
Fermi National Accelerator Laboratory 

FERMILAJSConf-92021-E 

Tutorial on Neural Network Applications 
in High Energy Physics: A 1992 Perspective 

B. Denby ~;:~. 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

April 1992 

Invited tuorial to be published in the proceedings of the Second International Workshop on Software 
Engineering, Artificial Intelligence and Expert Systems for High Energy and Nuclear Physics, La Londe les 
Maures, France, January 1992. 

= Operated ty Universities Research Asscciation Inc. under Contlact No. DE-AC02-76CH030M) tih the United States C-apartment of Energy 





Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 
Gouernment. Neither the United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or fauoring by the United States Government or any 
agency thereof The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof, 



FERMILAB-CONF-92/121-E 
CDF/PLJB/CDF/PWLrc/1737 

TUTORIAL 

NEURAL NETW,“,“, APPLICATIONS 
IN HIGH ENERGY PHYSICS: 

A 1992 PERSPECTIVE* 

BRUCE DENBY BRUCE DENBY 
Fermi Nation& Accelerator Laboratory Fermi Nation& Accelerator Laboratory 

M.S. 318 M.S. 318 
Batavia, Illinois 60510 USA. Batavia, Illinois 60510 USA. 

denby@fnal.bitnet denby@fnal.bitnet 

Feed forward and recurrent neural networks are introduced and related to smdard data analysis 
tools. Tips are given on applications of neural nets to various areas of high energy physics. 
A review of applications within high energy physics and a summary of neural net hardware 
statlls are given. 
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1. Architectures 
1.1 Feed Forward Networks 
1.1.1 Event Selection 
Normally in high energy physics ‘cuts’ are used to select events of interest. Figure 1 shows 
the distribution of the variable, x, for two classes of events, class ‘a’ and class ‘b’. We 
would lie to use the variable x to allow us to classify a randomly chosen event as belonging 
to class ‘a’ or class ‘b’. One way to do this is to simply place a cut at x’ in the figure, and 
call everything to the left class ‘a’ and everything to the right class ‘b’. The cut can be 
interpreted as a step function U(x-x’) which has value 0 for x < x’ and value 1 for x > x’. In 
cases where events are characterized by more than one variable, the optimal choice of cuts is 
less obvious. In figure 2, two consecutive cuts, 1 and 2, on the single variables X, Y are 
inefficient at selecting class ‘a’, however, a single cut, 3, on a linear combination of X and Y 
is efficient. This can be interpreted as using a two dimensional step function U(aX + bY + c) 
as a classifier. 
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Figure 1 Figure 2 

Figure 3 shows an even more complicated case: the boundary between the two classes is 
highly nonlinear. In this case, no linear cut can efficiently separate class ‘a’ from class ‘b’. 
The ideal cut would be one like the first frame in figure 3, i.e., a cuf with a curved edge. 

One way to make such a cut is to build it up out of an ensemble of linear cuts. Frames 2 
through 4 of figure 3 show the value over the X-Y plane of a function made by summing 
one, two, and finally three step function cuts which approximate the curved edge cut we 
desire. In frame 5 we simply subtract 2 everywhere in the plane, and in the final frame, 
apply a final step function to the result. The function we have constructed is thus: 

D = U( U(alx + bly + cl) + U(a2x + b2y + c2) + U(a3x + b3y + c3) -2) 

This function has value 1 in the region containing the ‘b’ events and value 0 elsewhere; thus, 
it approximates well our desired nonlinear discriminant function. 



o(aZx+bZy+cZ) 

We can represent this function diagrammatically as in figure 4. The input variables x and y 
get multiplied by the coefficients al, b2, etc. stored on the lines connecting units together. 
Summation occurs at the inputs to the step function units. The outputs of these units are 
again multiplied by coefficients, in this case 1, before the final summing and thresholding. 
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Fig. 4. Discriminant Function Architecture Fig. 5. Sigmoid Function 

Figure 4 looks very much like a standard three layer feed forward neural network. In the 
language of neural networks, this one has two units in the input layer, one each for x and y, 
three units in the hidden layer (represented by the step function units), one unit in the output 
layer which produces the final discriminant function, and one ‘bias’ unit, labelled ‘thresh 
for producing offsets. ‘Units’ are also called ‘neurons’. The coefficients al, a2, etc. form 
the matrix of neural network weights, w&i), where ij am the indices of neurons. In a feed 
forward neural network, each neuron performs the function tj = o(& w&i) ti) where t is the 
output of a neuron, wfj,i) is the weight from neuron i to neuron j, and o is the neuron 



transfer function; in fig. 4, this is just the step function U. The difference between figure 4 
and a standard neural network is that in the neural net, the hard step function U is replaced by 
a smoother, sigmoid transfer function as shown in figure 5. 

The reasons for the sigmoid transfer function are twofold. First, the standard training 
procedure for neural networks, backpropagationl, requires that the derivative of the neuron 
transfer function exist. Neural networks can be trained, i.e., a data set which has already 
been classified, Monte Carlo data for example, can be used to derive the best values for the 
w(i,i). If the initial values of coefficients, al, bl, etc., are not quite right, backpropagation 
allows us to make corrections by varying the weights slightly and seeing the effect on the 
error the net makes. The sigmoids ensure that the ‘error function’ (defined below) varies 
smoothly rather than jumping from one value to another as would happen with a step transfer 
function. 

