
Fermi National Accelerator Laboratory

Architecture Flow Diagrams under team zuork8

T. Nicinski

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

February 1992

To be presented at the Symposium on Assessment of Quality Software Development Tools, New Orleans, LA,
May 27-29, 1992.

To be published in IEEE Software, May 1992.

= Operated by Univetities Research Ax+c&San Inc. under Contract No. DE-ACM-76CH03300 with the United States Dapatbnent d Enetgy

This report was prepared as an account ofwork sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its we wouki not inftinge privately owned
rights. Reference herein to any specific commera’ul product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.

Architecture Flow Diagrams under teamwork@ *

Tom Nicinski

Fermi National Accelerator Laboratory / P.O. Box 500 / Batavia, IL 60510

Abstract

The Teamwork CASE tool allows Data Flow Dia-
grams (DFDs) to be maintained for structured analy-
sis. Fermilab has extended teamwork under UNIXT”
to permit Hatley and Pirbhai Architecture Flow Dia-
grams (AFDs) to be associated with DFDs and subse-
quently maintained. This extension, called TWKAFD,

allows a user to open an AFD, graphically edit it, and
replace it into a TWKAFD maintained Iibrary. Other
aspects of Hatley and Pirbhai’s methodology are sup
ported.

This paper presents a quick tutorial on Architec-
ture Diagrams. It then describes the user’s view of
TWKAFD, theexperiences incorporatingit intoteam-
work, and the successes with using the Architecture
Diagram methodology along with the shortcomings of
using the teamwork/TWKAFD tool.

1 Introduction

For the requirements specification for the Digital
Sky Survey (DSS) [z], Fermilab needed a methodology,
for specifying a data acquisition system, to supplement
Data Flow Diagrams (DFD~).~ Because of hardware
and performance constraints placed on the data acqui-
sition system, an architecturally oriented view of the
system was needed. This view would interact with the
DFD view, each prompting refinements in the other.
Hatley and Pirbhai’s Architecture Diagram method-
ology [3] proved to be the answer.

Initially, the DSS team drew Architecture Flow Di-
agrams (AFDs) and Architecture Interconnect Dia-
grams (AIDS) using a standalone drawing package.
Because of the siee of the DSS project, a large num-
ber of drawings were involved. Controlling update ac-

*Sponsored by DOE Contract DEACOZ-76CHO3000.
‘Data Flow Diage.ra and structured analysis ax described

in books by Yourdon, DeMarco [l], Hatlsy and Pirbhai [S], etc.

ces8 to the diagrams and the the maintenance of in-
formation about which AFDs/AIDs were associated
with which DFDs quickly became tedious and error
prone. A tool was needed, but none was available
which merged Cadre Technology, Inc. teamwork’s
DFDs with Hatley and Pirbhai Architecture Diagrams.

The TWKAFD extension to teamwork was de-
veloped at Fermilab to allow users to associate Ar-
chitecture Flow Diagrams with Data Flow Diagrams
[6]. Architecture Interconnect Diagrams are also
supported and an Architecture Module Specification
(AMS), which describes the allocation of DFDs to
AFDs, is maintained. These modeling methodologies
are accessed when graphically editing a DFD with the
teamwork CASE tool: a user can open an AFD or
AID for an entire DFD or selected process within a
DFD by using the TWKAFD tool.

2 Architecture Diagrams

(The Methodology)

The functional requirements for a system are de-
fined by a process model using DFDs. Processes within
the DFD model are then allocated to physical entities
within Architecture Flow Diagrama (AFDs). Thus,
AFDe show where processes are carried out. They
are composed of nod&a (locations where processes
occur) and interconnects (data and control connec-
tions between modules). The ‘mapping” of DFDs to
Architecture Flow Diagrams is necessary because

for the specification of systems, we need
to capture not only what the system re-
quirements are, but also how the system
will fulfill those requirements.

The means for capturing this system
mechanization is the architecture model,
whose principal purposes are

. to show the physical entities that make

up the system

l to define the information flow between
these physical entities

. to specify the channels on which this
information flows

These purposes are fulfilled using diagrams,
supported by textual specifications and a
dictionary [4].

An architecture module corresponds to one or more
processes (bubbles in a DFD). Architecture modules
should be named appropriately, but they do not need
to be named after DFDs. The allocation of a pr-
cess from a DFD to an architecture module implicitly
allocates the DFD’s children to that module. The al-
location of DFDs to AFDs is maintained in the Archi-
tecture Module Specification (AMS).

Within an AFD, information flow vectors represent
the information that flows between architecture mod-
ules. They are comprised of data flows (represented
by solid arrows, -) and control flows (represented
by dashed arrows, - - ->). Like DFD data flows and
control flows, information flow vectors should be 1s
beled with the types of information going through
them. Just as modules, information flow vectors do
not need to be labeled after DFD data and control
flow names.

