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Balance in Machine Architecture 
bandwidth on board and off board, integer/control speed, & flops versus memory 

by Mark Fischler, Fermilab 

Introduction - Issues Addressed, Assumptions and Algorithms Examined 

The issues to be addressed here are those of ‘balance’ in machine architecture. 
By this, we mean how much emphasis must be placed on various aspects of the 
system to maximize its usefulness for physics. There are three components that 
contribute to the utility of a system: How the machine can be used, how big a 
problem can be attacked, and what the effective capabilities (power) of the 
hardware are like. 

The effective power issue is a matter of evaluating the impact of design 
decisions trading off architectural features such as memory bandwidth and 
interprocessor communication capabilities. What is studied is the effect these 
machine parameters have on how quickly the system can solve desired problems. 
There is a reasonable method for studying this: One selects a few representative 
algorithms and computes the impact of changing memory bandwidths, and so 
forth. The only room for controversy here is in the selection of representative 
problems. 

The issue of how big a problem can be attacked boils down to a balance of 
memory size versus power. Although this is a balance issue, it is very different 
than the effective power situation, because no firm answer can be given at this 
time. The power to memory ratio is highly problem dependant, and optimizing it 
requires several pieces of physics input, including: how big a lattice is needed for 
interesting results; what sort of algorithms are best to use; and how many sweeps 
are needed to get valid results. We seem to be at the threshold of learning things 
about these issues, but for now, the memory size issue will necessarily be 
addressed in terms of best guesses, rules of thumb, and researchers’ opinions. 

The important issue of how the machine can be used (MIMDLSIMD; nature of 
communications network, scalability, system sharing, ease of programming, 
etc.) will not be covered in this presentation. These issues are as critical as 
system size and power in determining how useful a machine is for doing physics. 
Another topic which will be covered in a different talk is the issue of bandwidth to 
mass storage devices. 

In examining the machine parameter issues, we will concern ourselves with 
what values are needed, rather than with how to achieve those values. So, we will 
produce information like “if communication is slow in such-and-thus way, it will 
cost x percent in effective power”. Our concession to realistic values comes when 
we fix all the parameters but one, to study the effect of the last value. The study is 
defined by the choice of parameters varied, the variety of machine architectures 
considered, the assumptions made about how coding will be done, and the 
selection of representative problems. 



The parameters we will look at are: 

l Bandwidth from local (or shared) memory to the processing unit. 
l Interprocessor communications bandwidth and overhead. 
l The effect of multiple floating point units per processor. 
l How important integer capability is. 
l The effect of caches, external registers, and register set size. 
l The effect of double precision speed. 

Details of how these parameters are described appear in appendix A. 

To pin down estimated timings, it is necessary to have in mind a model of how 
the memory access and communication works (the machine “architecture”). We 
consider several models: Shared Memory, Lockstep, Lockstep Cluster, and 
MIMD (these are defined and illustrated in appendix B). Presenting all 
combinations of architecture and parameters would be a daunting task. 
Fortunately, with certain obvious exceptions, the effects of various parameter 
values are largely insensitive to the architecture chosen. 

The coding assumptions made are conservative. If operations can be 
overlapped only at the cost of extreme custom programming efforts, and by 
harming the modularity and re-usability of code, we assume these optimizations 
will not be made. While we do not count on heroic efforts, we do assume that the 
structured kernels of algorithms are optimized, to yield the best local performance 
realistically possible. In the long run, for important programs this should be 
true, since this sort of optimization can be done in a modular fashion, with 
reasonable expectation of correctness. 

Finally, the choice of problems. Benchmark (or, as in this case, gedanken 
benchmark) problems must be representative of the actual use they are modeling. 
Two ways to keep these models faithful are to avoid bias by using actual front-line 
production algorithms, and to avoid the pitfall of simplification, which tends to 
magnify any deviation from reality. Thus, one should study actual algorithms, 
including all the messy nitty-gritty that is always overlooked in cursory 
evaluations. This can be time-consuming; nonetheless, it is important to sample 
more than one algorithm, if only to get an idea of the statistical spread of the 
results. 

Obviously, the algorithms used will evolve as physicists learn more about how 
various methods behave. The analysis presented here provides guidance for 
designing a system based on today’s knowledge, and a quantitative framework 
within which requirements for running new algorithms can be discussed. 

The machines we are interested in are targeted at problems in lattice gauge 
theory. Much of the work being done today can be categorized as follows: 

l Gauge Field 
Environment calculation 
Heatbath computations 
Langevin or molecular dynamical stepping 

l Quark Field 
Propagator calculation (quenched) 



D-slash inversion (dynamic) 
[Either Wilson or Susskindl 

l Operator Analysis 
Local operators 
Smeared operators 

It is important to be able to do the analysis phase on the same powerful system 
as the rest of the calculation. No existing computer is appropriate for handling 
the physics analysis of configurations which would be produced by a hundred 
Gigaflop machine. For these computations, the issues of memory size and how 
the machine can be used are vital, and the power needed is beyond that available 
on ordinary computers. If the “primary” machine is not suitable for doing this 
analysis, then another “analysis system” will need to be designed. This phase is, 
however, not CPU time-critical, since it takes more than an order of magnitude 
fewer cycles than even quenched field and propagator computation. Thus the 
effect of machine parameters on power is unimportant - the operator analysis is 
not a suitable problem for studying the appropriate balance in parameters 
(although it may be appropriate for examining how much I/O bandwidth is 
needed). 

For physics without fermion loops, the time taken for generation of gauge 
configurations is (after recent advances in propagator inversion technique) 
comparable to the time required for finding propagators for a few mass values. 
This gauge configuration time is divided into two roughly equal parts - 
environment calculation (staple sums) and heatbath computation. 

For dynamic fermion physics, a propagator inversion must be done for each 
step; this leads to those problems being dominated (at the 80 - 99% level) by Dslash 
inversion. Here, there is much greater uncertainty in the ultimate choice of 
algorithms, since techniques seem to be improving by an order of magnitude 
every few years. However, except for issues of MIMD capability, the balance 
between bandwidths and power required seems not to be changing radically any 
more. 

We choose as our “benchmarks” two algorithms. The first is a minimum- 
residual method of inverting quark propagators, employing the ‘Draper trick; in 
terms of effects of various parameters, this is nearly identical to the minimum- 
residual LU method which currently seems best. Quark inversion will dominate 
dynamic calculations, and is more than half the time for pure gauge when many 
physically interesting quantities are to be extracted. The second problem is pure 
gauge environment and Cabibbo-Marinari heat-bath updating. This turns out to 
be a bit less bandwidth dependant than the propagator algorithm. Where there 
results for these problems differ significantly, that will be pointed out. 

lhcriptions of the Algorithms Studied 

The two “benchmark” algorithms analyzed are described here. A more 
detailed analysis, along with quantitative results on how long each step will take 
for various values of machine parameters, is presented in appendix C. 



The propagator inversion algorithm studied is a minimal residual method. 
This is very similar, in terms of requirements on integer power and various 
bandwidth requirements, to the entire broad class of conjugate gradient-like 
methods. A slight variant on this method (incomplete LU decomposition) seems 
to be the current best choice for inversion in the physically interesting region; the 
balance between power and bandwidths is nearly the same for this. 

The algorithm can be separated into two parts - computing the D operator on 
the sites, and the doing the various dot-product and linear local field operations to 
complete the minimum-residual step. The lB part is 80% of the problem in terms 
of raw flops, but ignoring the rest of the algorithm would introduce bias which 
would not be insignificant. 

The D calculation computes for each site x the quantity 

y(x) - k c (l-y,) Up(x) w(x+p) + c (l+Y,) U+p(x-0) W(x-0) 
P P 

(where k is the hopping parameter related to the bare quark mass). Thus for each 
of eight directions, one must accumulate an expression of the form Uy,w. 

The bulk of the flops appear in the multiplication of the quark field by the link 
U (but if only this step were analyzed, the results for power would be completely 
skewed). The naive computational burden can be halved by combining two rows of 
the quark field before multiplication - this takes advantage of the nature of the 
gamma matrices. So, the efficient computation of the D operator can be broken 
into four phases: Locating the needed fields and getting any off-node data; 
combining the quark field into two color vectors; multiplying by the link field U, 
and accumulating the result. 

The remainder of the minimum-residual algorithm consists of finding a pair 
of dot products of the form w l w and w l Q where w and I$ are 

quark fields, and doing a pair of linear accumulations of the forms w = \v 

+ a $; (I = $ - a O, where a is a complex scalar. 

The dot products can be done together, as can the linear accumulations, but a 
depends on the results of the dot products. So these miscellaneous operations 
must be broken into two phases. 

The details of how long each of these six phases will take are presented in 
appendix C. Each is typically the maximum of two quantities, representing the 
fact that two concurrent sorts of operations are happening, with the time 
determined by the slower. For example, you may be doing memory operations to 
supply data for floating point computation. Here we present values for typical 
balances among the machine parameters and typical surface/volume ratio: 

locating fields: 122 I + 2 (1.5 oc + 33C) 
combining quark field: 192 M 



multiplying by link U: 
accumulating result: 
dot products: 
linea accumulations: 
Totalrtime: 

576 F 
384M 
26 I + 72 D 
201+192F 
168 

The gauge configuration generation algorithm studied is the Cabibbo- 
Marinari heat bath method. People have spent quite a bit of computer time 
running this or similar methods to study quenched &CD. The algorithm can be 
separated into two parts - computing the “environment” in which the link is to 
be updated, and doing the heat-bath updating (using the Kennedy-Pendleton or 
Creutz technique on each of the SU(2) subspaces). The environment computation 
is 70% of the problem in terms of raw flops, but ignoring the rest of the algorithm 
would introduce bias which would not be insignificant. 

The environment calculation computes for each link the “staple sum”, that is, 
the sum of six three-link products, with each three-link “staple” forming three 
sides of a plaquette (square) which would be completed by the link being udpdated. 