The error function, E, is the sum over the network output units and over a training sample of 
the deviation of the output values from their desired values. Gradient descent (a minimisa~on 
procedure) is then performed on this function with respect to the weights in order to minimise 
the deviation of the network response from the desired response. We have: 

E =cp E(P) = cjp [dW-tW12 

where p is the index of an input pattern (i.e., an event in the training set), j is the index of an 
output neuron, d(pj) is the desired output of neuron j in pattern p, and t(p,j) is its true 
output. The gradient with respect to a weight w(i,i) from hidden neuron i to output neuron j 
is then 

Wp,ii) = [d(p,j)-t(p,j)lo’Ci)t(p,i) 

where s’(j) is the derivative of the sigmoid function of neuron j. 
input unit i to a hidden unit j, we have 

If w(i,i) instead is from an 

WA8 = [Ck[d(p,k)-t(p,k)lo’(k)w(kj)lo’(i)t(p,i) 

where k runs over the output units. The prescription of backpropagation then is that, in each 
iteration 

Apwc,i) = -&E’(p,ij) + ~1* previous Apw(i,i) 

where Apw(i,i) is the change in wf.j,i) for this iteration, & is the distance to move along the 
gradient, also called the ‘learning coefficient’, and the term containing a, the ‘momentum’ 
coefficient, is a smoothing term. Note that this expression explicitly contains the derivative 
of the transfer function o’(j). The total weight change is just the sum of the weight changes 
for the patterns presented. In practice, the weights are often updated after only a small 
number of presentations of training patterns, rather than after the whole set. This is not true 
gradient descent but is easier to implement and seems to work well. Typically several passes 
through the training set are necessary before E is minimised and a good set of w(j,i) are 
obtained. The minimum of E is only a local minimum, and different results may be obtained 
if a different set of starting weights is used. Normally, though, overall performance is 
reasonably independent of the initial weights. 



Quality of training must always be judged based on performance of the network on a data set 
which is independent of the training set. Otherwise there is the danger of overtraining, in 
which the network begins fitting to noise in the training set. This is discussed further in 
section 2.2.1. 

The second reason for the sigmoid is that for overlapping classes, the sigmoids can be used 
to approximate the probability of an event belonging to one class or another. The optimal 
classifier which takes into account the probabilities of an event belonging to one class or 
another is called the Bayes classifier 2. In such a classifier, the ranges of the input variables 
are finely binned, and the probability of an event in a particular bin belonging to, say, class 
‘a’, is equal to the number of events in class ‘a’ in that bin divided by the total number of 
events in the bin. How does this relate to the neural network output? Recall that during 
training, an error function is minimized3: 

E = 2 (t(i)-d(i))2 

E E x oa Pa(i) (t(i)-l)2 + ob pb(i) (t(i))2 

for two classes ‘a’ and ‘b’, where the desired output is 1 for class ‘a’ and 0 for class ‘b’, and 
where Cca and ob are the fractions of classes ‘a’ and ‘b’ in the sample, Pa and Pb are the 
probabilities for an event i to belong to class ‘a’ and ‘b’ respectively. 
approximation valid in the limit of a very large training set. 

The second line is an 

t(1) and set each term to zero we get: 
If we differentiate with respect to 

Cia Pa(i) (t(i)-1) + ob Pb(i) t(i)= 0 

t(i) = CLa Pa(i) / ( CZa Pa(i) + ob Pb(i)) 

t(i) = na / (na + nb) 

That is, the function t(i) which minimizes the error function is that which maps each event 
onto its Bayesian probability to be in class ‘a’. Because a very large number of bins is 
sometimes required, a true Bayes classifier can be difficult to construct and use. The neural 
network will do the best job it can if the network output can be made as close as possible to 
the Bayesian probability. It can be shown that a three layer feed forward neural network 
trained with backpropagation approximates a Bayes classifier2; the accuracy of the 
approximation depends upon the number of hidden units, but normally a relatively small 
number is sufficient. We can now extend the ideas in figure 3 to the case of continuous 
valued sigmoid neurons. Rather than simply selecting a particular region of input variable 
space, the output of a feed forward neural network, constructed out of the sum of sigmoids, 
approximates, over the volume of input variable space, the probability of an event’s being in 
each class. 

1.1.1.1 Example I - Square Root Net 
The coefficients al, bl, etc., and thus the ‘orientations’ of the cuts, are determined from the 
data during the backpropagation process. It is instructive to see where the hidden units end 
up in a toy problem which was trained with backpropagation. The 5 hidden unit network 
shown in figure 6 was trained to recognize when its two inputs X and Y are related by Y = 
sqrt(X). The output should be 1 when this condition is satisfied and 0 when it is not. It is 



interesting to note that a linear classifier (a cut on a single linear combination) will fail 
miserably on this problem. 

Figure 7a shows the curve we are trying to select, isocontours of the trained net output, and 
lines labeled to indicate the hidden units they represent. Figure 7b shows the value of the 
network output over the plane. It is clear that the net has positioned the hidden units so as to 
select reasonably well the region where Y = sqrt(X). With additional hidden units, it could 
have done better by cutting out the regions at small X and large X where the network 
currently makes a mistake. 

Figure 6. The sqare root net. 