Each AFD has a corresponding Architecture Inter-
CO~~~C~ Diagram (AID). The AID shows the same
modules as the AFD, but it fOCUBes on the physi-
cal communications channels between those architec-
ture modules. These information flow channels show
physical connections and do not necessarily match the
AFD’s information flow vectors. But, there is a map
ping between information flow channels and vectors
as data and control need to flow across sane medium.
Different channel types are available; some are repre-
sented as

Information flow channels are labeled with the type
of media used for communication (for example, an
optical link can be labeled with “fiber optic cable,”
Ynfrared beam,” etc.). If multiple channels exist be-
tween two modules, then they are graphically repre-
sented with repeated symbols. The characteristics of
the channels, such as timing needs, interconnect band-
widths, burst rates, etc., are described textually in an
Architecture Interconnect Specificaiion (AIS).

AFDs and AIDS are each composed of five major
units. They offer different perspectives of functional-
ity within the system.

. Input and Output Processing show the data and
control flows that the Control Model/Proceae
Model will use and produce. The processing per-
formed here is not necessarily required by the
DFD model. Instead, it represents the addi-
tional processing necessary to allow architecture
modules to communicate amongst each other. It
may also transform data to an internally usable
form.

. User Interface Processing shows human-related
interfaces to the AFDfAID. User Interface Pm
ceasing is not included as part of Input and Out-
put Processing to emphasize some unique con-
siderations, such an ergonomics, that affect how
this processing is performed.

. Control Model/Process Model performs the ma-
jority of the work depicted by the AFD/AID. It
contains the bulk of the requirements specified
by the DFD model.

l Maintenance, Self-test, and Redundancy Man-
agement Processing shows the processing done
to maintain the work done within Control
Model/Process Model. It can include modules
for self-monitoring and data collection (that will
be used for system maintenance).

Any section not used within an AFD/AID can be
omitted for clarity.

One important reason for the architectural exercise
is that the architecture model may suggest or even
necessitate the repartitioning of processing within the
DFD model:

Overall, then, the transformation of the
process model into an architecture model
is an iterative process that resolves all the
interfaces and allocates processes to archi-
tecture modules through tradeoffs and de-
sign decisions. The result is a fully inte-
grated system specification covering both
the functional requirements and the phys-
ical design [5].

2.1 An Example

The DFD of Figure 1 depicts part of what many
people do every day, entertain themselves from a couch.
In this case, it’s either recording or playing back a
movie from a VCR. This example is not meant to be

particularly complete or rigorous. It shows a DFD one
level down from the operation of a complete entertain-
ment system.

D mA” “CR&,

P

“CR8.l RW”. T,m*dm
?A,.

d
E$ 2
T9*llW c4

$5

WOF

4

~YCRIV0.U,
:.. :a

:,J..
‘,. !,

L 1.

t

y.... __ “cs~~~
vcRCamr-“--”

CA

____ j

j,,..
,,:j i

?

j

i,,y.::. Rmou :a, -ol
,:‘/ /

z?
__________._..~ : .EK..~w ,/

1

Figure 1: Example DFD 1, Watch TV

The AFD of Figure 2 corresponds to the DFD of
Figure 1. It haa only three architecture modules corn-
pared to the four process bubbles of the DFD. Al-
though many of the names used in the AFD, especially
those of data flows and control flows, are the same as
those of the DFD, they need not be the same.

CWTROLYJOfLIPROfESSMO)OEL CWTROLYJOfLIPROfESSMO)OEL
*IPUT *IPUT
mocEs9N(I mocEs9N(I “~~~~E~ ‘L%y&kF “~~~~E~ ‘L%y&kF OUTPUT OUTPUT

PRCCESYKI PRCCESYKI CROCCIYNO CROCCIYNO

Figure 2: Example AFD 1 Figure 2: Example AFD 1

An Architecture Module Specification (AMS) lists

which DFD bubbles are allocated to the AFD mod-
ules:

l AFD 1 is allocated to DFD Watch TV (1).

l AFD module Remote Control (1.1) does not
have any DFD processes allocated to it. It does
correspond to the C-spec of the DFD, but the
architecture model does not reflect this.

. AFD module VCR (1.2) has DFD processes Re-
ceive lhmami&on (l.l), Record Image (1.2),
and Playback Image (1.3) allocated to it.

. AFD module TV (1.3) has DFD process Project
Image (1.4) allocated to it.

The corresponding AID for the AFD of Figure 2 is
shown in Figure 3.

Figure 3: Example AID 1

This AID has the same architecture modules as those
of the AFD. The AID shows the different media used
to transport data and control information between the
various architecture modules. The information flow
channels in this example are not the same as the in-
formation Row vectors of the example AFD.

It may be necessary to reference the corresponding
AFD while reading an AID. Information flow chan-
nels between modules can be considerably different
than the information flow vectors between modules of
the corresponding AFD. But, there must be at least
one physical channel depicted to show the information
flow of a vector or group of vectors. TWKAFD does

not provide any means of correlating information flow
vectors with information flow channels.

