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Abstract 

The phase transition associated with the standard electroweak model is 

very weakly first order. The weakness of the transition means that around the 

critical temperature the finite-temperature Higgs mass is much less than the 

critical temperature. This leads to infrared problems in the calculation of the 

parameters of the potential. Therefore, theories of electroweak baryogenesis, 

which depend on the details of the transition, must be calculated with care. 
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1. Introduction 

It has been 20 years since David Kirzhnits first suggested that the spontaneously bro- 

ken symmetry of t,he electroweak theory should be restored at the high temperatures of 

the early Universe.’ Since that time much has been learned about the details of the elec- 

troweak theory, and at present the only unknown parameters of the model are the masses 

of the top quark and the Higgs boson. The top-quark mass may soon be determined at 

Fermilab, leaving the Higgs mass as the only remaining parameter. However, even with- 

out a direct determination, precision electroweak measurements can limit the Higgs mass 

to a reasonable range, so it is worthwhile to take another look at the calculations of the 

electroweak phase transition. 

The details of the electroweak transition are also most important for theories of elec- 

troweak baryogenesis. Kuzmin, Rubakov, and Shaposhnikov pointed out that sphaleron- 

mediated process can change the baryon number of the Universe.’ This work has mo- 

tivated an industry of model building to try to produce the baryon asymmetry at the 

electroweak scale. All such electroweak baryogenesis models are very sensitive to the de- 

tails of the transition. Therefore, before deciding if any model fulfills the exciting promise 

of predicting the baryon number of the Universe on the basis of measurable low-energy 

physics, it is necessary to understand the dynamics of the transition in detail. Of course 

the first step in such a program is understanding the potential. 

In this paper we will first discuss the standard calculation of the electroweak finite- 

temperature effective potential. We will then show how the one-loop potential is inad- 

equate near the critical temperature where it is needed. Then we will discuss a way to 

estimate the magnitude of the corrections. 

2. The Effective Potential 

The finite-temperature, one-loop potential has been studied by many people. most 
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recently by Anderson and Ha11.3 They showed that the potential may be written in the 

form 

VEW(~,T) = D (T’ -T,) #* - ET43 + ;A,& 

where the constants D and E are given by 

D = [6(mw/c+ + 3(m&7)* + 6(mT/o)*] /24 

and 

E = [6(n~&7)~ + 3(rn~/c7)~] /127r 

The Higgs mass is a function of temperature. We will denote as mH the zero-temperature 

Higgs mass, and as rn~(T) the temperature-dependent mass. The l-loop corrected Higgs 

mass is mi = (2X + 12B)o*, where X is the tree-level quartic coupling constant, and 

B= & (2m4, + m; - 4m4,) 

accounts for the one-loop, zero-temperature quantum corrections. 

We will use mw = 80.6 GeV, rnz = 91.2 GeV, and for the zero-temperature vacuum 

expectation value of the Higgs field c = 246 GeV. The temperature-corrected Higgs self 

coupling is 

where the sum is performed over bosons and fermions (in our case only the top quark) 

with their respective degrees of freedom gB and g,~, and lncB = 5.41 and 1ncF = 2.64. 

It turns out that to a good approximation the temperature-corrected Higgs self cou- 

pling XT is approximately equal to the tree-level value A. In other words, the loga- 

rithmic correction from the zero-temperature l-loop calculation pretty much cancels the 

temperature-dependent logarithmic correction. This can be understood by employing 
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the renormalization scheme of Ref. 4. Expressing XT as m$/2us will often be a useful 

approximation to make. 

With the potential written in t’he form above, there are two other temperatures of 

interest that might be found directly. For high temperatures, the system will be in the 

symmetric phase with the potential exhibiting only one minimum at (4) = 0. As the 

Universe expands and cools an inflection point will develop away from the origin at 

where Tr is given by 

T, = T,f,fl - 9E2/8XTD. 

For T < T,, the inflection point separates into a local maximum at $- and a local 

minimum at I#I+, with @* = (3ET f [9E2p - 8XrD(T2 - 23]““}/2X,. At the critical 

temperature 

Tc = T*/,/~D, 

the minima have same free energy, VEW(C$+,TC) = V~w(0,Tc). (Note that V(@,T) is the 

homogeneous part of the free energy density whose minima denote the equilibrium states 

of the system. Accordingly, in this work we freely interchange between calling V(@J, T) a 

potential and a free energy density.) 