1.1.1.2 Example 2 - Tau Particle Selection 
Figure 8 shows a two dimensional classification problem drawn from high energy physics3. 
A network was trained to choose the polarity of tau particles from their decay angles, psi and 
phi. Figure 8a shows the distribution of decays for positive helicity, 8b for negative helicity, 
and SC the decision boundary found by a neural network with 4 hidden nodes. Shown also is 
the decision boundary of a Bayesian classifier for this problem. 
very well the Bayes classifier. 

The neural net approximates 

1.1.1.3 Example 3 - Secondary Vertex Selection 
Another example of event classification in a two dimensional space in high energy physics 
comes from the study of secondary decay vertices in the NAxx experiment at CERN (see 
figure 9)4. The silicon microstrips measure the trajectories of particles from primary and 
secondary vertices. Associative memories give a list of the track parameters, D (impact 
parameter), and phi (track angle) for the tracks in each event. The track parameter list can 
then be used to try to identify whether the event contains a secondary vertex. The study 
shown here is based on Monte Carlo data, but the motivation is to assess the feasibility of 
using a hardware neural network in a trigger to find secondary vertices online. Figure 10 
shows the distribution in D-phi space of the tracks for three signal events (i.e., containing 
secondary vertices) and three background events. The signal and background are not very 
different but the signal events are somewhat broader in D. Two position independent 
moment variables, hO2 and hl1 were chosen, where 

qo2 = l/M 2 (D-Do)2 and rlll= l/M z (@$“)@-Do) 

and Do and @o are the mean values of D and phi, and M is the number of tracks. Figures 11 
a and b show the distributions in qO2 - q 11 space of the signal and background events. Note 
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the logarithmic scale. Table I shows the classification results, based on a test set of 2400 
events, for a neural network trained to tell signal from background based upon the two 
moment variables. 

nicrostrip orientatiorX-y X y X y X y 

Figure 9. NAxx layout and readout scheme 

Table I 

Neural Network 
Nearest Neighbor 

Pf Pm 
7f2400 461/2400 

27/2400 523t2400 

Pf is the probability of calling a background event a signal event and Pm is the probability of 
calling a signal event a background. Since the background is many times mom common, it is 
important to keep Pf as small as possible even at the expense of increasing Pm. In Table I, 
the neural network result is also compared with a standard nearest neighbor classifier2; the 
network performance is better. 

Figure 12. Net to make sin(x) from x. 
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1.1.2 Function Mapping 
Neural networks can also be used to map inputs into functions of the inputs. In this case the 
role of the hidden units is rather different. It turns out that the network, during training, uses 
the shapes of the sigmoid units to build up the desired function. 

1.1.2.1 Example I - Sin(x) Net 
A simple example of this is taken from reference 5 in which a network with 5 sigmoid hidden 
units was trained to map x to sin(x). The architecture used is shown in figure 12. The 
network was aained with backpropagation. Figure 13 show the function of each of the 5 
sigmoids in building the final sin(x) function. Most of the work is done by three sigmoids 
which have been translated to form the bumps in the sin function. The remaining two hidden 
units just correct for small variations. 
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Figure 13. The function of the hidden units for sin(x) problem. 

1.2.2.2 Example 2 - Drift Chamber z Position 
A second example of function mapping with neural networks is a high energy physics 
application: determining the z position of a track which passes through a drift chambeh. 
The position perpendicular to the wire is well determined by the drift time, however, induced 
charge in cathode pads must be used to infer information about the position along the wire, .z. 
The geometry of the chambers is shown in figure 14. 
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Figure 14. Drift chamber geometry 

The pads are etched in a diamond pattern as shown in figure Ea. When a particle passes 
through the chamber, the avalanche induces differing amounts of charge on the inner (qa) and 
outer (qb) pads. 
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sense wire 

Figure Da. The cathode pads. 

The relationship between qa, qb, and z has been measured and is shown in figure 15 b. The 
empirical functional relationship is: 

z = -.136 + sqrt(405 + .7l(qa-qb)/(qa+qb)) 

Timing information tells which cusp of the function we are in; then, the charges can be used 
to get the final value of z. 

qa-qb 

Figure 15b. Charge ratio as a function of z 



In this application, a feed forward net with five hidden units was trained to calculate the ,r 
function from the two charges qa and qb. Once the weights were determined, a circuit was 
built to execute the network, in which the weights were represented by resistors. The circuit 
is shown in figure 16. 
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Figure 16. The pad net circuit. 

Figure 17 shows a comparison of the z value calculated online by the neural network (using 
real pamcles) with that calculated offline using the two charges, which were digitized and 
stored on each event along with the neutal net output. The relationship is quite linear. 
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Figure 17. Neural Net position (counts) versus offline position (cm.). 
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1.2 Recurrent Networks and Tracking 
The basic recurrent network architecture is shown in figure 18. The neuron outputs are fed 
back into the inputs. Recurrent networks have dynamical behaviour, with activation values 
settling to fixed values after a few cycles through the network. If we choose the connection 
strengths to be symmetric, i.e., wij =wji, and non-diagonal, then an energy function, E = - 
l/2 S wij oi oj, where oi is the output of neuron i, is constantly minimized as the network 
evolves. 
solution. 

A clever choice of the wij can produce networks that evolve to a desired steady state 

equations: 
In practice, the evolution of the system is obtained by iteratively solving the update 

r dui/dt = cj wij oi - ul ; oi = sigmoid(ui). 