The bulk of the flops appear in the multiplications of the link fields. The naive 
computational burden can be cut by 25% by calculating only two rows of some 
SU(3) products, using the unitarity property to reconstruct a third row at the end 
of an entire staple. The efficient computation of the environment consists of three 
phases: Locating the needed fields and getting any off-node data; multiplying the 
three link fields to form a staple, and accumulating the result. 

The heat-bath part of the problem repeats a computation three times. The 
calculation involves three phases: Using the Creutz (or another) algorithm to get 
the diagonal part of an SU(2) matrix, with distribution based on some SU(2) subset 
of the environment; constructing a full SU(2) element from that value; and 
multiplying the link and environment by that SU(2) matrix. 

The details of how long each of these six phases will take are presented in 
appendix C. Here we present values for typical balances among the machine 
parameters and typical surface/volume ratio. (In some instances, although we 
show floating point speed as the determining factor, memory bandwidth might be 
close, so this floating point to memory ratio may be deceptive. In particular, 
although floating point seems 15 times as critical as memory bandwidth, a 
memory bandwidth of one word every 15 cycles would emphatically NOT be 
reasonable). 

locating fields: 1901+2(20,+36C) 
multiplying links to get staple: 1008 F 
accumulating staples: 108 M 
Creutz algorithm: 186 I + 225 F 
forming SU(2) matrix: 901+203F 
uadatinp link. environment: 240F 
Total time: 1681+108M+1676F+40,+72C 



Effects (on Power) of Changing Machine Parameters 

Memorv Bandwidth: Cache: Repis- 

The bandwidth between main local memory (or shared memory if there are no 
local banks) is the most important machine parameter, after floating point cycle 
time. This bandwidth is measured by how many cycles (Ml it takes to load or store 
one 32-bit word of data. (M is, in a sense, the inverse bandwidth). An 
architecture which can deliver two words per floating point multiply/add cycle (M 
= .5) loses very little time to memory access. However, a good deal of effort can go 
into increasing memory bandwidth; high bandwidth may severely impact system 
memory size or cost by requiring fast static RAM. 

The effect of increased M (decreased bandwidth) is dependant on the problem 
being done: The quark propagator computation is particularly memory intensive. 
The results for fixed, reasonable values of other parameters (1=3, C=2) are shown: 
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Three points are clear here: (1) Beyond M=l the performance on quark 
inversion is quite sensitive to memory bandwidth, and in fact is memory 
bandwidth dominated by the time M gets to 4. (2) The memory bandwidth 
requirements are about half as severe for the pure gauge computation. (3) The 
impact of memory bandwidth limitations is not very sensitive to architecture (the 
two extremes in memory architecture are shown; the difference is slight). 

We have ignored memory latency (the delay between requesting data and 
getting it). This latency will impact integer performance (and can be reflected by 
increased I values), but most of the other accesses will be in situations where 
useful work can be done during the latency cycles. 

The effect of cache on performance is limited by low cache hit rates inherent in 
lattice algorithms. When sweeping through a grid and looking at data from 
neighboring sites, at most half of your accesses can be from sites “in your wake” 
(data recently accessed) - assuming that the entire lattice cannot fit into cache. 
The remainder of the data must be “fresh”. The situation is worse for portions of 
the algorithm that do not require data from neighbors. This effect means that 



cache hit rates are limited to 15 - 50%, depending on cache size. With realistic 
cache sizes, hit rates will be around 30%. 

The apparent cache hit rate is actually higher than this, for two reasons. 
First, cache is typically filled several words at a time (lattice problems take good 
advantage of this). This is moot for our calculations, however - you still need the 
same number of words delivered from main memory. The second reason is re- 
used data: the second time a word is needed for doing something at a site, it will 
“always” hit cache. For the problems looked at, assuming there are enough 
registers, time is rarely wasted reloading data. (Data is indeed reloaded, but 
mostly during floating-point intensive parts of the problem.) This effect is not 
negligible, because “enough registers” may be more than 50, but with at least 32 
registers, it is small. 

Data from “Cache Effect” 
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The graph shown here explores the impact of cache for a system with main 
memory bandwidth of one word every four cycles (M=4). MC is the number of 
cycles it takes to get a word from cache (thus if MC were 4 or more, the cache 
would be useless). We see that for this case, a fast cache can impact performance 
at the 25% level for the important inversion problem. However, if M were 
somewhat better (say, M=2) then the impact of cache would be much less. 

Cache can cost in one subtle and two obvious ways: It increases the cost of the 
board; it vastly increases complexity and debugging effort needed; and there is a 
strong tendency for the presence of cache to cause the bandwidth to main memory 
to be diminished. (For example, on two processor boards made at FNAL using 
similar technology and engineering effort, the one with cache has about 2/3 the 
bandwidth to main memory.) If putting in an extremely fast cache causes the 
main memory bandwidth to drop from M=3 to M=4, then the net effect is to b 
down performance by 15%. 

The number of registers has an effect on performance, especially if there are 
fewer than about 32 registers. In the specific case of propagator inversion, about 
24 or more additional registers would have substantial effect - this comes from 
the “accumulate 0” step, which is can be done without much cost if the 
accumulated D can be kept in registers. 



Data from “Nregr Data” 

0 Dslash Power 
- GB”@ Power 

0 10 20 30 40 50 60 7b 
N n.g* 

This shows the effect of the number of registers, using M=2 (the effect is half as 
much if M=l). External registers do not have much impact here (unless memory 
bandwidth is quite restricted or the number of registers is small); their primary 
utility may be to provide a way to buffer data from memory going to multiple 
floating point units. 

Communications Bandwidth: Overhead: Shared Channels 

Another potentially important parameter is how rapidly communications can 
be done (how much time it takes to access data “belonging to” different 
processors). The nature of the communication (nearest neighbor only; barrel 
switch; reconfigurable switch; transparent global) will impact how the system 
can be used, but has not much effect on performance for the problems looked at, 
where most of the communication is between neighboring sites. The machine 
architecture matters in an obvious way - if there is shared memory, such that 
the memory bandwidth M is pegged to the communications bandwidth C, then 
communications requirements are much higher because M is very important. 
Beyond that, however, these results are insensitive to architecture. 

Data from “Comm bandwldth” 

This graph shows the effect of communications bandwidth limitations, 
assuming a 4**4 grid chunk in each node (SN = 2 - appropriate for dynamic 



fermions). The inversion problem is slightly more communications intensive 
than link updating. 

Communications overhead Oc (defined as the number of cycles required to 
send or get one word of data from another processor, minus the time taken per 
word transferred) tends to be small or zero for lockstep or shared memory 
architectures, and can be quite large for systems which require operating system 
assistance for communication. (For example, the current implementations of the 
iPSCl2 and CM2 machines have adequate communications bandwidth, but very 
large communications overhead.) Communications overhead can for certain 
algorithms be mitigated by gathering together the fields that need to be transfered, 
and doing one large transfer. This is a matter of how a machine can be used: the 
need to bunch communication restricts the class of algorithms available and can 
distort the way algorithms are coded. 
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This shows how effective power depends on communications overhead. 0,is 
influenced by hardware timings, but is typically dominated by the logic operations 
needed to decide that data is indeed off node, and set up the communications. 
Fortunately, for processors with reasonable integer power, with a bit of 
forethought (e.g. not requiring system calls or interrupts) the communications 
overhead can easily be kept small enough to have little impact on performance. 

Clustering of communications is another parameter that can impact power. 
This involves several processors sharing one communications resource. The 
processors may be on one board with one communications channel, or in a crate 
with only one channel to each neighboring crate - there may be multiple levels of 
clustering. The effect of clustering is not the same as dividing the 
communications bandwidths by the number of nodes sharing a resource, for 
three reasons: Many communications are strictly intracluster; the chunk size for 
a cluster is larger (SN is smaller) than for a single node; and the issue of 
queueing for the shared resource. The queueing issue is important, and is 
complicated in the intermediate range where there is significant contention but 
the problem is not completely intercluster communications dominated. The 
issues of surface/volume ratio and contention are examined in appendix D. 



Data from “clustering 1” 
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This graph shows how the number of nodes in a cluster affects performance. 
Obviously, this is critically dependant on the communications bandwidth (the 
intercluster bandwidth is assumed to be the same as the intracluster bandwidths 
here). We can see that for up to 4 clustered processors, this effect is small; for 8 or 
16 processors, it becomes important to keep the intercluster bandwidth high. 
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The roles of integer operations in lattice algorithms include: 
Supplying addresses for data access. This functionality could in principle be 
accomplished by DMA devices, but they would have to be fairly sophisticated 
since many algorithms require non-trivial patters of data access to run 
efficiently. 
Calculation of locations of desired data elements. When done properly, this is 
largely a matter of tracking down pointers. 
“Bookkeeping” operations such as looping over sites. 
Integer arithmetic in support of such activities as random number generation, 
table lookups and interpolation, and computation of transcendental functions. 
Decision logic required by the algorithms. 
Support of communication protocol - establishing channels and perhaps 
moving the data. 

Because the kernels of many algorithms, when run on conventional 
computers, are overwhelmingly dominated by floating point activities, there is a 
tendency to underestimate the importance of integer power. There are some 
techniques which compensate for lack of integer capability. One can vectorize the 
problem, ordering operations and placing data so as to allow special addressing 
hardware to handle the addressing calculation. One can avoid algorithms that 
require significant decision logic or integer support. For SIMD machines, a 
centralized fast integer unit can handle the requirements for some algorithms. 
In general, the price for inadequate integer capability is paid in restrictions on 
how the machine can be used. 

There is some ambiguity about what is meant by an “integer operation”. The 
useful work done per instruction varies greatly with machine architecture, 



compiler efficiency, and other hard-to-quantify features. (This is why naive 
comparisons between two computers are often fuzzy at the order of magnitude 
level.) The yardstick we use to measure integer power is the Vax (780) equivalent: 
I = 5 would mean the equivalent of a Vax instruction executed every 5 cycles. 