The difference between the temperatures Tr , Tc, and Ts is determined by the param- 

eter 

z E E2/XTD. 

This parameter is shown in Fig. 1 for different values of mn and mr. Clearly z < 1 for 

the minimal electroweak model, so we can write the approximate relations 

Tc N G( 1 + x/2); TI N Tz( 1 + 9x/16). 
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Fig. 1: The function I = E'/A=D as a function of the Higgs mass. 

The potential above is the “l-loop” potential, as well known, equivalent to mean field 

theory. In fact, only gauge boson and top quark loops are included; scalar loops are not 

included. This is a good approximation at both high and low temperatures if the Higgs 

mass is less than about 150 to 200 GeV. However, we shall argue that around the critical 

temperature (exactly the temperature range of interest) it is not a good approximation. 

It is useful to understand why the transition is first order; i.e., why at ~Tc there is a 

barrier between the high-temperature phase and the low-temperature phase. It has been 

appreciated for a long time that a pure X44 theory is equivalent to a Ginzburg-Landau 

theory, which has a second-order phase transition. The reason the electroweak theory 

is first, rather than second order, is that there is an additional attractive force between 

scalar particles mediated by the vector bosons. This additional attractive force leads to 

a condensate of the Higgs field at a temperature slightly above T2. T2 and Tc would be 

the same (a second-order transition) in the absence of gauge boson interactions. (Note 

that as E -+ 0, i.e., as vector interactions are turned off, Tc + T2.) 
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An important use of the effective potential is in the calculationof the rate of nucleation 

of true-vacuum bubbles. The whole picture of bubble nucleation relies on the behavior of 

V,,,(c$,T) between Tc and T2. In the standard picture, one assumes that the system is 

in a near-homogeneous state around its equilibrium value (in this case (4) = 0), so that 

large thermal fluctuations in the spatial correlations of 4 are exponentially suppressed 

above the scale of the thermal correlation length. This assumption will not be true if 

there are large fluctuations caused by infrared problems near the transition. 

The finite-temperature tunneling rate, r x exp(-Ss/T), for a theory with a potential 

like the electroweak potential has been shown by Dine et aL4 to have an approximate 

analytical expression for the exponent given by 

& 
- = 4.852g)f(a); 

h&(T) 
T 

a = 2E2T? , 

with 

f(a) = I+; 1+E+ o.26 1 (1 --a)* 

Clearly even small changes in the parameters of the potential have an exponential effect 

upon the tunnelling rate. Therefore it is important to know the parameters accurately. 

The correct treatment of the critical behavior of a quantum field theory in 3 + 1 

dimensions at finite temperature involves reducing the theory to the effective theory of 

the static mode of the scalar field in 3 dimensions.’ In lower dimensions the infrared~(IR) 

problems are generally more severe. For instance, the effective coupling constant for the 

systematic loop expansion in 3 dimensions for a Q4 field theory is XT/m. Any infrared 

divergences show up as a vanishing of m and mean that the loop expansion is invalid, 

i.e., mean field theory does not adequately describe the critical behavior. This is well 

known to condensed matter physicists in the study of second-order phase transitions6 

While mean field theory predicts a critical exponent of v = 0.5 for the correlation length, 

(cm-’ oz IT - Tc(-“, experiment gives a result v N 0.63. 
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The departure of the correlation length from its mean-field (l-loop) value can be 

thought of as the effect of large thermal fluctuations in the background. These non- 

perturbative thermal fluctuations couple to the zero-momentum mode of the field, mod- 

ifying the critical exponents. 

For the electroweak transition there are IR divergences in two places. The first place 

is in the vector-boson masses. Recall that in the electroweak theory vector bosons acquire 

a mass through coupling to the Higgs, mv N 94. For small 4, the vector boson masses 

vanish. This problem has been studied by three groups.4*7,s They assume that similar 

to &CD, the vector bosons acquire a “magnetic” mass of mmog N g*T that effectively 

cuts off the IR divergence. If one believes the reasonable, widely believed, but unproven 

conjecture of a magnetic mass, then the effect of the vanishing of the vector masses in 

the vicinity of 4 = 0 is calculable; it reduces E by a factor of 2/3. 