On eat iteration, dt is kept<< t, the time constant of the system. 
I 
I 
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Recurrent Network inputs 

Figure 18 

1.2.1 Tracking with a Recurrent Net 
The most common application of recurrent networks in high energy physics is for track 
reconstruction, using an algorithm developed by Denby and independently by Peterson798. 
In this application a neuron is defined to be a directed link between two hits in a tracking 
detector. The weight connecting two neurons i and j is determined by the angle qij between 
them, (figure 19): 

wij = A cosnClij/lilj 



where li and lj are the lengths of the neurons (i.e., distance between hits), if i and j do not 
both point into or out of the same point, and wij = -B if i and j am head to head or tail to tail. 
The energy function will be smallest when the angles between close together neumns sharing 
points are small. This favors neurons lying along smooth trajectories such as those of 
particles moving in a magnetic field. The constraint term -B ensures a unique direction to the 
tracks to avoid a degeneracy which prevents settling of the network. 
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Figure 19 Neuron links in the Denby-Peterson Net 

This method has now been used on real data at the ALEPH experiment at CERI@. Figure 20 
shows r-phi (i.e., looking down beam line) and r-z (side) views of a Z event with all links 
defined before network evolution (left side of figure), and the event after settling of the 
network, with tracks found (right side). The efficiency is as good as the conventional track 
reconstruction program but the neural net algorithm is somewhat faster. In this same 
reference, a study was made of execution time for the neural net and conventional algorithms 
as a function of track multiplicity. This is plotted in figure 21. The advantage of the neural 
algorithm is shown to increase with multiplicity. 

Considerable effort was needed to make the neural algorithm competitive with the 
conventional al orlthm 
to vectorize it 16 

in execution time. Another way to speed up the original algorithm is 
However, there does not seem to be a straightforward way to implement 

this algorithm in the fast hardware that would be needed to make it applicable at the trigger 
level. The main reason for this is that the weights (i.e., the cosnBij/lilj) must be recalculated 
for each event. Also, the number of neurons and weights is high. In addition, it is clear that 
the algorithm does not take advantage of all the available information, such as that tracks are 
known to be nearly perfect helices. This makes the algorithm more susceptible to noise since 
it will be less able to reject outliers. This algorithm, however, is very appropriate for 
applications where the tracks are not easily parametrized, such as in non-uniform magnetic 
field, or in the case of decays in flight. 

1.2.2 Improvements to Tracking 
1.2.2.1 Rotor Tracking 
One proposed improvement on the neural tracking algorithm is the so-called rotor tracking1 1. 
In this formalism, each hit is assigned a Potts neuron*2, 
an orientation (figure 22). 

i.e., a little rotor with a length and 
The obvious advantage is that the number of neurons is now N 
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instead of N2, and the number of connections thus N2 instead of N4. 
between the rotors is defined to be: 

E = -l/2 x si.sj/lrijlm+ a (si.r$2firljlm , 

The interaction energy 

where si and sj are the Potts variables, rij is the vector between hits i and j, m is a constant of 
order 2-5, and a is a constant to be determined empirically (figure 22). The fmt term tends to 
align the rotors with one another, and the second term tends to make a rotor point at its 
neighbor’s pivot point. The equations of motion, which must be solved iteratively, are: 

Ui = -dE/dsi si = ui/luil sigmoid(luil) 

followed by a ‘greedy’ algorithm11 to select the links nearest the rotors. 

Figure 22. Rotor Neurons 

The result of trying this method on a toy problem is shown in figure 23. Unfortunately, the 
interference between neighbors spoils the results for anything beyond toy problems. Further 
improvements are being worked out. 

1.2.2.2 Elastic Tracking 
A second improvement to the neural tracking is in the so-called elastic tracking13 or 
deformable templates14 approaches. In these approaches, a track is a helical object which 
settles into a shape which best fits the hits. The helix can be thought of as electrically 
charged and amacted to the hits which have opposite charge. Although these algorithms map 
the nackmg problem onto dynamical systems, and are at least in principle parallelizable, they 
have lost some of the ‘neural’ flavor of the original Denby-Peterson net. Nonetheless, the 
efficiency and robustness to noise of the elastic methods are excellent. Figure. 24 shows the 
result of applyin 
interesting study15 

a set of ‘elastic arms’ to a simulated event in the Delphi TPC. One 
compared the robustness to noise of the standard ‘roadtinder’ method, the 

Denby-Peterson net, and the elastic tracking method. Figure 25, from this study shows the 
efficacy of each method as a function of number of tracks. All data have 20 percent noise and 
3 percent error on position measurement. The madfinder breaks down between 5-10 tracks, 
the Denby-Peterson net at lo-15 tracks, but the elastic tracking always finds the correct 
answer. 

2. Tips on Applying NN in HEP 
2.1 Choice of Variables 
2.1.1 Offline Applications 
For offline applications of neural networks in HEP, it is advisable to choose input variables 
which arc relevant to the problem from a physics standpoint. For instance, for quark/gluon 
separation, jet shape variables might be chosen due to theoretical ideas about color charge, or 



from experience in electron-positron collider experiments. The reason for this is that, 
although a network can be trained to calculate any variable from whatever input variables one 
decides to use, if one has a priori knowledge, much can be gained in terms of network 
complexity, training time, and number of examples. It is also true that if the ‘intelligent’ 
variables do not enable to separate two classes, then ‘unintelligent’ variables pmabably will 
do no better. If on the other hand the intelligent variables do prove effective, subsequent nets 
can still at that point be used to calculate them from raw quantities if, for instance, it is desired 
to try to incorporate the decision making into an online trigger. 

