature due to & magnetic field. Recurtent
type network architectures have been the most successful
for track finding in large central detector events(2]. How-
ever, tracking with recurrent neural networks {all neurons
interconnected and weights recalcnlated for each event) has
only been carried out with off line data and with sim-
ulated networks. Hardware implementation of such net-
works, while not impossible, appears very difficult.

For some types of tracking chambers it is possible to
apply simpler networks that are more amenable to haxd-
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ware implementation. Drift chambers used in muon detec-
tion sysiems, for example, are typically construcied with
only two to four layers of sense wires. The chambers, al-
though covering large areas, lie far from the interaction
region and so typically have lower occupancy rates than
tracking chambers close Lo the interaction region. Since
the chambers are usually outside the magnetic field and
since they slso only a few tens of centimeters thick, tzacks
crossing & muon chamber can be treated as straight lines.
Using sense wire signals from a section of suck a muon
chamber, it is possible to use feed-forward neural networks
with two layers of nenrons to find track parameters. Such
feed-forward neurai networks are now available in VLSL A
fast muon trigger system could be built by combining the
signals from many simple hardware networks, where each
network is assigned to a section of the detector.

Here we present resuits of a stundy of a VLSI neural net-
work for finding tracks in a muon drift chamber. A previ-
ous paper discussed tracking in a 3-layer muon chamber{3].
Here we give results for tracking in a 4-layer drift cham-
ber. We show results for a couple of different neural net-
work architectures and discuss possible implementation in
a trigger.

2 Intel ETANN Chip

The Intel Electrically Trained Analog Neural Network
(ETANN) Las been desctibed previously [4, 8]. The chip
has 64 neurons or threshold amplifiers with sigmoidal re-
sponse. Effectively, however, there are 128 nenrons since
the same 84 neurons are used for both the middle and out-
put layers. A signal {analog voltage 0.0v to 3.5v) entering
one of the 64 inputs is presenied to a synapse. The out-
put of the synapse is a differential current proportional to
the multiplication of the input signal and a stored weight
value. The current sum of the dot product of 64 inputs and
84 elements of a row of the input synapse array is presented
to the nenron corresponding to that row. In addition there
aze 16 internal fixed (bias) voltages connected to each neu-
ron. 50 eack neuron sees a total sum of 80 voltage-synapse
products. There nre 80x84=5120 synapses in the fizst layer
arzay plus 5120 synapses in the second layer array.

The synapse design is similar to a Gilbert multiplier cir-
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cuit. Here the difference in threshoid voltages (Vi) of two
floating gates provides the weight value:

Iﬂir‘! = (Vinp-l - nji) x (V‘l -— Vtg)

The weights values are limited to spproximately £2.5 and
bave about 8 bit precision. Charge can be made to tun-
nel onto the floating gates with large voltage pulses. The
synapses are non-volatile and can remain stable for several
years. There ure non-linearities in the voltage-weight mul-
tiplications, especially near the maximum wejght and input
voltage values(5]. However, these can be compensated for
to some extent by the network training.

The neuron response, for s input reference voltage
(Viegi) of 1.8y, is approximated by a xigmoidal function:

fi(35) = s

——— + .1y
1.0 + exp{—2y)

where 2; is

2, =G [z w,-.(V. - 1.6v) + E"jl(“ - 1.6") .
»

Here V), is cither the input voltage to the first layer or the
output voltage of the middle layer neurons presented to
the second layer. The wy, is the weight for the cornection
between receiving unit j and sending unit k. Of the 16
internal biases (V) = 4.0v), seven are available for the user
(the other 9 are reserved for the initialization of the chip
by the development system described below.) The gain G
can be varied with an external control voltage and was here
set at roughly 1.0. A special binary mode with fast turn
on from 0.0v to 5.0v is also available bat is not suitable as
a sigmoid for back-propagation training and was not used
here.

After signals are presented at the inputs, the first layer
peuron outputs will reach final levels within about dus.
The first layer outputs are then available on the ontput
pins (e.g. for back-propagation calculations). Second layer
processing is controlled by several external clock signals.
First the neurcn outputs are sampled and held and the in-
puts are disconnected from the first synapse array. Then
the first level sampled outputs are presented to the second
synapsc array which in tarn connects to the same neurons
previously nsed for the first layer. The second layer pro-
cessing takes up to Sps for & total of about 8us for 64
inputs, 64 neuren first layer, and 64 neurcn second layer.

A pe-based development system for the ETANN is
available(8]. The system allows one to do such things as
initialise the chip, read weights or write weights to the
chip, emulate the chip (e.g. with back-propagation trainer)
and do chip-in-the-loop training (CIL). Normally one first
trains with the emulator (here we used the Dymalind
program(7]) and then, when the emulation performance is
satisfactory, downioad the emulation weights to the chip.
Some forther CIL training is necessary since the emuls-
tion is not perfect. The synapses allow a limited number
of weight changes before becoming degraded so doing the
emulation tedoces the number of weight changes required.
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Figure 1: (a) Cross-section of & DO muon chamber drift
cell. (b) Track through a 4-layer chamber. Drift distances,
with left-right ambiguities, are shown. The right edge cells
are flush. Dashed lines show normal cell width. (¢} Per
spective view of a cell pair showing sense wire connecticn
st one end, drift time and signal transit time electronics
at other.
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Figure 2: Test setup for tracking cosmic rays.