The second place where there are infrared divergences is in the scalar sector itself. 

Generally for Higgs masses less than 200 GeV or so, Higgs loops may be ignored at zero .I 

temperature. This is because the Higgs self coupling X N m$,/202 N O.O8(m~/lOO GeV)* 

is less than both the gauge coupling constants, g = 0.66 and g’ = 0.35, and the top-quark 

Yukawa coupling constant hr = 0.57(mr/lOO GeV). However, at high temperatures the 

loop expansion parameter is not the coupling constants, but the coupling constants times 

T/m. If the Higgs mass is much smaller than the temperature, then the Higgs loops may 

be crucial. 

To see if this is the case, consider XT/m H for the standard electroweak model. 

For the electroweak potential near Tc, m$(Tc) = 2D(T$ - Ti). Since T:/Tz = 

1- E2/X~D, at Tc, mH(Tc) = TcE&. Th erefore at Tc the loop expansion param- 

eter is XTTc/mH(Tc) = X+‘*/E& N ow as discussed above, to a reasonable accuracy 
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XT = m2,/2a2 (here, of course. mu is the zero-temperature mass). Thus 

XTTc/mH(Tc) N m3H/4Eu3 N 1.74(m~/100GeV)3. 

For rn~ greater than about 80 GeV, at Tc the expansion parameter exceeds unity. Be- 

tween Tc- and T2 the mass goes to zero, so the corrections are even larger. 

Clearly if the Higgs mass is in excess of its present experimental lower limit of 57 

GeV, the Higgs IR problem must be controlled. This problem has been studied by us9 

We give the details in the next section. 

3. Estimating the Size of the Infrared Corrections 

Our proposal is to estimate the magnitude of the IR corrections to the electroweak 

model by studying an associated Ginsburg-Landau (GL) model. Recall that the GL 

model describes a scalar field theory with zero-temperature potential 

V(4) = -;m*(i5* + $4, 

As is well-known, this theory exhibits a second-order phase transition at q = 4m2/X; 

above Tc the left-right symmetry is exact and the equilibrium value of 4 is ($)=O. Below 

Tc the symmetry is broken and the equilibrium value of I$ is (4) = zk[rr~‘(T)/X]“~. 

In the thermodynamic limit, the system will eventually settle at one value of @J, since 

any interface is energetically unfavored. Of course (4) only gives information about the 

homogeneous behavior of 4. Typically, there will be fluctuations around (4) which are 

correlated within the correlation length. For temperatures above and below Tc (denoted 

by + and - respectively) 

C’(T) = m2(T) = ;T;(I + T/Tc)* (; ; 2) , 

and 

f:*(T) = -2m*(T) = ;T;(l +T/Tc)2 
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As discussed above, this is the well known result from mean-field theory, tMF(T) cx 

IT - TcI-“; Y = l/2, where the critical exponent v expresses the singular behavior of 

c(T) as T + Tc both from above and below. 

In order to handle the infrared divergences that appear near Tel the RG is used to 

relate a given theory to an equivalent theory with larger masses and thus better behaved 

in the infrared. Within the E expansion, one works in 4 - E dimensions and finds a fixed 

point of order E of the RG equations, taking the limit E + 1 in the end. To second-order 

in E one obtains,6 
11 7 

V=?+ip+i$ c2 N 0.63. 

The corrected critical exponent embodies corrections coming from the infrared diver- 

gences near Tc. The e-corrected correlation length can be written above Tc as 

Below Tc we obtain, 

[E’(T)]-l= &Tc(l+T/Tc) (i;;Fi)o.“3, 
C 

so that, in both cases the ratio between the mean field and e-corrected correlation lengths 

can be written as 

LuFPY 
W) 

= $13(T); qc(T) E “T; F’ 
C 

If we are interested in studying the behavior of the theory above Tc we can use the fact 

that E(T) = m-‘(T) to obtain an e-corrected mass, 

m,(T) = v:~~(T)~(T), 

To apply what is known about the IR behavior of the GL model to the electroweak 

model, we present here the simplest possible approach, by studying the GL model defined 
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by the free energy density, 