The network should always be kept as small as possible to ensure adequate training, 
especmlly tf the training set is small. As a rough rule of thumb, for a net with 10 inputs, 10 
hiddens and 1 output, about 2000 examples are required. It may be tempting to include as 
many variables as possible in hopes that the network will find some ‘secret’ correlation that a 
human could not. It is better, though, to begin with intelligent variables and after some 
separation appears, to try adding additional variables to see if they help. Very large fully 
connected networks can have problems with training convergence. For large networks, it is 
advisable to use structured networks with local receptive fieldssl. 

2.1.2 Trigger Applications 
In the case of the trigger, input variables must be strictly limited to those which are definitely 
available at the trigger level and with the accuracy available at the trigger. It is no good 
designing a trigger which operates in 1 nanosecond if 3 seconds of Vax time arc needed to 
calculate the inputs to the trigger. Projects involving neural nets for triggering are best done 
in conjunction with people who are intimately involved in the triggering of the experiment in 
question. It turns out that most triggers were built using tricks to make them more buildable; 
for instance, coarser granularity, time multiplexing of signals, multihit capabilities, special 
readout schemes. These can make just getting the signals to the neural net a formidable task. 

Consider the level-2 trigger for the CDF experiment. Three neural network calorimeter 
triggers are being planned for the 1992 run of the CDF experiment at Fermilabl%lo (one of 
these will be discussed in more detail in a later section). All will operate on clusters of energy 
found in the calorimeter, where each tower is represented by an analog voltage. In principle, 
the system is a ‘single chip solution’ since the pattern recognition necessary for triggering is 
available on a single neural network chip. Nevertheless, it has been necessary to build 
special signal tap cards to extract the signals from the existing trigger and bring them to 
special new matrix shifter boards which allow a cluster found by the cluster finder to be 
selected and presented to the neural network. Two additional control boards are also 
necessary to coordinate the timing of the trigger. In the trigger, calorimeter towers arc 
ganged together into coarser towers which are used in the trigger tower array in order to 
provide a manageable array of 24 by 42 trigger towers. Finally, the use of analog voltages 
implies a limited precision on the energies. 

These compromises limit the effectiveness of pattern recognition which networks might be 
able to do. For instance, most of the information on the lateral shape of electromagnetic 
showers is lost due to the coarse granularity. This information, if available, would have 
allowed the network to do very good electron identification in the trigger. Future triggers 
may be able to make use of such information. 

2.2 Training 
2.2.1 General Comments 
A number of hidden units incommensurate with the size of the training set can lead to 
overtraining of the network, i.e., the net will begin to memorize the training set and will not 
generalize well. The indication of overtraining is a network which continues to improve in its 



performance on the training set but whose performance on an independent test set begins to 
deteriorate. This is analogous to fitting a curve to a set of points. If the function used has 
many parameters, it will always be possible to fit exactly to all the points, including noise 
points. The curve found, however, will interpolate poorly between the data points if the true 
parent curve was actually a simpler, smoother function. 

Even when great care is taken, limited training set size can be a problem. In reference 17, 
fifty-five input variables were used to attempt to separate hadronic top events from QCD 
background. Three hundred neurons were used in training. The result was that, because 
there was not enough data to adequately train the network, the net performance was 4 times 
worse than that obtained using a simple linear discriminant. It is unfortunately the case that 
even though the neural net is a powerful classifier, if it is not possible to generate a 
sufficiently large training set for the net, the network will not be trainable and will perform 
poorly. A simpler, linear classifier may do better even with its known limitations. 

2.2.2 Neural Network Software Packages 
The easiest way to begin to learn about neural networks is to play with one of the commercial 
packages which have nice graphics and user interfaces. MimeNice from the Mimetics 
Company18 and NeuralWorks Professional II from NeuralWare Inc.19 are good. 
BrainMaker from California Scientific Software 20 and DynaMind from NeuroD namX21 
have the advantage of interfacing with the Intel INNTS Development System J 2 for the 
ETANN chip which we will discuss later. 

Most of these simulators are written in C and the source code is not always available. Up till 
now, most of the applications in high energy physics have been done using homemade 
simulators written in Fortran, such as the Fermilab simulator 3 and the Lund simulator 2 
JETNET24. 

2.2.3 Low Level Pattern Recognition 
Neural nets can be used to find low level patterns in detectors, such as clusters, tracks, etc., 
Normally, clusters and tracks arc fairly well understood objects, and if the detector simulation 
is well understood as well, there will be no problem in generating enough data to train a 
network to recognize them. In many cases, real data will be available, e.g., from a test beam, 
for training. Some examples of these types of applications will be given later. 

2.2.4 Physics Process Determination 
In contrast, if the pattern recognition consists of recognizing a particular physics process 
which may or may not be present in an event, the situation is much more difficult. Often it is 
a rare, as yet unseen process upon which one wants to trigger. In this case, since the process 
has never been seen, one doesn’t know exactly what to look for. The training set in this case 
must of necessity be based upon models of the process. The effect of this model dependence 
of the training is difficult to assess. 

It may seem attractive, in order to reduce dependence upon Monte Carlo data, to use real data 
as the background sample in the training set, since usually backgrounds are much better 
understood. This however is dangerous since if, in the training set, some events are Monte 
Carlo (the signal) and some are real data (the background) the network may find a way of 
distinguishing Monte Carlo data from real data which has nothing to do with the desired 
discrimination between signal and background. 