Aside from the power of the integer unit used, one parameter that can be 
controlled which influence integer power is memory bandwidth and latency. 
Another way to help the integer unit is to provide special hardware support for the 
common sequential address generation - in fact, we assume throughout that in 
simple cases address generation can keep up with the memory bandwidth. (If 
that is not so, then the effective value of M used must be increased.) 
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Integer power impacts the gauge configuration computation more heavily 
than propagator inversion. A value of 1=4, which does not excessively degrade 
performance, corresponds to a lo-Vax integer unit on a 40 MHz processor, not at 
all a difficult achievement. 

Double Precision Saeed 

The issue of which portions of which algorithms require extended accuracy is 
still being explored. Because the newer floating point units tend to have 64-bit 
capabilities, at speeds such that the increased memory bandwidth limitations are 
more important than the double precision floating point speed restrictions, the 
issue of speed here may be moot. Of the two algorithms being studied, it seems 
that extended precision may be useful in one phase (the dot products) of the 
inversion problem. 



Data from “D effect” 
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What we see is that virtually any hardware double precision speed will be fine, 
but that doing things in software (or in a slower extended precision coprocessor) 
can degrade performance badly. 

Multinle FloatinP Point Unib 

It is possible to connect more than one floating point unit in tandem, controlled 
by a single instruction stream and sharing memory and communications 
capabilities. The design complexity may increase, and one might require 
external registers so that both FPU’s can share data fetched from memory; the 
software effort to utilize both processors may be large; but if the power boost is 
sufficient, all that might be worthwhile. We have examined the impact of 
multiple FPU’s, keeping the bandwidth to memory fixed (adding an extra FPU 
will certainly not make it easier to have quicker memory access). 

Data from “multlple fmacs” 
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The qualitative features here are easy to comprehend: Extra floating point 
multiply/accumulate capability has a greater impact if memory bandwidth is 
high (M=l); the second FPU has a greater impact than subsequent units. 
Quantitatively, we see that a second FPU can improve performance by 25% in 
high-bandwidth systems. We also see that any floating point units beyond the level 
where each unit can access a word every four cycles, is completely wasted. 



Summary of Effects of Machine Parameters 

This section is a synopsis of the effects of various values of the parameters 
examined, on the performance of the system for a particular problem. The 
propagator inversion problem was chosen - computations of that sort are likely 
to occupy the bulk of machine time. 

Percentages quoted here are comparisons to what power could be achieved for 
the best possible value of the parameter being varied, fixing other parameters at 
reasonable values. The boldfaced values are the “minimum acceptable” level of 
parameters, before the effects become overly large. Specific values in parentheses 
are examples pegged to a 40 MHz processor. 

Bandwidth to Memorv (M) 

Communications Bandwidth (Cl 

Communications ClusterinP 

M=l--87%; 
M=2-6868%; 63OMbyte&ac) 
M=3-55%; 
M=4-45%; 
These results are not very architecture dependant; 
but me highly problem dependant. Pure gauge is 
less memory intensive: M=2 gives 94%, M=4 gives 
70%. Because memory bandwidth is costly, systems 
will likely accept M=2; the perfect M=.5 is probably 
not feasible at all. 

c=2 - 100%; 
c=4 - 94%; 
c=s - 850/O; (20Mbyte&ac) 
c=12- 77%; 
These results are of course architecture dependant; 
for example, if memory access is pegged to 
communication speed (as in shared memory 
machines) M moves with C. The inversion problem 
is about twice as communications intensive as the 
pure gauge problem. 

Nc=2 -93%; 
Nc=4 -850/0;(4p x-ocesors per board) 
Nc=8 -73%; 
NC = 16 - 54%; 
This makes several assumptions: The chunks 
handled by the clustered CPU’s me formed into a 
brick (rather than a hyperplane), and the processors 
share communications resources in a reasonable 
way. The intercluster communications bandwidth 
is assumed to be slow (C=8); if C were 4, then even a 
16 processor cluster can share communications with 
82% effkiency. 



Communications Overhead (Ocj oc = 100 - 91% (2.5 pet) 
Oc = 200 - 83% 
oc = 300 - 77% 
This is the time to send or read “zero words” of data 
from a neighbor; in some architectures, it is zero. In 
other cases, Oc may be heavily dependant on integer 
speed. 

Multinle Floatine Point Units 

Inteper Power (I) 

Nf = 1 - 100%; 
Nf = 2 - 126%; 
Nf = 3 - 136%; 
Nf = 4 - 140%; 
This assumes high memory bandwidth (1 word per 
cycle). If M = 2 instead, the potential improvement 
for multiple FPU’s is halved. These numbers also 
assumes the software effort to take full advantage of 
the extra unit, without being affected by overheads. 

1=2-92%; 
I = 4 - 85%; (10 Vax power) 
I = 6 - 79%; 
Integer power (decision logic and addressing 
capabilities) is more than twice as important for the 
pure gauge case. Substantially less reliance on 
integer power can be achieved at a high cost in 
program flexibility and coding effort. 

Data Cache Access Bandwidth (MC) MC = .5 - 94%; 
MC = 1 - 89%; (160 Mbyteskec) 
Mc=2 -74%; 
These numbers assume a low memory bandwidth 
(M=4). The savings due to cache go away as main 
memory bandwidth becomes reasonable. Also, the 
cache effect is much smaller for pure gauge. The 
cache size needed to achieve savings is roughly 
enough to hold a few “lines” of data. 

Number of Retisters ( Nr) Nr = 56 - 100%; 
Nr = 32 - 83%; 
Nr = 24 - 78%; 
Nr = 16 - 73%; 
The pure gauge problem is about 2.5 times less 
sensitive to the number of floating point registers 
available. 



Double Precision Sneed (D) D=2 -97%; 
D = 4 - 92%; (20 Mflopshx 64-bit) 
D=8 -82%; 
D=20-63%; 
There is one part of the inversion for which it seems 
that double precision is advantageous. Note that 
almost any hardware double-precision will be fine 
(it can be 4 times as slow as 32-bit) but that sofiware 
extended precision quickly becomes painful. 

These impacts are not additive - when one factor forces a performance 
degradation, the requirements on other factors ease up a bit. We find that using 
these realistic minimal acceptable values for all the machine parameters only 
degrades speed by 35%, relative to the performance with high memory bandwidth, 
integer power, etc. 

As an example, consider a board with a cluster of four 80 Mflop (peak) 
processors. If the memory bandwidth, communications speeds, integer power, 
etc. were all very high, each processor would achieve, on actual physics problems 
and without Herculean coding efforts, about 24 Mflops per processor. Choosing 
instead the “minimal acceptable” values (in boldface above) - 80 Mbytes/set 
bandwidth to memory, 20 Mbytes/set communications bandwidth, with 2.5 psec 
overhead; 10 Vax equivalents of integer power, etc. - the effective power would 
decrease to 16 Mflops per processor. 

These numbers may be disappointing, but it is a fact of life that the actual 
performance of a system is not the “machoflop rate” (the speed if the problem 
could be selected to maximally use the processor). It is not “God’s megaflops (the 
speed arrived at if you count all the necessary operations in the actual problem, 
and assume that miraculously everything overlaps perfectly); nor is it 
“superman’s megaflops” (the best possible speed, assuming infinite 
programming effort is available). Herculean efforts involving customizing every 
routine and interface will also be rare. The best one can expect is careful, 
modular optimization of all routines which run for significant times on the 
system. 



Memorv Size Reauirements 
It is harder to pin down quantitative requirements on the size of main memory 

in a system. Nonetheless, it is important to know what we can about this, because 
a large fraction of the cost of a system is the cost of memory. In cases where the 
users are completely unsure of how much memory and power will be needed (“the 
more the better”), the “cost rule” is reasonable - spend half your money on 
memory. We must try to do better than this, because memory requirements may 
influence design decisions such as the choice of SRAM vs DRAM. If the wrong 
selection is made here, and the cost rule is followed, then the system utility can be 
diminished by a large factor. 

The first hope would be to set a natural physics scale for the memory. For 
example, if we could honestly say that 64**4 will be tine, and going to larger 
lattices going past 64**4 doesn’t help any more, then the total memory size needed 
could be fixed as being no greater than 36 Gigaflops. Today’s estimates for this 
“natural” physics scale range from 64**4 to 128**4 (and up to NEVER). 
Unfortunately, the feeling for this number always seems to be just one or two 
orders of magnitude beyond what we can study at the time. 128**4 might really 
be as big as you would ever want, but we won’t know till we can get past there. 

It is likely that for systems to be designed in the near future, neither CPU 
power nor memory will be totally adequate for all the physics one would like to do. 
Since, for a fixed system cost, speed and size can be traded off (to some extent), a 
study of memory needs is dominated by trying to determine the proper memory to 
power ratio. This can be expressed in Mbytes/Mflops, where a Mflops is one 
million peak floating point operations per second, although strictly speaking, the 
important power measure is effective Mflops. 

The memory to power ratio is highly problem dependant, and optimizing it 
requires physics input. We must have an idea of what sort of algorithms are best 
to use (to see how much memory is needed per site). It would be nice to know how 
big a lattice is needed for interesting and correct physics results. Since we won’t 
know this very well until the physics has been done on large lattices, we must 
make do with estimates of how many sweeps are needed to get valid results - 
then for a fixed amount of CPU power, one can see how large a lattice could be 
done in a reasonable time, and determine memory needs accordingly. 

Based on experience with current computers, we have learned (with some 
degree of confidence) certain things about these requirements. Other numbers 
are much less firm, either because they depend critically on the choice of 
algorithm and progress is being made in that direction, or because they are 
sensitive to issues which can only be learned by doing the physics on larger 
lattices. We will first discuss what we know, then present best estimates for other 
quantities that are necessary to get a feel for memory to power ratios. 

The number of bytes of data memory needed per site is easily calculated for any 
given algorithm; moreover, we have some idea of what this number is for 
algorithms which will likely be used, and the uncertainty in this number is fairly 
small. Almost independent of algorithm choice, there will either be some 



pointers defining the connectivity of the lattice, or lists used to avoid excessive 
integer computation in computing locations of neighboring fields - this amounts 
to under 100 bytes per site. For the pure gauge field, there are four links per site 
- 288 bytes (one could save only two rows, but this would have a severe impact on 
the performance of many algorithms). The quark field is more subtle. At a 
minimum, one needs to be able to find one component of the propagator, while the 
gauge fields are still present (this result can then be sent to a distributed disk 
system for future use). Inversion methods like conjugate-gradient and 
minimum-residual typically require 3 - 5 copies of quark fields present - roughly 
up to 500 bytes. Thus, we need at about 900 bytes per site. 

