
Fermi National Accelerator Laboratory 

FE-d-92/259 

Using Workstation GUIs in HEP, X-Windows, 
Motif and the Nirvana Project 

M. Edel, J. Kryiakopoulos, P. Lebrun, B. Ren and J. Kallenbach 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

K. Iourcha 

Petersburg Nuclear Physics Institute 
188350 G&china, Leningrad district, Russia 

October 1992 

Presented at the Computing in High Energy Physics Conference, 
Annecy, France, September 21-25, 1992 

$ OperaId by Universiles Research Associabon Inc. under CentPaCt No. DE-AWZ-76CH03000 witi tie United States Daparbnent d Energy 



Disclaimer 

This report was prepared as an account ofwork sponsored by an agency ofthe United States 
Government. Neither the United States Government nor any agency thereof nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any 
agency thereof The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof 



Using Workstation GUIs in HEP, 
X-Windows, Motif, and the Nirvana Project 

Mark Edel, Joy Kryiokopoulos, Paul Lebrun, Baolin Ren, Jeff Kallenbach 
Fermi National Accelerator Laboratory, P.O. Box 500 Batavia, IL 60510, USA 

Konstantitae Iourcha 
Petersburg Nuclear Physics Institute, 188350, Gatchina, Leningrad district, Russia 

We present four small, high quality, Motif based tools for high energy physicists and 
discuss some of the less obvious work that is necessary to fully take advantage of graphical 
user interfaces (GUIs). Hlsto-Scope and NPlot are interactive data display programs. 
Histo-Scope is for viewing data as it is collected in running analysis or dam acquisition 
programs, NPlot, for plotting data from text files. Visajet is an interface for the ISAJET 
event simulation program. It gives users a fast way to configure ISAJBT and displays 
ISAIBT events in a three dimensional phase space display that users can rotate and 
manipulate with the mouse. NEdit is a GUI style plain text editor. 

Introduction 
For the vast majority of users, the menu/window/dialog style of interface is a very important 
achievement. Software that once took weeks to learn can often be used immediately without 
training. Graphical user interface (GUI) environments seamlessly integrate graphics and mouse 
interaction, giving users the ability to directly manipulate graphics on the screen, and optimally 
allocate screen space with overlapping windows. Unfortunately for HEP, these benefits come 
primarily by trading programming time for user time. Providing software that actually takes 
advantage of them is harder than most people thii. 
This paper presents a project dubbed “Nirvana” which provides a library of graphical user interface 
tools for the high energy physicists’ workstation that employ GUIs to their fullest advantage. It 
reviews our experience with this new technology and its applicability to HEP. 

The Real Advantages of GUIs 
Replacing a command line or character based interface with panels of buttons and text fields may 
make a program look more attractive, but it is just as likely to make the program w to use if 
done, improperly. The real power of graphical interfaces comes from very careful design, 
conststent apphcation of design rules, and knowledge of the task. Applying these rules can require 
huge amounts of extra work that is almost invisible in the end product. Unfortunately, the same is 
true for most of the benefits that people associate with GUIs. Taking advantage of direct 
manipulation, for example, usually means hand coding animated graphics with little or no support 
from the GUI libraries. 
Below are some examples of the kinds of design guidelines that contribute to an effective interface. 
A well written GUI application should: 

l Be consistent in its reactions to user actions regardless of context, and consistent with other 
applications on the same system. 

l Make optimal use of limited screen space. 
l Be efficient for expert users and have a natural transition between novice and expert. 
l Present clear choices. All of the capabilities of a program should be made immediately 

apparent and available, in any order, from the top level of the program. 
l Make every operation undoable, or warn the user that the operation is irreversible. 

dialog should have a cancel button. 
Every 

l Provide positive visual (or audio) feedback for every user action. Give users a sense of 
completion, so that they don’t worry that some further action is required of them. 



l Be continuously responsive to user input. When the system is busy, the program needs to 
indicate it clearly. Long operations should have progress indicators. 

l Make it difftcult for the user to enter bad data, and when an error does occur, explain what 
is wrong as specifically as possible. 