It is thus ‘safer’, when trying to create a discrlminant, to use Monte Carlo both for the signal 
and the background. Here again, though, any results will be dependent upon the model 
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used. This is perhaps the most serious problem to be faced in the use of neural networks in 
physics process determination. Any algorithm based upon Monte Carlo will be model 
dependent, but because a neural network stores the parameters of its discrimination process in 
a matrix of weights, interpretation of this dependence may be much more difficult. Not 
enough work has been done to determine how to understand the model dependence when 
using neural networks. 

Another ‘disadvantage’ of neural networks is that a relatively large amount of training data is 
required in order to assure good generalization. Thus, a great deal of Monte Carlo data must 
be generated to assure ade uate training. Sometimes the generation of this data is quite time 
consuming, as was seen in 7 Here, the QCD multijet background to top production took 5 9. 
CPU hours of Gray X-MP/48 time. 

2.2.5 Example of a Hybrid Application - Isolation 
We show here a hybrid application: an isolated endplug electron trigger25. This is one of 
three neural network triggers to be installed at CDF for 1992. Electrons from W decay are 
normally isolated in the calorimeter. The approach is hybrid in the sense that it attempts to 
select a particular physics process, namely Ieptonic decay of the W, but bases the 
discriminant upon a rather low level pattern, i.e., that of an isolated electromagnetic cluster, 
In the endplug, tracking is not available in the trigger, so other means must be used to bring 
down the rate of background from pi-zeroes in jets. In the past, a higher energy threshold 
was used in the plug for this pmpose. In 1992, isolation will be tried in the level 2 trigger to 
allow the same rate at a lower threshold. As we shall see, the neural network executes 
exactly the algorithm normally used offline for isolation (except that it operates on trigger 
towers rather than offline towers). 

The trigger operates (as will all of the CDF neural net triggers) upon a 5 by 5 cell array of 
trigger tower energies. Four templates are defined as shown in figure 26. The cells have size 
150 by .2 units of rapidity. 

Figure 26. Isolation templates for plug electron trigger. 

The dark cenual region is meant to contain the electromagnetic shower. Four templates are 
necessary since the shower may spill over in to 2 to 4 towers and since the center of the tower 
as found by the cluster finder may not perfectly center it in the 5 by 5 array in all cases. Each 
template is represented as a hidden unit in the network. Each tower has a weight connecting 
it to a hidden unit in the neural network, figure 27. Cells in the central region have a weight 
of ‘frac’, and cells in the outer region have a weight of -1. Thus, the quantity presented to 
the hidden units, which are used just as comparators, is 

frac * Einner - Eouter 

If this quantity is negative, the hidden unit will not ‘fire’: the energy outside the 
elecuomagnetic shower was greater than some fixed fraction of the shower energy and the 
shower is thus not isolated. If the quantity is positive, the neuron fires, indicating an isolated 



cluster. If any of the templates tires, the cluster is isolated. In typical offline applications, 
frac has a value of .1 to .2. The value frac = .16 was found to be optimum in the present 
application. 

output unit (isolation flag) 

n 

hidden units 

weight 

v ---- v v v v v v ---- 

= -1 or 
frac 

bias 

unit 
input units (trigger tower energies) 

Figure 27. Net architecture for isolation trigger 

A simulation of this trigger operating on real data from a previous run indicated a 4 fold 
reduction in background while retaining 95% efficiency on electrons from W. 

3. Survey of NN Applications in HEP 
In this section we survey applications of NN in HEP. We have in fact alredy discussed 
several: track reconstruction, secondary vertex finding, an isolation trigger, finding z 
position from drift chamber pads, polarization of the tau particle, finding top amidst the QCD 
background. The reports on those applications presented at this conference will be brief; 
refer to the proceedings for details. 

3.1 Track Segment and Vertex Findin 
Several papers have covered this subject 2827 28 29 , 9 9 Here we discuss reference 27 in 
which real data from a collider experiment, E735 at Fermilab, were fed to a simulated neural 
network trained to find the primary vertex of the event based upon drift times in the z- 
chamber, a drift chamber with three layers of wires placed near the beam pipe. Figure 28 
shows the hits in the chamber for a typical event; here, only the hit wires are shown, not the 
drift times. By eye, the hits seem to emerge from a point on or near the beam line. 
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The chamber was broken into 18 wire subsections (3 layers of 6 wires each) for processing 
by the network. The 18 drift times became inputs to a three layer neural network as shown in 
figure 29. 

Input = 18 Sense Wire Drift Times 
Output = 60 l.Ocm Bins From -3Ocm to +30cm 

+ 1 Bin for Z<-30cm + 1 Bin for Z>+30cm 

Tar& Distributkm: 

Output Distribution: 

Output Units: 

Hidden Units: 

Input Units: 

Wire #: 

. ..*............... 

. . . . . . 

. . . . . 
Figure 29 
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The output layer had 62 units, 60 representing 1.0 centimeter bins from -30 cm to 30 cm. and 
2 ‘overflow’ units. The network was trained to represent the vertex position by a little 



Gaussian histogram in the output units. This gives good vertex position resolution with 
relatively few output units. The 18 wire subsections were chosen so as to overlap in order 
not to miss tracks which may span subsections. The outputs of the subnets are then simply 
added. This is illusaated in figure 30. The resulting vertex distribution is shown in figure 28 
for a typical event. The neural net output is shown as a dotted line. The maximum net 
output, represented by a cross, agrees well with the vertex position calculated offline as well 
as with the time-of-flight (TOF) vertex. Figure 31 compares the distribution of Zoffbne- 
ZNN to that that of &ffline-ZTOF. TOF might possibly be implementable online. The 
neural net does much better, and can certainly be improved, while the TOF resolution can 
probably not be improved. 