A class of methods which will require somewhat more storage is the set of 
molecular dynamics related algorithms. What these algorithms, which include 
the promising Hybrid Monte Carlo method, have in common is the need to 
remember values of “field momenta” or fields from previous steps. Typical first 
or second order methods require one or two extra copies of each field, amounting 
to up to 700 additional bytes per site. Another circumstance in which additional 
memory would be needed is if all the components of propagators were needed at 
one time. That would be the case if there was no usable disk system. The 
additional memory per site is roughly 1100 bytes (the “momentum fields” for 
molecular dynamics methods can share these extra bytes). At first glance it 
would seem that the physics analysis does need all the components of the 
propagator field at one time (worse yet, of two or three propagators with different 
mass values). However, the analysis can normally be done one time slice at a 
time, with only 1 - 3 time slices in memory at any instant. Under those 
circumstances, the memory needs for analysis are no greater than those for 
configuration generation. Thus the anticipated lattice size dependant memory 
needed is 

1900 - 1600 bytes/siteI 

There is some amount of data memory needed independent of lattice size. This 
includes data structures describing the lattices in general and sets of sites and 
fields on the lattice; local variables and intermediate storage for use during the 
computations at each site; and memory in support of whatever operating system 
is running. (On machines with distinct integer units not coordinated with the 
floating point processors, this can be in a different, probably slower, memory.) We 
find for the ACPMAPS system that this “overhead” memory amounts to a few 
hundred kilobytes per processor, but it can probably be kept to under 100K bytes. 
The minimal extra overhead is then 

100 Kbytes/processor 

The instruction memory needed is obviously driven by the most complex 
algorithms that will be desired. It would be a disaster not to be able to run the 
codes you want because of instruction memory limitation; just as bad is the need 
to “overlay” problems or worry about breaking things up into multiple jobs. 
Fortunately, we can get a good idea of how large these codes can be once we have 
factored out all the grid/connectivity/bookkeeping work. This is what the libraries 
for CANOPY do - the CANOPY routines linked into most lattice codes amount to 



over 200K bytes on ACPMAPS (but more like 1OOK on machines where half the 
instruction line is not occupied with floating point naps). To this can be added 
under 100 Kbytes for the operating system. The remainder of the problem code is 
what varies with algorithm complexity. This ranges from about 20 Kbytes up to 
100 Kbytes for problems done to date. The coding complexity of algorithms is 
probably worst for large analysis codes, where several different types of analysis 
will be combined, to lessen the need for multiple passes through data kept on tape 
or disk. 



It seems safe to assume that the library routines will at most double, and that 
the code complexities will become no worse than five times what they are today. 
In that case, if the instruction memory is shared with data memory, we need 

I800 Kbvtes for instructions1 

Because running out of instruction room is so disastrous, if there is a distinct 
instruction memory, we would like to provide more than a factor of two 
cushioning: 

2 Mbytes for separate instruction memory 

We know some things about lattice size requirements. Attempts at doing 
interesting physics have shown that 16 (and probably 24) sites on a side is 
inadequate - either finite size or lattice spacing effects are significant. There is 
some hope that 32**4 sites (or 32**3 volume by a larger number of time slices) will 
be better; we would have to go a bit further to be somewhat convinced that size 
dependance is dying off. Thus we need to be able to work with at least two million 
sites. What we would really like to be able to study is 64**3 volumes and even 
longer in the time direction (24,000,OOO sites) - perhaps only for quenched 
fermions. So, not including overheads described above 

tota1 memory i 
need at least 3.2 Gbytes 

desire at least 21.2 Gbvtes 1 plus Overhead 

These are absolute minimum requirements for advancing physics beyond the 
realm explored to date. Even the larger number is easy to attain for systems with 
many processors. 

We also know something about the power needed for doing quenched 
calculations. This is made up of comparable times spent on gauge Monte-Carlo, 
and inversion to find propagators. (A limited amount of physics can be done 
without propagators.) The time needed to do about 1000 Monte-Carlo sweeps (to 
get a non-correlated configuration) is about 15 million cycles per site; the time for 
LU decomposition inversion for each of 3 mass values and each of 12 spin-color 
components (three times faster than without preconditioning) is about 20 million 
cycles. These times (especially the inversion time) may improve, but because they 
are balanced, both have to improve a lot to make a big difference in total cycles 
needed. If a physicist wanted to do a serious examination of quenched QCD on a 
big machine, this would require exploring about ten values of (beta, size). For 
each value, you would like at least 100 decorrelated points; and the study should 
take no longer than 6 months. This gives a value for the memory supportable by a 
given power for a high-statistics study of quenched &CD: 

1 cycle . 1 decorellated point , 900 bytes . 1 value 1 study 15M set 
2 flops 35M cycles/site site 100 points ’ 10 values l study = 

IO.2 Mbytes/Mflops needed for high-statistics quenched QCD] 



This is an absolutely minimum appropriate memory size for quenched 
physics. At least five effects make it desirable to have more memory per unit 
power: 

l It is often possible to trade memory for speed. For example, and alternative 
scheme of storing pointers to the link fields needed in environment 
calculations would save 10 - 20% in time, at the cost of 600 extra bytes per site. 

l Frequently, one would like to explore either memory-intensive algorithms on 
reasonable lattices, or the behavior of proposed methods on really large 
lattices. Sometimes these low statistics studies are done to investigate 
algorithms; at other times, physics can be extracted. These studies require 
much more memory - one or two orders of magnitude. For example, just to 
double the number of points in all directions needs an order of magnitude 
increase in memory size. 

l For a given machine size, the memory is a hard limitation; the power 
limitation can be worked around in important cases merely by tolerating 
longer running times. 

l Although we have assumed the system scales, making memory/power ratio 
the important factor, this scaling does not go on forever. If there is a limit on 
how many processors can be in a system, you cannot indefinitely increase the 
size by adding memory and power together. For example, it may be possible to 
work with 4,000 32 Mbyte processors, but not 16,000 8 Mbyte processors. 

l Some programs in the analysis stage may require more bytes per site than the 
corresponding program to generate the configurations and propagators. For 
example, if a particular smearing method requires the entire propagator (all 
time slices) for each mass value to be present at once, that could quintuple the 
needed memory. 

A couple of interesting points also indicate that large memories are desirable. 
As long as a sufficient number of decorrelated lattices, very large lattices provide 
extra statistics compared to smaller volumes (the fields on one side may 
decorrelate with those on the other side). So it is not the case that power needed to 
do high-statistics physics scales with volume - it may level off at some point. 
Also, major breakthroughs (for example, cluster-like algorithms) are not ruled 
out; these tend to vastly increase the appropriate memory/power ratio. This is 
even more relevant to dynamic &CD. 

Experience with the ACPMAPS system corroborates these observations: 
Physics can just be done comfortably with 0.4 Mbytes/Mflops, but low-statistics 
large-lattice or memory-intensive investigations are hampered. 

Hard facts concerning memory needs for dynamic QCD are more difficult to 
come by. This is because of there is much greater uncertainty in the nature of 
algorithms that will be appropriate, and in the speed with which these algorithms 
produce decorrelated data points. However, certain obvious constraints can be 
stated. 



Firstly, dynamic QCD will (probably) never be quicker than quenched 
calculations. (It is conceivable that the presence of quark loops damps some 
critical point effect in a big enough way to overcome the extra time taken, but that 
seems prohibitively unlikely.) Therefore, the memory to power ratio required for 
dynamic QCD tends to be smaller than that for quenched physics. 

Secondly, the absolute size limitations still hold. On the low end, if you can’t fit 
a large enough lattice to do interesting physics, decent statistics will do no good. 
On the high end, a machine large enough to do dynamic QCD on 64**3 by 96 
lattices will probably be satisfactory for a lot of physics, although there may be 
some reason why bigger lattices are interesting. 

at least 3.2 Gbytes needed even for dynamic QCD 

Finally, because algorithm investigation is for dynamic QCD is an extremely 
important endeavor, quite a bit of work will be low statistics studies on lattices 
which are larger than would be feasible (for good statistics) based on power. 

As to the estimated appropriate memory/power ratio for high-statistics 
dynamic &CD, we can proceed as follows: Today’s best dynamic methods (e.g. 
hybrid Monte Carlo) take between a factor of 100 and 1000 more time than is used 
for quenched calculations on the same size of lattice. (The factor depends both on 
the algorithm and on the values of beta and quark masses used.) If no further 
algorithm improvements occur, this would give quite a small memory/power 
ratio; the memory needs are controlled by the desire to have at least as much site 
data memory available as overhead - this means memories of 250K (or l-2 
Megabytes if instruction memory shares the same space) would be appropriate. 
However, in the absence of algorithm improvements, the important work will be 
on algorithm development, which needs (as mentioned above) at least an order of 
magnitude more memory. 

Recent improvements in propagator computation have increased speed by a 
factor of 3; these improvements have not yet been applied to dynamic QCD on 
reasonable lattices. We can suppose that the same sort of speedup will occur 
there - a factor of between 1 and 10. It is more speculative to try to estimate the 
remaining room for improvement; we will guess that it is the same amount: 
between no further progress, and another order of magnitude. However, we will 
not include this last factor in our estimates when we also include the increased 
memory to do algorithm exploration; you don’t need both the last improvement 
factor and the exploration room. This will give a conservative estimate of the 
memory/power ratio appropriate for dynamic QCD. 



Putting together the estimated numbers, we get that the memory required for 
dynamic QCD is that for quenched QCD, multiplied by the increase in bytes/site 
needed (a factor of about two) and by: 

10.5 * 5 improvement in algorithm l 101.5 * 5 f or ur er algorithm exploration f th 

102.5 * .5 times more power needed for dynamic QCD 

This means that the appropriate memory size for doing dynamic QCD is half of 
that for quenched physics - there is an uncertainty here of an order of 
magnitude. 