The end result of this kind of careful design is an interface that seems almost invisible. For 
physicists, this means they can concentrate on their analysis rather than on the software. 

The Nirvana Tools 
The computer of choice for HEP analysis and data acquisition problems is usually a high 
performance CPU running Unix or VMS. The GUI environment on most of these computers is X 
Windows with the Open Software Foundation’s Motif window manager and widget set. Despite 
bugs, poor design, and poor performance of X/Motif, it is possible to realize nearly all the 
advantages experienced by users of better designed GUI environments. 
The appropriate software tools in a workstation GUI environment are small inter-operable 
applications. Smaller applications with simpler interfaces can be used together effectively on a 
single screen because of the workstation’s support for windows, cut and paste, and inter-process 
communication. Giving the small applications interfaces that are consistent with one another 
ensures that users’ knowledge of the operation of one will easily transfer to the operation of the 
others. Consistency is fragile and can be easily undermined by one bad interface. 
Histo-Scope & NPlot 
Histo-Scope is a tool to select and display histograms, n-tuples, and scalar values from a program 
as dam is being created or analyzed. Using H&o-Scope, physicists can interactively “browse” 
through the large quantities of statistical data that their analysis and data acquisition programs 
gather as they run. It is intended to complement existing physics applications, providing 
immediate access to data while a program is running, as well as new interactive methods for 
viewing data. 

Figure 1. Viewing Data with H&-Scope 
Histo-Scope has two parts. The first is a small library of routines which can be inserted in physics 
analysis or data acquisition code without significantly changing its behavior. No restrictions am. 



placed on the user analysis process except that it must periodically call an update routine. It does 
not need to run on a workstation, and is not linked with any graphical user interface code. 
The other part is the “scope” process. Invoked upon user demand, the scope requests and displays 
dam continuously from the analysis process. The scope concentrates on interacting effectively with 
users. It responds to mouse and keyboard input and provides the interactive graphing and plotting 
that enable users to view their data quickly and effectively. The scope program can also read 
HBOOK and Histo-Scope format files. 
NPlot is a tool for quickly plotting columnar data from text files. It is a simple re-packaging of the 
H&o-Scope n-tuple interface with a file reader, 
Both Histo-Scope and NPlot produce highly interactive graphs and plots. These include: muhi- 
variable graphs, two and three dimensional scatter plots, and one and two dimensional histograms. 
Users can rescale, zoom, and pan these plots by dragging on axis scales and other sensitive areas. 
The three dimensional widgets, 2D histogram and 3D scatter plot, can be rotated accurately using 
the mouse as a hand on a “virtual trackbaIl” sphere surrounding the plot. The plots can also be 
combined with animation sliders to reflect additional variables or to rebin histograms. 
NEdit 
NBdit[l] is a GUI style plain text editor. It was originally intended as a project benchmark, to 
establish standards for program structure, file handling, accelerator keys, and general GUI 
operation, but not to be released for widespread use. However, it has since proved itself to be a 
superior replacement for the conventional Unix text editors. NEdit serves as both a good 
introduction to Motif based tools, and an illustration of the advantages of GUIs. It supports 
programmers with features such as: auto-indent, block indentation adjustment, and parenthesis 
matching. People who are used to character based editors like edt, vi, and emacs are usually 
hesitant to try a new editor because of the time investment in learning the commands. NEdit, on 
the other hand, requires no such investment. Though it appears much simpler, the functionality 
that it provides is as complete. A naive NEdit user can usually work faster than an expert edt user! 
Visajet 
Visajet[2] is a GUI front end to the ISAIET[3] Monte Carlo event generation program. Physicists 
can use Visajet instead of composing an ASCII file of “input cards” ISAJET uses for its run 
parameters. Running Visajet allows the physicist to see all the options that are available, explore 
them, glance through default values, and change them in preparation for a run. Viiajet then allows 
the physicist to start ISAJET under control of a nm panel and provides graphical routines to 
visualize the event data as ISAJET is running. Like Histo-Scope, the Visajet process is separate 
from the ISAIBT process, allowing the event generating process to reside on another machine. 
Programming Utilities 
To develop the above applications, we created a library of common software components. These 
include: PostScript drawing routines which parallel X calls for hardcopy output; dialogs for 
printing, opening files, saving files and help; modal dialogs for errors warnings and simple 
prompts; interactive plotting widgets; support for Greek, superscript, and subscript characters; and 
convenience routines to simplify Motif programming. 
The most sophisticated components that we have produced are, of course, the interactive plotting 
widgets used in Histo-Scope and NPlot. These can be used like any other Motif widget, and 
supply the complete direct-manipulation interface that they do in the programs. 