A similar technique has recently been applied, using a VLSI neural network, to online 
reconstruction of slope and intercept of muon tracks in a drift chamber2g. The test beam 
setup is shown in figure 32. The setup is discussed in more detail in reference 30. Four 
more online reconstructed events are shown in figure 33 which superimposes the neural net 
result with that from the offline fit. Normally the net gets the correct answer. In those 
instances when it does not, it is usually in cases where there are two tracks with reasonable 
tits, as in the fourth frame of figure 33. 
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Figure 32. 

3.2 QuarklGluon Separation 
The identification of the arton ancestors of jets using neural networks has been treated in a 
number of references31phy33,34. M ost of these have treated electron-positron collider data 
and have used Monte Carlo data. Results are that 70 to 85% of the jets are correctly 
identified. Another Monte Carlo study for the proton-antiproton collider environment, with a 
crude detector simulation, got about 70% correct identification for quarks33. Reference 35 
gives a result for proton antiproton collider with full detector simulation and also mentions the 
effect of the trained net on real data from the CDF experiment. The real data seems to contain 
components which resemble the quarks and gluons of the Monte Carlo. 
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3.3 Kink Recognition 
In this work36 tracks in a TPC are examined to try to determine whether they are particles 
which have decayed and therefore contain a ‘kink’. Two approaches are tried. In the first, 
the track is fit in an inner region, 1, and an outer region, 2. The track parameters in the two 
regions are used as input in to a neural network which tells whether or not this track is due to 
a decay. In the second approach, a single fit is done to the track, and the residuals of the fit 
are used as input to the neural network. Both of the neural methods are found to have higher 
efficiency than the standard chi-squared method, and are about a factor of 20 faster. 

3.4 An Assortment of Backprop Approaches 
Numerous groups have used neural networks for tagging of B quarks. Typically this is done 
for electron positron colliders 37~38,39140,4I although some work with jets at hadron 
colliders has also been reported15. A number of presentations on this subject will be found 
in the proceedings of this workshop42,43,44. 

Other applications include identification of Cherenkov rings using the positions of the 
photons in the ring45946, and determination of the quark jet charge using the z and charge of 
the leading particle in the jet.47 

3.5 A Few New Approaches 
3.5.1 Z Branching Ratio 
Reference 48 is a very nice result using real data to do the fit high precision measurement of 
the Z branching ratio into the five known quark flavors. Event topology variables such as 
sphericities and invariant masses were the inputs to the neural net. This may be the first 
application of neural networks that has produced a new physics result. 

3.5.2 Resonance Search 
This work49 comes from the E735 proton antiproton collider experiment at Fermilab. For 
two prong events, the inputs to a feed forward network are the three-momenta of the two 
particles, and the Z position of the vertex. The network is trained to tell ‘signal’, Monte 
Carlo generated rho, K, and Lambda particles which decay to two particles, from background 
simulated by same sign particle pairs. All of the particles are put through a detailed detector 
simulation. When a mass plot of opposite charge pairs is made using real data, clear signals 
for rho, K, and Lambda are seen (figure 34) when the events are selected by the neural 
network. When no neural network selection is made, no peak is seen. Apparently the 
network has learned a good combination of cuts to make to enhance the signal. No other 
attempt to define a set of cuts to enhance these signals in this experiment has been as 
successful. 

3.5.3 Mass Reconstruction 
This is another example of using a neural net to do function mapping. In this work50, proton 
antiproton collisions producing W particles which decay to two jets are produced. Gluon 
radiation, underlying event, and detector effects are included. Based upon the information in 
a calorimeter alone, a neural network is trained to calculate the mass of the final state system. 
Two approaches were tried: 1) the net is trained with all raw calorimeter energies; and 2) the 
net is trained to reconstruct the mass using a set of ‘intelligent variables’, such as the di- and 
tri-jet invariant masses. The intelligent variables approach is found to work much better. 
Results are shown in figure 35. The neural net method is found to be superior to the 
traditional method in which a fixed cone size is used to define the jets. 
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3.5.4 Non-Backprop Applications 
3.5.4.1 Znfrodu&& 
Recently some HEP applications of learning vector quantization (LVQ) and topological maps 
have apueared. The reader not familiar with LVQ and topological maps should refer to the 
tutorial of Fogelman61 in the proceedings of this workshop. Learning vector quantization is 
a supervised learning algorithm like backpropagation and appears to give performance similar 
to that of backprop. It has been used in the quark/gluon separation of reference 34 and in the 
ttbar recognition of reference 17. The topological map is an unsupervised learning algorithm 
and essentially performs a type of clustering. 