3 Drift Chamber Setup

Figure 1 shows disgrams of the muon chamber design used
for the DO collider detector system at the Tevatron (8, 9]
The cells have fcm marimum drift in the sense wire plane,
with maximum dnft times of about 1us. The drift times
are measured by time to voltage converters (TVC) and
provide analog voitages proportional to the drift times (o
distances). Above and below the sense wire are metal pads
where voltages induced by the sense wire signal indicate
where along the wire the track passed. As showa in fig-
ure le the sense wires are connected in pairs. Differences
in signal arrival times at each end also indicate the longi-
tudinal position of the wire. A combination of the pad and
dTVC information gives sn improved resciution. Here we
only used the pad signals to set latches to indicate which
of the two cells the track traverse. The prototype cham-
ber used is only about a meter long so the transit time is
negligible compared to the drift time.

Proceeding outward from the beam line, the DO central
muon trigger system consists of fizst a 4-layer drift chamber
just outside of the central $racking chambers and calorime-
ters. Then there is & layer of magunetised iron and finally
two 3-layer chambers. Here we examined tracking in a pro-
totype 4-layer muon chamber which had 8 cells arranged
in the pattern found on the edge of the foll scale chambers
{which can have up to 96 cells). Figure 2 shows the setup
used to measure cosmic ray tracks. Two scintillators pro-
vide the trigger for an event and generate the siop signal
for the TVC’s. The TVC values vary linearly from 3.2v

for tracks at the wire to 0.0v at the cell wall. The TVC
outputs are picked off the analog bus on the muon cham-
ber readout board and presented to the ETANN inputs.
The chip outputs were then placed back on the bus and
digitised along with the input voltages. The ADC values
for the drift times and chip outputs and the pad latch val-
ues are all read out by the data acquisition system. Least
square fit parameters were calculated off line {the chamber
resclution is about 500um) from the drifi chamber data
and compared to the cutputs of the ETANN.

Input = 2 x (4 TVC Voliages) + 4 Pad Latches
Qutput = 32 0.625¢m btins {rom -Ocm to +20cm
+ 32 0.05rad bins from -0.8rad to 0.8rad
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Figure 3: Two layer feedforward nearal network with the
distributed output technique for giving slope and intercept
of tracks from drift chamber signals.

4 Neural Nets for Drift Chambers

Figure 3 shows one neural network architecture to deter
mine the intercept and slope of muon chamber tracks.
TVC sighals from the four cell pairs shown in figure 1 are
presented to the chip twice. As mentioned above, the max-
imum weight is 2.5 for the ETANN. Repeating the inputs
effectively increases the maximnm weight to +5.0 and im-
proves the performance of the net. Also, pad latches from
four cells are also input to the net. Here, for a given cell
pair, a pad latch value of 3.0v indicates the hit is in the
right hand ceil, 0.1v indicates the hit is in the left hand
cell ns seen in figure 1.

The middle layer of the net in figure 8 has 48 neurons
and the output layer has 64 neurons. The intercept and
the slope are expressed as dumps in the distribution of out-
put neuron activations. The first 32 aenrons are nsed for
the intercept and the second set of 32 for the slope. Each
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Figure 4: Two layer feedforward neunral network with the
proportional output techniqae for giving slope and inter-
cept of tracks from drift chamber signais.

intercept neuron acis as a 0.625cm bin for the intercept
range between 0.0cm and 20cm for the crossing point in
the sense wire plane of the second layer from the top (fig-
ure 1}. The siope neurons represent 50mrad bins between
-0.81ad and +0.87ad, where the slope is give as the an-
gle from vertical. The track intercept and slope are then
given as the center of Ganssiap bumps across 3-4 neurons.
In practice the maximmum output is found and an average
over £2 neurons around the marimum is calculated.

The advantage of the distrbsted output method shown
in figure 3 is that the averaging over the outputs makes the
valges less sensitive to the jitter in single nenrons. Also,
as discussed later, more than one bump can indicate more
than one possible answer whea there are ambiguities. If
combined with other information, say, from anocther detec-
tor, having additional information can be useful in some
applications{10]. The disadvantages of such a net include
the large number of cutput nearons needed and the need
for & 2nd circuit to calculate the averages.

One could have a two outpats architecture where one
nenron has an activation proportional to the intercept and
the other neuron has activatioa proportional to the slope.
Howevez, jitter, due both to electronic variability and to
impe:fectiom in the training of the network, limits the
precizion of such a net. To take advantage of the simplicity
of proportional cutputs but to limit the effect of nenron
jitter, we tried the architecture shown in figare 4 (inspired
by ref. 11). Here there are 10 outputa for the intercept
and 10 for the slope. The sum of the first 10 outputs
is proportion to the intercept and the sum of the sccond

10 cutputs is proportional to the slope. The final sum is
then less dependent on small variations in the individaad
outputs (most activations are either driven all the way on
or all the way ofl.) A summing amplifier conld provide a
final single proportional voltage.