10.1 MbytesNflops needed for dynamic QCD] 

The memory to processing power ratio needed for high statistics dynamic QCD 
may be about ten times less than that (because the improvement factor is likely to 
be smaller than the extra memory needed for algorithm exploration); 
uncertainties are large. To allow for the possibility that the analysis phase will 
require more bytes per site, we will estimate that high statistics dynamic QCD 
needs three times less memory 

I.03 Mbytes/Mflops needed for high statistics dynamic QCDl 

To summarize appropriate 

0.2 - 6.0 MbytesiMflops 

0.2 - 0.6 MbytesiMflops 

0.01 - 1.0 MbytesNflops 

0.003 - 0.3 MbytesiMflops 

memory/power ratios are: 

for quenched QCD with algorithm exploration 

for high statistics quenched QCD and analysis 

for dynamic QCD with algorithm exploration 

for high statistics dynamic QCD 

To put this in perspective, it means that for a 100 Gflop machine, you might 
have 30 Gbytes of memory to be confident that high statistics physics can be done, 
and to provide for most dynamic algorithm exploration. For a true Teraflop 
machine, you might wish to stop at 100 Gbytes, which would comfortably allow for 
algorithm exploration and support high-statistics quenched physics on 100**4 
lattices. 



Avoendix A - Parameters Studied 

To parameterize the nature of a machine architecture (for the purpose of 
evaluating its effective power), we adapt the following conventions: Since for fixed 
numbers of cycles for every operation the power scales completely with cycle rate, 
we express everything in terms of number of cycles taken for a particular 
operation. (This need not be an integer, and can easily be less than one; and in 
some circumstances is a statistical average number.) Clock cycle rate is 
somewhat arbitrary; we ordinarily take our ‘cycle’ to be the time needed for one 
floating point multiply and accumulate operation, since many proposed 
architectures are oriented in that way. In the analysis of how long various 
operations will take, we come across several parameters - each is the time taken 
to do something (so that a lower value for a parameter means more power). 

l F - A floating point multiply and accumulate (or sometimes a multiply and 
an add). Normally taken to be 1. 

l f - A floating point multiply or add. Often the same as F; smaller the 
architecture is not multiply/accumulate. 

l D - Double precision operation. 
l M - Load a 32-bit word from memory (actually, a usual floating point word, 

64-bits if 32-bit operations are not typical). Typically will range from .5 to 
around 4. 

l M, - Load a 32-bit word from a fairly large cache memory - same as M if 
there is non cache. 

l M, - Load a 32-bit word from an external register - same as M, if there are 
none. 

l S - Store a 32-bit word to memory. 
l se - Store a 32-bit word to an external register. 
l 0, - Overhead to establish communication to another (neighboring) 

processor. In some SIMD architectures, this can be zero cycles; it 
ranges up to hundreds or thousands. 

l C - Communicate one 32-bit word to or from another processor (as part of a 
block; the overhead is covered by 0,). 

*I - Integer operation. This is normalized to Vax Mips - a 1 Mhz processor 
with I = 1 would match one Vax (780) in integer power. Many factors go 
into I, including memory speed and compiler efficiency; typical RISC 
machines require 2-3 actual cycles to do one ‘integer operation’ by this 
definition. 

Another parameter which comes into consideration is controlled not by the 
machine architecture but by how big a chunk of the lattice is handled by each 
processor. This is surface/volume ratio, SN, and will typically be around 1 - 2. 
Details of SN considerations are presented in appendix D. 



Anvendix B - Architectures Examined 

l- Shared Memory - Communications tied to memory. Every memory access 
takes the same time, whether or not communications is involved. The 
architecture can look like a grid or a switch: 

2. Lockstep: Shared Memory with Explicit Local Caches - Communications tied 
to certain memory accesses. Accesses which are known to be available locally 
are quicker. The same architectures apply, with some additional small, fast 
memory attached to each processor: 

switch 
I 

bm 
P P 

3 - Lockstep Clusters - Lockstep communication, but with shared paths between 
nodes of groups of nodes. For example, there may be several nodes on a single 
board, which has a communications path (or paths) to other clusters. 



Obviously, there may be multiple levels of clustering: nodes on a board, boards 
in a crate, etc. Assumedly, this shared path is not fast enough to match the 
intra-cluster bandwidths; it is a potential bottleneck. For these architectures, 
the details of the size and shape of the portion of the grid on each cluster is 
important. Possible architectures include having switches or fixed 
interconnections between clusters and within each cluster: 

4 - MIMD - Shared communication paths, with or without attempts to minimize 
contention. There can, of course, be levels of clustering which will effect 
communications bottleneck computations. 



Annendix C: Detailed Breakdown of Anticipated Timings 

PronaPators and Dvnamic Quarks - Dslash 

The object is the computation of the D operator being inverted when quark 
propagator calculations are being done. This is done once per conjugate-gradient 
sweep for each site. Quark inversion represents about half the work for quenched 
calculations, and probably 80% - 99% for dynamic QCD. The quantity needed for 
each site x is 

where k is the hopping parameter (related to the bare quark mass). Thus for 
each of eight directions, one must accumulate an expression of the form Ur,r+r. 

The quark field w is a set of four color-vectors (complex 3-vectors), but the 

multiplication of w by y,, does not imply a multiplying a 4 x 3 and a 3 x 3 complex 

matrix, because r, consists of l’s and i’s, one element in each row. Naively, 
multiplying v by U does involve multiplying a 4 x 3 complex matrix by a complex 
matrix (144 multiply/add cycles). However, there is a technique (the “Draper 
trick”) to reduce the requirement to multiplying 2 x 3 and a 3 x 3 complex 
matrices, saving half the arithmetic. The trick relies on the fact that 1* y,, either 
has two zero rows, or has rows 3 and 4 trivially dependant on rows 1 and 2. Thus, 
it suffices to combine the top and bottom halves of W, and multiply U by the 

resulting 2 x 3 matrix. For example, in a representation where ?/x is given by 

0 0 0 1 
0 0 1 0 
0 1 0 0 
1 0 0 0 

to compute (l+‘&)~ one need only use (~1+~4) and (r+r2+~3). 

So, the efficient computation of the D operator can be broken into four phases: 

l Phase 0 - Locating all the necessary w and U fields, and loading any off-node 
data needed. 



l Phase 1 - Combining the four rows of into two color vectors, incorporating the 
appropriate i and signs (or in one case, multiplying two rows by 2, since the 
other two components of are (l+y,)~ zero). 

l Phase 2 - Multiplying the combined color vectors by the gauge field U. This is 
the step that has been shortened by the trick, but is still the dominant step. 

l Phase 3 - Accumulating the result of phase 2. At the end, this result can be 
multiplied by k and added to W(X). Alternatively, one can multiply by k and 
accumulate immediately. 

We will calculate the time T[D] needed for accumulating all eight components 
(one entire site). Note that phases 2 and 3 may be combined, if there are enough 
registers or sufficient bandwidth to memory. Phases 1 and 2 could in principle be 
combined, but in practice, to gain from this would require extra memory 
bandwidth, substantial extra integer power (to generate the complicated 
addressing pattern needed), and a lot of extra coding work - we assume this 
won’t happen. Phase 0 might be combined with phase 1, but this would involve 
inserting new memory operations into a very ubiquitous software tool (getting 
pointers to fields), and would probably not be attempted. 

A total of 1260 floating point operations is required to compute D in this way. 

Phase 0: There is a computational part and a communications part. The 
computational part is mainly pointer chasing. Basically, you are offsetting the 
home site’s pointer list with the direction (shifted appropriately) to get a pointer to 
the site desired, looking up and adding the field offset corresponding to the 
selected field, and checking that the node looked up is indeed the local node. 
Including the subroutine calling overhead, this amounts to about 8 integer 
instructions for each field; there are 9 \v (including the home site) and only 5 II 
(the four gauge links on the home site are known to be bunched together) field 
pointers needed. We will also add in the overhead for moving from one site to the 
next in a task (10 instructions). The time taken for the local portion of phase 0 is 
thus 122 I. [One can picture some macho arrangement of sites and fields in 
memory such that this is cut by a bit, computing field locations by shifting and 
adding appropriately. Aside from the fact that this limits the physics you can do, 
and has to be reconsidered for each new problem, it is also observed that the 
pointer chasing method actually is faster in practice.] In this phase, it turns out 
that only about 15% of the data accesses are inherently uncachable - at any rate, 
these memory cycles are factored in to the effective integer speed I. 

The communications part of phase 0 depends critically on two things: how 
many fields must be brought in from off node, and how long it takes to load a field. 
The latter is sensitive to communications overhead and bandwidth, and to just 
how the communications are synchronized. That is, the bandwidth requirements 
may be much less if nodes are not all attempting to communicate 
simultaneously. Several models will be considered here: (1) A MIMD system, 
with communication needs eventually being randomly distributed in time. (2) A 
system with a large configurable switch, employing simultaneous 



communication over the switch. (3) A system with lockstep local communication, 
with a group of processors (perhaps on one board) sharing a channel to 
neighboring boards. (4) A system with lockstep local communication, with each 
processor’s bandwidth unaffected by other activity. 

The number of fields needed from other nodes depends on how the sites are 
distributed among the nodes. It ranges from 6 fields needed (4 quarks and 2 links) 
for the “pancake” case (e.g. a 64*64 plane in each node) to an average of two or less 
for hypercubic chunks (1 for 8**4 chunks in each node). This number is equal to 
1.5 SN, the surface to volume ratio for each processor (because even when a 
quark must be fetched, there is a 50% chance that the associated U for 
transporting that quark belongs to the home site). In cases (2) and (4), the 
communications time adds to the rest of the time - the time taken is 
SN (1.5 0, + 330. In cases (1) and (3), the time taken is the same, but there is 
the potential for a bottleneck in communications - if N nodes share a bottleneck, 
N S/V (33C) cycles of communication must happen. This is discussed at length in 
the section on communications saturation (appendix D). In case (l), this 
communication is distributed (to a good approximation) along the entire 
computation time, but in case (31, it must all be part of phase 0. Because of this, 
for lockstep shared communication, one must multiply C by the number of nodes 
haring the bottleneck, while for MIMD shared communication, one multiplies C 
by a contention factor equal to l/(1-saturation), where the saturation is the total N 
node communication cycle time divided by the time for the entire Dslash 
calculation. 