Our Experience 
Although the products that we have created work very reliably and are easy to use, their 
development was painful because the design and documentation for both Motif and X-Windows 
are extremely poor. When we started the project, there were serious bugs in both X and Motif that 
actually precluded their use in a number of areas. Though the quality of X and Motif has been 
improving continuously, many bugs still exist and we have had to put serious effort into working 
around them. 



Even though we were working on machines capable of incredible graphics performance, we had to 
invest considerable development time to achieve adequately fast, smooth animation because of 
inefficiencies in X-Windows. For simple menu and dialog interaction, the combination of X and 
Motif require a 10 MIP machine with 16 megabytes of RAM to achieve the graphics performance 
of a Mac Plus (a 0.5 MIP machine with 256K of RAM). 
Creating consistent interfaces in the Motif environment was challenging. We began with the Motif 
Style Guide. Where there were holes in the Motif standards, we filled in from the Macintosh and 
Microsoft Windows. Unfortunately, the Motif Style Guide is mostly holes, and interface styles 
aheady vary widely among the commercially available Motif software packages. The Open 
Software Foundation does not seem to consider consistent interfaces to be an important goal. 
Properly designed programs must support two different pointer focus modes, different menu 
selection styles, different font sixes, and endless user tailoring of appearance. There are no 
standard types for exchanging data other than text so, for example, programs are not guaranteed to 
handle cut and paste of graphics from other programs. 
As of yet, there is no really quick way to generate good graphical interfaces. There are aides that 
can make programming GUIs easier, and some environments are much easier to program for than 
others. For example, we could develop interfaces much faster if physicists were willing to move 
to the NeXT computer. From the point of view of GUIs, NeXT Step is superior in all respects, 
and tailor made for users like us who would like to develop GUIs less expensively for limited 
numbers of users. Of course, NeXT Step is proprietary, does not run on the fastest CPUs, and 
except for developing GUIs, its programming environment is no better. For Motif, Interface 
building tools are available and we employed them in the initial stages of all of the products. Motif 
interface builders are good for initially laying out panels of buttons and controls, but become 
progressively more burdensome as you complete an interface and try to make it efficient for expert 
users. 
Despite the problems, as our experience with the technology and our library of GUI components 
grows, it becomes easier and faster for us to create similar software. 

Conclusion 
Commercial software developers usually estimate the percentage of development time spent on the 
user interface to be about 75%. In HEP, this additional time is hard to justify where a software 
product may have less than 50 users. 
Because GUIs can quadruple development time for a project, they are not necessarily desirable on 
all HEP applications. To realize the benefits of GUIs in HEP, we need to identify programs that 
are heavily used, or that depend on the unique properties of GUIs. This paper is too short to 
adequately cover the topic of creating complete, efficient, and consistent interfaces, except to say 
that it 1s well understood, and the benefits can be considerable. There am a number of good books 
on the subject, such as DesiPnine the Interfacelq, by Ben Schneiderman. Also see [5]. 

[l] NEdit Users’ Guide, Fermilab Computing Division Library document #PUO135 
[2] Visaiet Users’ Guide, Fermilab Computing Division Library document #PUO136 
131 ISAJET 6.34. A Monte Carlo Event Ge erato r for P-P and Pbar-P Reactions, F. Paige and S. 

Protopopescu, Brookhaven National Lanboratory, Upton, NY 11973. 
[4] Desienine the Interface, Ben Schneiderman, Addison Wesley, 1987. 
[S] Programming Graphical User Interfaces (Notes from l/22/91 Talk). Fermilab Computing 

Division Library document #ENOO89. 