3.5.4.2 Jet Identification with a Topological Map 
In this workS2, a topological map with 49 units arranged in a 7 by 7 grid is used to identify 
quark flavor in jets. Eight input variables consisting of the the longitudinal and transverse 
momenta of the 4 leading particles in the jet were used as input to the topological map. The 
results obtained for jet classification were similar to those gotten with backpropagation, 
however, the topology of the solutions was found to give physical insight into the criteria the 
network used to classify the jets. Figure 36a shows the average response of the net to b, c, 
and light quarks. Certain groups of nodes are seen to be responsive to particular quark 
flavors. Figure 36b shows the weight vectors corresponding to the 4 leading hadrons for 
nodes which are specific to particular quark flavors. Nodes sensitive to uds quarks have 
weights which favor one or two leading particles which carry most of the momentum. Nodes 
for the heavier quarks favor a more uniform equipartion of momentum over the particles in 
the jet, in agreement with current notions about fragmentation. 

4. Neural Network Hardware 
4.1 Introduction 
Most high energy physicists are familiar with discriminators. A neuron is essentially a low 
quality discriminator with a sluggish turn on function53 (the sigmoid), see figure 37. Linear 
summing of signals is common in high energy physics: total energy, e.g. Triggers which 
weight calorimeter energies by the cosine of the angle of the cell are used in summed 
transverse energy triggers; thus weighted sums of energies are also common. A 
discriminator cutting on, say, summed Et, is identical to a single layer perceptron, the 
simplest neural network, without hidden units. High energy physicists have been using 
neural networks for years without knowing it! 

Figure 37. 

What is new is the idea of using very dense neural networks to implement algorithms which 
are more complex than had been previously thought possible at the trigger level. Since a 
three layer neural network can implement any function, it can implement any trigger. Special 



purpose hardware for triggers is not a new idea, but what is attractive about the neural 
networks is that they are reprogrammable without modifying the hardware. 

4.2 Currenf Hardware Stafus 
We limit ourselves here to commercially available products and a few products from private 
labs. We exclude ‘crazy’ things like acoustic charge transport in &As, which is very new, 
and optical implementations which are tco slow at present. 

4.2.1 True Analog Approaches 
In these approaches, the neuron is built out of op-amps, synapses are ‘resistors’ or 
something which acts like them, the sum of products is done with Ohm’s law and Thevenin’s 
theorem. The synapses can be true resistors, multiplying DAC’s, or floating gates. An 
example is the Intel ETANN chip54 which has 64 neurons and 10240 floating gate synapses. 
The analog implementations are the fastest. Processing time for the ETANN is of order 1 
microsecond per layer, independent of the number of inputs or hidden units. The analog 
chips are less precise than digital ones. The ETANN has the equivalent of only about 6 bits 
of precision. 

Another analog chip which is even faster is the ANNA chip from Bell Labs55. It has 4096 
synapses which can be configured as 16 neurons with 256 weights each, 256 neurons with 
16 weights each, or anything in between. The configuration can be changed on each 
instruction. The I/O to the chip is completely digital but onboard processing is analog. The 
accuracy on the weights is 6 bits but the accuracy for the inputs and outputs is only 3 bits. 
Weights are stored on capacitors which are refreshed every 100 microseconds. Processing 
takes 200 nanoseconds. This chip is optimised for local interconnects and has been used in 
online optical character recognition applications. 

4.2.2 Digital Approaches 
The Adaptive Solutions company 56 offers a chip with the ‘processor per neuron’ approach. 
Each hidden unit is a small processor with local storage of all weights connecting to that unit 
(see fig 38). The inputs are presented sequentially and each hidden unit does a multiply and 
add to its locally stored sum of products. This type of chip does totally digital processing. 
The speed of the network depends linearly upon the number of inputs. The clock cycle of 40 
nanoseconds is fast, but for a network of 100 inputs, the processing time will be 4 
microseconds, slower than the ETANN. 

Neural Semiconductor company57 has commercialized the stochastic pulse train encoded 
synaptic weight multiply technique (figure 39). All weights and activations are stored 
digitally but the actual multiply is done with the rate multiplier as shown in figure 39. 
Basically the activation and the weight are input as pulse streams into an AND gate. The 
frequency of the output pulse stream is the product of the frequencies of the input pulse 
streams. In this case, processing is parallel but the accuracy depends on the desired precision 
in the weights. For 6 bit weights, 50 microseconds is required with a 40 ns clock cycle; thus 
again a digital technique is considerably slower than the analog one. 

Oxford Computer Company58 produces a digital neural network chip which is essentially a 
fast matrix multiply chip. It is basically a memory chip with 256 1 bit processors imbedded 
in it. The processors do the weight multiplication. The processing time depends upon the 
number of hidden units. Twenty microseconds is the estimate for a typical problem in high 
energy physics. 
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Figure 39. Stochastic pulse train encoded synaptic weight multiply 

4.3 Prognosis for Triggers 
At Fermilab recently, a VLSI neural network has been used online in a test beam experiment 
to test a muon trigger which calculates slope and intercept of tracks in muon chambers in a 
few microseconds29. A neural network built of discrete components has been used fo 
calculate the z position of muon tracks in the same chamber&. These are tbe first 
applications of hardware neural networks in high energy physics. 

The DO experiment at Fermilab hopes to follow up on the above test beam work and build a 
neural net muon trigger for the DO muon upgrade in 1993/945g. 

The CDF experiment at Fermilab is currently installing hardware for three neural net triggers, 
and results from these should be coming out in the upcoming months.15,16. 

A group at the HI experiment at Hera is building a neural net trigger which will use 43 
calorimeter energy sums to distinguish physics signals from beam gas, etc.60 This 
experiment is just coming online. 
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