Phase 0 thus takes 122 I + SN (1.5 0, + 330 cycles. 

Phase 1: This is pulling four color vectors in and adding them in pairs to form 
two color vectors. (In one case out of four, it instead pulls in two vectors and 
multiplies by 2; we will ignore this small deviation.) The integer overhead 
involved is pretty trivial (two primary addressing operations, then DMA). The 
memory requirements, which are likely to dominate, amount to 24 M. The 
floating point requirements are 12 adds (12 D. This is done for each of eight 
directions. (Note - we assume that there are sufficient registers to hold the two 
resulting color vectors. If there are fewer than about 16 registers, this and phase 
2 will change, requiring many more memory operations.) 

The memory accesses here are largely uncachable. Obviously, the fields from 
the site before home in the most rapidly changing dimension (or two dimensions 
if the cache is very large) can hit cache; depending on details of the 
communication mechanism, so can any fields that had to be fetch from 
neighbors. Still, between 50% and 87% of these accesses are inherently “fresh’ 
data. We will assume a 75% miss rate. 

Phase 1 thus takes Max(144 M + 48 M,, 96 f) cycles. 

Phase 2: This is the multiplication by U - 72 multiply/a&l pairs (72 F). 
During this time, U must be pulled in. Assuming the two color vectors remain in 
registers, each row of U need only be loaded once. This phase requires 24 - 30 
registers to accomplish in this optimal way. If there were only 16 registers, then 



you could do the loading in the same manner, but each component of the answer 
would have to be stored back, and the pipe overheads would be felt more strongly. 
We assume at least 32 registers. This phase is done eight times. Again, most of 
the memory accesses will miss cache. 

Phase 2 thus takes Max(108 M + 36 Mc, 576 F) cycles. 

Phase 3: Here we have two choices. If the registers are limited, we pull in the 
accumulated v(x) + k(l+yp)v terms, multiply or two color vectors produced in 
phase two by k, add one of them to each of the four accumulation color vectors, 
and store the new accumulations. If we have sufficient registers to hold the 
accumulations, (a total of 56 - 64 registers) then the loads and stores go away, 
except for the first loads and last stores. In principle, the k multiplications can be 
done at the same time as the adds. In practice, the chip architecture may or may 
not allow this, but this step may be memory dominated anyway, so we will just 
assume multiply/add cycles. These are not the sort of “regular” F cycles found in 
complex multiply and accumulate operations, so architectures with F less than 1 
(e.g. two or more fmac units in tandem) will use F=l here. That is only important 
if there are lots of registers, so that this step is not memory dominated. 

Phase 3 thus takes either Max(168 Me + 168 S, + 24 M + 24 S, 192 F) cycles, 

or with at least 56 registers Max(24 M, 24 F) + Max(24 S, 24 F) + 144 F cycles, 

but in any case at least 192 cycles. 

The total time in cycles for the Dslash operation is then (assuming we are in 
the range where a memory operation takes at least half as long as a floating point 
multiply and add, and no more than four times as long) 

576 M + 576 F + 122 I + SN (1.5 0, + 33C)I 

Of the 576 memory cycles in memory-dominated phases, one third are 
inherently uncacheable loads; one third are stores. 336 cycles (including most of 
the stores) could be to extended registers or not involve memory at all if there are 
at least 56 registers - but these do not overlap the other memory operations. 
Therefore, for this operation, an 80 Mflop unit might be reasonably balanced with 
160 Mbytes/set bandwidth to memory, 16 Mips of integer power, and 20 
Mbytes/second of communications bandwidth (giving 15% communication 
saturation, if SN is 1). Under those circumstances, the D operation will take 
about 45 msec; this represents 35% of the peak floating point speed, or about 45% of 
the maximum power in principle possible by overlapping all the integer, 
communications, memory and floating point operations. 

Communications bandwidths between groups of nodes are particularly 
stressed here, because the number of sites handled by each node would not be 
large small for such a computing-intensive problem. Assuming decent 
chunking, a card with 8 nodes might well contain 8*8*8*8 sites; SN is 1. Making 
the queueing assumptions discussed previously, a 40 Mbytes/second inter-group 



bandwidth would increase the execution time by 18% (the communications 
bandwidth being 30% saturated); 28 Mbytes/second would cost 42%, and 20 would 
cost 80%. 

Minimal Residual IncomDlete LU DecomDosition 

The operations other than D necessary for propagator calculation vary widely 
with what particular algorithm is selected (even the I0 computation can vary, but 
those changes don’t alter the mix of operations much, except as mentioned in the 
next paragraph). Rather than try to study all possible algorithms, we will 
examine a sample algorithm, choosing one which is currently “state of the art” in 
the sense that for interesting values of l3 and k on fairly large lattices it performs 
much better than most methods, and as well as any. This algorithm is the 
method of minimal residuals, preconditioned using incomplete LU conditioning. 

The steps involved are an ordinary P), followed by special Dslash-like 
operations acting with the L and then the U operators (these backsolve the 
conditioning), followed by the miscellaneous additional operations we will 
consider here. The L and U operations involve the same sort of quark transport, 
multiply by gamma matrix, and accumulate steps as B, but the accumulations 
average only half the number of quarks. In addition, needs for synchronization of 
data affect the performance on those operations; a full analysis would depend 
heavily on the particulars of the architecture. We will approximate the LU 
portion as being equivalent to one B, for the purposes of estimating how important 
the miscellaneous additional operations are. 

These additional operations consist of finding a pair of dot products of the form 
w l w and w l @ where w and Cp are quark fields, and doing a 

pair of linear accumulations of the forms w = w + CL @; I) 

= 4 - a O, where a is a complex scalar. The dot products can be 

done together, as can the linear accumulations, but a depends on the results of 
the dot products. So these miscellaneous operations must be broken into two 
phases - phases 4 and 5 for the overall propagator inversion. 

Phase 4; The dot products require, per site, about 10 integer operations for task 
overhead, roughly 8 integer operations to locate two fields (which can be clustered 
together) at the home site, and about 8 integer operations to guide the summing of 
results across sites, for a total of 26 integer operations. The actual dot product 
takes 24 multiply/accumulate cycles for W l W and 48 
multiply/accumulates for 

w*+T and requires 48 non-cacheable memory cycles to load in w and 

+. 

There is a potential complication here involving double precision. It seems 
likely that small errors in these dot products can radically effect the speed of 



convergence for the inversion. Since these dot products can be sums of millions of 
terms, systematic loss of precision is a major concern. An obvious solution 
would be to do the accumulation in double precision. This does not affect the 
loading needed (assuming the quarks themselves are still single precision) but it 
means that the multiply/accumulate (or at least the accumulate part) is done in 
double precision. It is prudent to assume that this is the case. 

Phase 4 thus takes 26 I + Max (48 M, 72 D 1 cycles. 

Phase 5; The linear accumulations require, per site, about 10 integer 
operations for task overhead, and 10 operations to locate three fields clustered 
together at the home site. The actual calculations then require 72 uncachable 
memory loads to bring in the three quarks (there will surely be sufficient 
registers to not need to bring (I in twice) and 48 stores, as well as 192 
multiply/add cycles. (For architectures like the XL-3132, where 
multiply/accumulate must accumulate with the result of a prior operation, an 
extra 24 floating point cycles are needed.) 

Phase 5 thus takes 20 I + Max ( 72 M + 48 S, 192 F ) cycles. 

The total time in cycles for these miscellaneous operations (which amount to 
528 flops) is 

) 46I+Max(48M,72D)+Max(72M+48S, 192F)j 

Three things to notice are: 

l The ratio of memory needs to floating point cycles is, surprisingly, smaller for 
these calculations than for the D computation. But when at least 56 registers 
are available, D becomes less memory intensive. 

l Integer operations are about twice as important in these miscellaneous 
calculations. 

l The Dslash and Dslash-like computations together take roughly 10 times 
longer than the rest of the calculation. 

the 
To summarize, for the entire propagator inversion (representing 1788 flops) 
number of cycles required per site is: 

field location: 122 I + SN (1.5 0, + 33C) 

combine color vectors: Max(144 M + 48 M,, 96 D 

multiply by links: Max(108 M + 36 Mc, 576 Fl 

accumulate D: Max(168 Me + 168 S, + 24 M + 24 S, 192 F) 

dot products: 26I+Max(48M,72D) 

linear accumulations: 20 I + Max ( 72 M + 48 S, 192 F ) 



Quenched Gauee Confieurations - Environment 

When evolving the gauge field configuration in the absence of fermion loops, 
the bulk of the floating point operations are in the calculation of the 
“environment” with respect to a link being updated. This environment is the sum 
of six 3-link “staples”, so this procedure can be referred to as “staple-sum”. While 
the computation of a staple naively involves two SU(3) multiplications, in fact, it is 
sufficient to compute only the first two rows of the initial multiplication, and 
reconstruct the necessary third row of the final product by cross-multiplying the 
first two rows. This means that the entire process requires 1932 flops, rather than 
the naive value of 2592. 

The efficient computation of the environment can be broken into three phases: 

l Phase 0 - Locating all the necessary U fields, and loading any off-node data 
needed. 

l Phase 1 - The SU(3) multiplication of pairs of fields. 

l Phase 2 - Accumulating the result of phase 1. 

We will calculate the time T[El needed for accumulating all six staples to get 
the environment for one link. Note that phases 1 and 2 may be combined, if there 
are enough registers or sufficient bandwidth to memory. Phase 0 might be 
combined with phase 1, but this would involve inserting new memory operations 
into a very ubiquitous software tool (getting pointers to fields), and would probably 
not be attempted. 