V’,($,T) = T$* + $#J’; m*(T) = 20 (T’ -T;) , 

where D, Tz, and XT are defined above. Thii is simply Vmv(d,T) with E -+ 0. This 

model exhibits a second-order phase transition at T = T2. Recall that this is the tem- 

perature at which the barrier disappears in the l-loop electroweak potential. Thus, we 

are interested in the behavior of this model for temperatures above Tz. The claim is that 

for T ( Tc and in the neighborhood of (4) = 0 this model can be used to give us an 

estimate of the infrared corrections to the electroweak potential. Note that our choice 

of the mass is such that the correlation length for fluctuations around equilibrium is the 

same in both models. Thus, from the results above, the c-corrected mass is 

m;(T) = 2D40.26(T) (T” - T,) ; %(T) = ‘;;;‘. 
2 

The value of Q(T) at T = Tc can be found using Tc and T2: 

7h(Tc) = 1 - d- 

lid-’ 

In Fig. 2 we show m:(T~)/m~(Tc) = qfz6(T ) c- as a function of the Higgs mass for 

several values of the top mass. It is clear that the infrared corrections are quite large 

for all values of parameters probed. Comparing the electroweak potential and the GL 

model for T = Tc, we notice that the electroweak model is even flatter near the origin 

and the infrared problem should be even more severe. For larger values of 4 the cubic 

term becomes important increasing the flatness of the electroweak model compared to 

the GL model (leading again to more severe infrared problems). 

This is discussed further in Ref. 9, along with a different procedure for matching the 

electroweak model to a GL model. Again, it must be emphasized that this is merely an 
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Fig. 2: m:(Tc)/m2(Tc) as a function of the Higgs mass for various values of mT, 

estimate of the size of,the infrared corrections. Clearly if m near Tc changes a lot, then 

the calculation of the tunnelling rate will be greatly modified. 

4. Conclusions 

In this work we have argued that it is possible to study the critical behavior of a weak 

first order transition which has a spinodal instability at some temperature T2 by mapping 

its behavior around equilibrium, (4), to an effective Ginzburg-Landau model above its 

critical temperature T2. In this way, both models have the same spinodal instability at 

(4) so that infrared corrections can be estimated from well-known e-expansion methods. 

This approach is compl.etely general and can in principle be applied to any sufficiently 

weak first order transition. It suits the standard electroweak model particularly well due 

to the closeness of its critical temperature Tc to the spinodal instability temperature 

T2. In fact, the difference between the two temperatures should provide a qualitative 

measure of the weakness of the transition. 
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Incorporating the &-expansion results leads to a larger correlation in the spatial fluctu- 

ations of the order parameter, which can be translated into a smaller (infrared corrected) 

mass for excitations around (4). Thus, the strength of the transition is considerably 

weaker than one would estimate from the nai’ve l-loop potential. We do not claim here 

to have obtained the E-corrected effective potential, but an estimate of the infrared cor- 

rections which are not included in the l-loop result. Our results provide a simple way 

to examine the importance of these corrections around To, offering an estimate of the 

strength of the transition. If the q parameter is close to unity at the critical tempera- 

ture TC the transition is well described by the l-loop result. Otherwise, the transition 

is weakly first order, and one should be very careful when adopting the usual vacuum 

decay formalism to study the transition. 

In Ref. 9 we also discuss two other simple ways of estimating the strength of the 

transition based on the thermal dispersion around equilibriumi and on the sub-critical 

bubbles method.” When applied to the l-loop electroweak potential both approaches 

suggest that there will be large fluctuations around equilibrium, indicating that the l- 

loop result does not fully describe the dynamics of the transition. In fact, the results 

here show that the actual dynamics of the transition may be much more complex than 

the usual scenario based on vacuum decay calculations. 

Since the electroweak potential plays such a crucial role in electroweak baryogenesis 

scenarios, a lot of work needs to be done. In this work we require help from field theorists, 

condensed-matter theorists, and perhaps even lattice gauge theorists. It should be an 

exciting next few years. 
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