For each network type, files of 20000 track patierns were
generated by a Monte Carlo program that sent tracks
across the 8 cells at random angles and intercepts {bat
requiring at least one cell hit in each layer.) A given pat-
tern consisted of both the simulated TVC and pad latch
values and the target outputs. A back-propagation pro-
gram oo s workstation was run on these files for several
milliop iterations. The resnilting weight fles were then
transferred to the PC emulation program, which ran more
slowly than the workstation program but did a more ac-
curate simulation of the chip. The emnlation did several
tens of thousands of back-propagation iterations. Finally,
the emulation weights were downicaded to the chipand a
few thousand CIL iterations were carried out.

5 Results

Figure 5 shows four cosmic ray tracks in the DO prototype
chamber. The fit track and the neural network track are
compared. The network was the distribnted oatput net of
figure 3. The activations of the 32 intercept neurons and
32 alope nenrons are also shown, along with the fit values
indicted by + symbols. In figurea 5a-c the bump positions
match well with the fit parameters. In figure §d there was
an ambiguity and the net gave a smaller output at the
fit value than at the ambiguons track parameter. For the
3-layer network discussed in ref. 3 these ambignous cases
occor in 5-10% of the events. The extra layer here reduces
the ambigucus cases to less than 0.5% of the cosmic ray
tracks.

Figures 8a-b show distributions of the intercept and
slope values from the fit and from the chip. The require-
ment of hits im ol fonr layers canses the variations from
nniform fiat distributiona. Figures 8c-d show distributions
of the differences between fit track and NN track param-
eters for the distributed network architecture. The sig-
mas of the Gaussian fits give resolutions of 0.T6mm for the
intercept and 12mrad for the slope when compare to fit
tracks with chi-square of less than one. For all tracks the
resolutions are §.9%cm snd 14mrad, respectively.

The proportiopal netwotrk show in figure 4 was also im-
plemented in an ETANN chip. The 10 outputs for the
intercept and the 10 outputs for the slope were added off
line rather than added by » summing umplifier. Figures Ta-
b show examples of cosmic ray tracks found by the off
line fit and compared to the network ontput. The sum
of the intercept and slope cutputs are illustrated below
ench event pattern. The network valoes are represented
by the length of borisontal bars and are compared to the
fit vaines. Figure Th shows the response 1o an ambiguous
case. The network split the difference between the two
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the output distributions of the 32 intercept neurons and the 32 slope neurons.
fit values with + signs. (d) A case where the neural network chose a different track than the
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Cosmic ray events in 4-layer chamber showing the track fit and the corre-

k track. Below each track pictare is shown the corresponding values of
Also shown are
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possible tracks. Figure Tc-d show distributions of differ-
ences between the neiwork values and the fit vaiues for
the intercept and slope parameters. The resolutions are
2.0mm (2.4mm) and 28mrad 30mrad with (without) the
chi-squazed cut.

6 Discussion

Folowing on a previous study of 3-layer muon chamber
tracking with the ETANN chip{3], we have here presented
results on tracking with a 4-layer muon chamber. In addi-
tion to the distributed output method nsed before, we have
also tried a proportional output type network. The latter
gives only about 2.0mm position resoluticn compared to
0.78mm for the distributed network but it would allow for
a much simpler implementation in practice.

The current DO muon trigger has an effective resolution
of about Scm. Basically it uses the chamber as a bodoscope
by looking for pairs of hits in adjacent cells and does not
use drift time information[12]). The muon trigger is in the
2nd level of the DO trigger system and must periorm iz sev-
eral microseconds. If the neural networks shown here were
incorporated into an upgraded muon trigger system, they
would provide s great improvement in the ¢rack resolution.

The neural neiwork muon trigger strategy described in
ref 12 would require many neunral networks each aasigned
to s section of muon chamber. Where the occupancy rateis
low, signals could be ganged together so as to use a single
petwork for many wires. The cutputs of networks from
the three chambers of the central mnon chamber would
be presented to a second level of networks. The second
level petworks could be trained, for example, to give an
output proportional to the momentum of a track or its
extrapolated distance of closess approach to the interaction
point.

For some applications of nenral nctwork tracking one
msy not need the foll power of the ETARN. If a set of
weights are found satisfactory, one could implement the
petwork into a circuit which has fixed weights made from
simple resisiors as discussed in ref. 14. Such nets would be
cheaper and rimpler than the ETANN especially if needed
in large numbers. Also, the ETANN may be too slow
for some applications whereas these nets could perform in
mach less than a microsecond. As a prototyping tool one
could nse the ETANN for finding the optimum network
architecture {e.g. minimam number hidden units needed,
best type of cutpnt architeciure, etc.) and then use » re-
sistor network for the final design.
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