Phase Q: There are two components to the accumulation of the field data. One 
is the computation of pointers to the data on the node - this takes 10 integer 
operations per element, or 190 I (including the 10 I site task overhead). The other 
is communication - each boundary link will require one (if it is at the top of a 
region) or three (if it is on the bottom) fields from other nodes. Thus the 
communications needs are SN ( 2 Oc + 36C 1. 

The total time for phase 0 is 190 I + SiV ( 2 Oc + 36C 1 cycles. 

Phase 1; Each element of the SU(31 products requires 12 multiply/accumulate 
cycles to compute by finding the dot product of a row of one matrix with a column 
of another. Computing a staple involves doing a “half’ multiply of the first two 
links (giving only two rows of the product) followed by a “full” multiply by the third 
link matrix. To reconstruct the third row of the answer, without needing the 
third row of the intermediate product, one takes advantage of the SU(3) nature of 
the matrices, and uses the cross product of rows one and two. (This is what 
allows the first multiply to be incomplete, and also saves time on its own.) The 
reconstruction takes 8 multiply/add cycles per element. This leads to a total of 168 
floating point cycles per staple. 



The memory operations needed are heavily dependant on the number of 
registers available. The obvious minimum is pulling in two rows of the first link, 
and all three rows of the other two links - 48 M. (These operations are roughly 
half cachable, depending on whether all four links associated with a site are 
updated sequentially.) To achieve this minimal memory usage would require 
sufficient registers. It would seem that 36 registers are needed - at one instant, 
there is a row from the first link, the entire second link, and two answer rows for 
the intermediate product. With about 28 registers, one can accomplish the staple 
computation using 6 extra loads (any of these extra loads will, of course, hit 
cache) - in the first multiplication, one column of the second link gets 
overwritten by answers, and is later pulled in over the no longer needed first row 
of the first link. With as few as 16 registers, the number of memory operations 
could go up to 78 loads and 12 stores (the intermediate answers would need to be 
stored somewhere as they are computed). The memory operations associated 
with storing the answer for each staple (18 S for each except the last) are included 
here, although if there are sufficient registers to do the phase 2 summing without 
putting the staple results into memory, these stores can be avoided. 

The total time for phase 1 (for all six staples), assuming 32 registers, is 
Max( 144M + 180Mc + 90 S, 1008 F) cycles; one could adjust the memory 

requirements down by 36Mc if there were at least 36 registers, or up by as much 
as 144M,+ 72Sc if there were as few as 16 registers. 

Base 2; Adding up the six staples can be fairly memory intensive unless 
there are enough registers to keep the accumulations as answers are found. The 
number of floating point cycles involved is 18 f for each of five staples, (In 
principle, the additions for the third row can be absorbed under the cross product 
operations to find elements of that row; this small savings is not worth worrying 
about). The simplest case is if there are at least about 54 registers - then the 
accumulation is done without any extra memory involvement. With fewer 
registers, it becomes tempting to consider overlapping the memory-intensive 
accumulation with the floating-point dominated phase 1. However, this requires 
the accumulated answer to be stored and re-loaded each time, further 
complicating matters and putting a lot of stress on register and memory usage. 
Instead, we can assume that the first five staples will have been stored, and after 
the last staple is found, the addition will be done. 

The total time for phase 2 is Max(90 M, + 18 S, 90 f) cycles, with the memory 
load needs completely eliminated if there are at least 54 registers, and the 
memory needs increasing by 18 M, (the answer for the last staple is not there for 
free) if there are fewer than about 24 registers. 

The total time in cycles for the environment calculation is then (assuming we 
are in the range where a memory operation takes at least as long as a floating 
point multiply and add, and no more than 2.5 times as long) 

90 Mc + 18 S + 1008 F + 190 I + SN (2 Oc + 36C)I 



The 90 memory load cycles in the memory-dominated phase 2 are inherently 
uncacheable loads. For the environment computation, operation, an 80 Mflop 
unit might be reasonably balanced with 80 Mbytes/set bandwidth to memory, 16 
Mips of integer power, and 20 Mbytes/second of communications bandwidth. 
Under those circumstances, the environment calculation will take about 50 psec; 
this represents 50% of the maximum power in principle possible by overlapping 
all the integer, communications, memory and floating point operations. 

Communications bandwidths between groups of nodes are not particularly 
stressed here, because the number of sites handled by each node would not be 
large for any problem dominated by these pure gauge environment computations. 
A card with 8 nodes might well contain 16*16*16*16 sites; SN is l/2. Making the 
queueing assumptions discussed previously, a 20 Mbytes/second inter-group 
bandwidth would increase the execution time by 8%; 20 Mbytes/second costs 23%. 

Quenched Gauge Confwurations - Cabibbo-Marinari 

When evolving the gauge field configuration in the absence of fermion loops, 
updating a link involves the environment calculation detailed above, followed by a 
heat-bath in that environment to determine the new link. For SU(3), the method 
of Cabibbo and Marinari is commonly employed: Choose a matrix in the [1,2] 
SU(2) subspace (with the correct heat-bath distribution); multiply by a matrix in 
the [1,31 subspace, and then by one in the [2,31 subspace. This gives a result which 
obeys detailed balance and is very nearly distributed as a heat-bath in the full 
SU(3) space. (One could choose to do only two SU(2) subspaces, since the product 
does cover all of SU(3); the feeling is that the better uniformity associated with the 
extra step leads to quicker decorrelation, more than offsetting the additional 
work.) 

the 
The process then involves three SU(2) heat-bath computations; after each one, 
link and the environment must be updated by multiplying a 3 by 3 matrix 

times a ‘promoted’ 2 by 2 matrix. (Actually, after the third link update, the 
environment is no longer needed, so we have a total of only 5 of these “mu123” 
updates.) 

The SU(2) heat-bath calculation involves finding a random magnitude a 
obeying some probability distribution which depends on beta times the 
“magnitude” of the SU(2) environment bmag, and then choosing a point 
uniformly distributed inside a circle and forming the SU(2) matrix based on a and 
that point. The only tricky part is constructing a. In principle, a table lookup and 
interpolation is conceivable, but this would have to be a two-dimensional table 
(indexed by a random number R and the value of bmag - that a single table based 
on some function of R and bmag is inadequate is non-obvious). The construction 
and use of the lookup table is not straightforward, and the table would have to be 
rather large to allow for simple interpolation, or, in the alternative, costly higher- 
order interpolation would be necessary. In practice, users are likely to employ a 
more mathematical approach, such as that of Creutz or Kennedy-Pendleton, 
which constructs a from R and bmag and then rejects or accepts according to a 
further random number. The Creutz algorithm is a bit quicker, but in the 



physically interesting regions rejects more tries (and thus has to be repeated more 
often) - roughly 66% acceptance versus 98% for Kennedy-Pendleton, which 
makes the choice between them pretty much a wash for MIMD machines. (In the 
SIMD case, Kennedy-Pendleton has the advantage that the ‘tail’ of the rejection 
distribution is shorter - for 256 nodes, it takes an average of two KP steps, but six 
Creutz steps, for every node to have its value.) 

So, we can break this link updating into three sorts of computation, forming 
phases 3,4 and 5 of the overall gauge configuration algorithm: 

l Phase 3 - Using the Creutz (or another) algorithm to get a. 

l Phase 4 - Constructing SU(2) elements from a values, which involves picking 
points in a unit circle. 

l Phase 5 - Multiplying 3 by 3 times promoted 2 by 2 matrices to update the link 
and environment. 

Phase 3; The Creutz method involves and exponential, followed by a loop in 
which two random numbers, a sqrt and a logarithm are needed - the loop 
repeats until a value is accepted, an average of 1.5 times for physically interesting 
cases. Including the floating point operations to relate these quantities, the 
number of cycles taken is 4R + 3T + 15 f, where R is the number of cycles for a 
random number, and T the number of cycles to compute a transcendental 
function. 

The time taken per random number is, of course, sensitive to the 
pseudorandom generator employed - there may even be random number 
hardware. We have found that using a combination of fairly sophisticated 
random number generators (to insure independent streams) and generating 
several numbers at once for efficiency is a reasonably quick way of getting good 
random numbers. This method uses mostly integer operations (including pulling 
the desired number off the queue of pre-computed randoms) and seems to take 
about 8 I cycles. 

The transcendentals are done by a table lookup and perturbation expansion. 
The business of getting started (by finding the table index, checking ranges, 
truncating and subtracting, etc.) takes longer than the actual floating point 
involved. In principle, one can save a bit of time by relying on the fact that we 
know in advance what the range of possible inputs can be in this case, and that we 
care only about absolute (not relative) accuracy in the log case. In practice, one 
writes the best and most efficient “gold plated’ transcendental functions possible, 
and uses those. The typical transcendental takes 10 I + 20 f (the overlap is 
negligible) cycles. 

Thus, the total time for three instances of phase 3 is 12 R+ 9T + 45 f 

or 186 I + 225 f cycles. 

Phase 4; Here, it is clearly right to simply choose two random numbers, and 
reject if the sum of squares is greater than 1. This amounts to an average of 2.5 
random numbers per SU(2) matrix generated, plus a bit of floating point to put the 



random6 into the (-1,l) range and check the magnitude. (However, for SIMD 
systems, this has a long tail, such that an average of four pairs of randoms are 
needed before 256 nodes all have accepted a pair. In that case, it may pay to do a 
table lookup and interpolation on the first random number to get a magnitude, 
followed by taking the cos and sin of a second random number.) For all three 
SU(3) multiplies, this amounts to 7.5 R + 26 f. 

Once the point on the circle has been determined, it takes about 39 floating 
point operations and a square root to combine it with the SU(2) environment 
fragment, to form an SU(2) multiplier. For three such operations, we have 117 f + 
3 T cycles. The memory operations involved are negligible. 

So, the time taken for phase 4 isi 7.5 R + 3 T + 143 fl or-1 cycles. 

Phase 5; A promoted SU(2) matrix is formed from an SU(2) matrix by 
inserting a 1 on the diagonal and zeros off diagonal for elements with the third 
index value, for example, 

a 0 b 
0 10 
c Od 

To multiply an SU(3) matrix by this requires computation of six answer elements 
(one row remains unchanged). Each answer element requires 8 multiplies and 6 
adds - 8 F cycles. So a single “mu123” involves 48 F cycles for the floating point 
operations. 

The memory required is 20 loads (the SU(2) matrix and two rows of the SU(3) 
matrix) and 12 stores. These operations will hit cache if there is one, and could 
utilize extended registers. The memory burden could be reduced by keeping the 
link being updated and the environment matrix in registers, but they would need 
to be there across the Creutz and SU(2)-forming phases. We assume this savings 
would not be realized. 

This operation must be done to update both the link and the environment, 
except the final time, when only the link needs to be updated. This means five 
mu123 operations (420 flops). 

So, the time for phase 5 is Max ( 240 F , 100 Mc + 60 S ) cycles. 

The entire heat-bath procedure then involves about 848 flops, and takes 

I19.5R+ 12T+ 188f+Max(240F, lOOM,.+60S) 1 

or, using our values for R and T, 

/2761+428f+Max(240F, lOOM,+60S) 

cycles. 



To summarize, for the link updating (representing 2800 flops) the number of 
cycles required per link is: 

field location: 19OI+S/V(20,+36C) 

staple products of links: Max( 144M + 180Mc + 90 S, 1008 F) 

accumulating staples: Mad90 Mc + 18 S, 90 fJ 

Creutz algorithm: 1861+225f 

forming SU(2) matrices: 90 I + 203 f 

updating links, etc: Max(240F,lOOM,+60S) 



&,pendix D - Site Distribution and Communications Issues 

When computing communications requirements, it is critical to have a good 
estimate for the “surface to volume” ratio in a processor - this determines what 
fraction of accesses will be off node. Three models can apply to this: 

l Dimension Filling (DF) - the portion of the grid in each node is of size L by L 
by M by 1, where L is the length of the entire lattice (in the appropriate 
dimension) and M is some fraction of the length in the third dimension. 
Suppressing the first two dimensions, this looks as follows: 

This method is fairly flexible and easy to implement, and can lead to trivial 
computation of locations of site data structures in special cases. For example, 
a 32**3 by 64 grid fits into 512 nodes using 32 
giving a surface/volume ratio of 5/2. 

* 32 * 4 * 1 slabs in each node, 

l Chunks of Sites (CS) - each processor handles a hyper-rectangle of sites 
which is as close to a hypercube as possible. This minimizes the surface to 
volume ratio, at the cost of some flexibility: Only certain grids can fit onto a 
fixed number of processes in this way. For example, a 32**3 by 64 grid could fit 
onto 512 nodes using 8**4 chunks in each, giving a surface/volume ratio of l/l. 



l Broken Dimension Filling (BDF) - each processor handles it share of sites, 
allocated in some such that contiguous sites in that order are physical 
neighbors. In two dimensions, this looks as follows: 

I I 
I 

I 
I 1 

I 
I I 

I 
I I 

The big advantage of broken dimension filling is that any shape grid can be 
mapped onto any number of sites. The surface/volume ratio is not much worse 
than for dimension filling distributions. One caveat is that if computations are 
done in lockstep, although there is a reasonable surface/volume ratio, it is 
much less frequent that all of a set of accesses will be local. 

A fourth method would be to attempt to fit irregular almost-rectilinear, almost 
hypercubic chunks onto the grid. The problem here is that the assignment of sites 
is not easy to generate, and that the irregularity in 4 dimensional volumes 
contributes greatly to the surface area. Assuming flexible hardware, the “right” 
method is probably to use chunks if the number of nodes is such that there is a 
convenient fit, and BDF (or DF) otherwise. The importance of minimizing surface 
area is increased for dynamic fermion problems, which tend to be on smaller 
lattices and be more communications dominated. 

For a given site distribution, the order in which sites are processed within 
each node can still be important. If communications are not done in lockstep, the 
idea is to spread the interprocessor communication needs over the entire 
processing time, so as to avoid bottlenecks. This can be less important in MIMD 
architectures, for which an initial bottleneck has the effect of getting the processes 
out of sync, thus ameliorating later delays. 

The effects of saturation of communication paths can be estimated in the 
following manner: Let us assume that in the absence of contention, a processor 
does a process in some time which can be broken into non-communication time To 
and some communication time r. The communication time is assumed to be 
multiplied by some factor F due to saturation effects: T = To + z F. Queueing 

1 
theory estimates F as being Imp, - where P is the represents how saturated the 

channel is. If n nodes are each attempting to use communication time in T total 



execution time, P = y . (Note that no matter how large n gets, P never exceeds 

one; T simply increases, asymptotically being dominated by the communications 
time.) Combining these, we get an expression for the total time taken: 

T=To+~ 
T-nz 

This is solved, giving 

T=i[To+(n+l)z+ [To+(n+l)z]2-4nTTo 

which behaves in the following way (taking n = 8): 

Data from “Untitled Data” 

Q time 

0 1 2 3 

nt 

This behavior is such that if the channel would naively be half saturated, the time 
take is only 10% longer than To ; if it would be fully saturated, the time cost is 42% 
(and the channel is actually only 70% saturated); and past there, the time quickly 
becomes communications dominated (and the channel almost fully saturated). 
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Annendix E: Rules of Thumb 

Cost Rule: In a system with two major costly components with linear 
improvements per unit cost, if you have no idea as to what the right balance is, 
then spend half the money on each. This insures that you are within a factor 
of two (and normally much better) of optimal. This rule requires a scalable 
system. 

Components Rule: A corollary to the cost rule is that it is much more difficult 
to design a system with more than two major components, the balances among 
which are uncertain. 

Design Rule: If you know the proper balance between components for your 
problems, and this balance grossly violates the cost rule, then re-examine your 
system design. For example, if you are using DRAM, and your memory costs 
are negligible for the size of memory needed, then see if using SRAM will 
improve your cost effectiveness by leveraging your critical FPU power. On the 
other hand, if almost all your costs are in SRAM, it may pay to design more 
numerous, less powerful processors using DRAM. 

Software Technology Principle: Don’t count on major software technology 
advances. While hardware technology can be counted on to improve with time, 
it is very risky to say “I will somehow write a compiler to optimize for this 
architecture”. This rule avoids painting yourself into the “flaky software” 
corner. 

Keep Good Software: This is a corollary of the Software Technology Principle. 
If you have some software which is solid and liked by the users, build on that 
rather than discarding it for something which may someday be much better. 

Software Quagmire Principle: If the Software Technology Principle and the 
Keep Good Software principle are followed religiously, you will eventually be 
possessed of hopelessly outmoded, impossible to maintain bodies of software 
which are relied on by many users. The time to develop major new software 
packages is before the hardware design for a machine is set. 

Slack Rule: It does not pay do sweat the last tiny balance details. The last 20% 
of balancing one parameter to all the others is often worth much less than 20% 
in machine improvement. This is because now if any of the other parameters 
is stressed, it begins costing full value - there are many things to go wrong, 
and no slack. However, if there is only one other parameter at the balance 
point, then your are likely to get nearly the full improvement. 



Awwendix F: Issues Affecting- How the Svstem Can be Used 

Probably more important than the balance issues discussed in this 
presentation, are the factors that will impact how a system can be used to do 
physics. These include properties of the hardware and system software. The 
following features might be wanted in a system. They are listed in no particular 
order, as being essential, important, or only desirable - this list is not intended to 
be exhaustive. The bottom line is always how much physics can be done on the 
machine. That may imwlv tradeoffs between machine size and power, and 
usability issues. - - - 

Multiple Simultaneous Users 
Without this, development machines of various sizes will be needed. 
They would relieve some (but not all) of the development pressure from 
the main machine. 

Sophisticated Scheduling 
(Only if Multiple Users.) Avoids the tendency to set aside some portion 
of the system at certain times for immediate development availability. 

Checkpointing Capability 
Means that jobs comparable to the mean time between failures (or 
longer) can be run. Can use either intermediate or long-term storage. 

Intermediate (Disk) Storage 
Allows user-controlled use to implement larger lattices on memory- 
intensive problems. Permits quick checkpointing and scheduling. 
Makes efficient staging to long-term storage possible. 

Long Term Storage 
Users can keep configurations and propagators for future analysis. 
Avoids having to re-generate results. Either this or disk storage is 
needed for checkpointing and for analysis (which requires 12 com- 
ponents of propagators). 

Error Checking 
The possibility of uncaught errors would lead to some fraction of the 
programs being rerun to check. This depends, of course, on how 
reliable the hardware is. 

Interjob Robustness 
The need to keep a cache of spare modules, and to keep the machine 
down when a module has died until it is replaced, is avoided in systems 
which can run with several modules excluded. 

Good Programmability 
Even excluding the issues of not being able to do complicated analysis 
or of not being able to program the algorithms desired, very difficult 
programming implies that ambitious optimization is impossible. Once 
a program is working there is reluctance to change things if 
programming is difficult. 

MIMD 
There are some algorithms which appear to require MIMD and which 
improve speeds by factors of more than 2. Even if these can be made 
SIMD, MIMD makes it easier to provide programming tools. It also 
provides a natural way of breaking communications bottlenecks. 
MIMD systems are also more likely to be able to survive the loss of one 
module. At least some minimal form of MIMD is required for multiple 
W3eC3. 

Important 

Desirable 

Essential 

Important 

Important 

Desirable 

Desirable 

Essential 

Important 



Global Communication 
Helps provide clean programming tools, robustness, and flexible 
resource allocation (disks and tapes). Some algorithms rely on non- 
local communication; this can be accomplished by passing data along, 
but that is costly. It is not clear whether global communication 
algorithms will need to be run for production. 

Adequate Memory 
Allows one to let physics dictate decisions on how large a lattice one 
studies (at the cost of more time). Enables exploration of alternative 
algorithms on large lattices. 

Standardization of Stored Data 
It should be possible to take configurations and propagators created on 
one machine over to other systems for later analysis. 

Desirable 

Essential 

Desirable 
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