3 Restrictions on the Architecture
Methodology

Although there are no hard and fast rules (at least
according to Hatley and Pirbhai) as to how an AFD

hierarchy relates to its corresponding DFD hierarchy,
some restrictions are placed on the Architecture Dia-
gram modeling supported by TWKAFD:

. An AFD can have more than one DFD allocated
to it, but a DFD cannot be allocated to more
than one AFD. A DFD’s functionality cannot
be split between multiple AFD modules.

. DFDs at one level of the hierarchy can only be
allocated to AFDs at the same depth within the
corresponding AFD hierarchy.

. If a parent DFD is allocated to an AFD, the
DFD children can only be allocated to modules
of that AFD. The DFD children cannot be allo-
cated to modules of another AFD.

These restrictions are necessitated by the TWKAFD

implementation. Additionally, they resolve ambigui-
ties in the use of the methodology, leading to a clearer
interpretation of a model. Through the use of tools,
refinements in methodologies can be made. For ex-
arnpl~teemwork does not place any restrictions on
how stores are interpreted (for example, are reads de-
structive?). But, teamworlr/SIMTU [7] resolves these
ambiguities with rules in order to drive adynamic sim-
ulation of a system represented by DFDs.

4 Using TWKAFD

(The Tool)

TWKAFD manages FIG format files which repre-
sent AFDs and AIDS. TWKAFD invokes the the XFIG
Utility’ to allow the user to graphically edit AFD and
AID files. Editing is performed with simple drawing
primitives rather than with AFD/AID object prim-
itives. For example, an AID optical link (-x-c- 1s
drawn with a line (-) and circles (o o o) to ‘,;t
b(r(ri

Besides restrictions on the Architecture Diagram
methodology (an discussed in Section 3), an additional
rule is enforced:

. An AID cannot be opened unless the correspond-
ing AFD file exists and has at least one DFD
allocated to it.

‘XFIG is the X Window SystcmT’ version of FIG.

TWKAFD does not perform all the work for a user,
especially when bookkeeping matters are involved. It
is important to remember that TWKAFD is built u&
ing teamwork facilities, but is not tightly integrated
into teamwork. The user must consider the following
situations:

.

.

.

4.1

Changes made to DFDs, especially deletions and
renumberings, do not get automatically reflected
in the corresponding AFDs, AIDS, and the AMS.
For example, deleting a DFD process will not
remove the allocation entry from the AMS; the
user must update the AMS as an explicit step.

Changes made to an AFD are not automatically
reflected in the corresponding AID, and vice-
versa.

TWKAFD takes teamwork’s approach to han-
dling the relationships between DFDs and AFDs.
This wan a design decision to try and make the
TWKAFD environment similar to the teamwork
environment. Thus, the user does not need to
learn two sets of behaviors. For example, the
reallocation of a DFD to another AFD will not
cause the updating of allocations of descendent
DFDs to the “new” descendent AFDs. There-
fore, it is possible to get the AMS “out of synch”
with what may be expected by the user.

Generations of Architecture Diagrams

TWKAFD maintains generations of AFDB and AIDS
in a similar concept aa teamwork’s maintenance of
DFD generations. These generations are maintained
within an SCCS (Source Code Control System) li-
brary. Also maintained within the library area is the
AMS, although only one version is kept. A standalone
utility, twkafdfetch, allows the latest generations of
AFDs and AIDS to be fetched. These can then, for
example, be incorporated into documents, etc.

5 The User Interface

When opening a DFD, the DFD menu bar of Fig-
ure 4 is displayed by the DFD editor. It haa been
extended to include a pull-down menu to allow access
to AFDs and AIDS. The AFD pull-down menu works
just as any other teamwork menu.

[File Whole.DFD . . . OOA

Figure 4: DFD Menu Bar

Some of the menu choices from the DFD menu bar
are described below to give a taste of using TWKAFD.
TWKAFD attempts to determine as much information
about what needs to be done without querying the
user. However, this is not always possible because
TWKAFD cannot be tightly coupled to the DFD edi-
tor. For example, teamwork’s DFD editor will auto-
matically assign DFD names (which are numbers) to
newly created processes. However, it is impossible to
associate a DFD with an AFD module without query-
ing the user for an AFD module name (also a number
following teamwork’s style).

5.1 Open Latest AFD

The user can open an AFD for the entire DFD cur-
rently being edited or for one selected process bubble
within that DFD. In either case, if the chosen DFD3 is
not already allocated to an AFD, TWKAFD will cre-
ate a new AFD; otherwise, the latest generation of the
associated AFD is opened.

In the case where an AFD will be created, if no
ancestor or descendent DFD of the chosen DFD is al-
located to an AFD, then the user will need to enter a
complete AFD name:

Create AFD

Enter the complete name of the AFD to be

created.

The AFD name must have 3 levels [as process

3.2.q.

AFD name:
I”

i
1

Notice that the AFD name must have the same num-
ber of levels as the DFD chosen to be allocated to that

‘Becauss D process bubble within a DFD CM expand to a
DFD, TWKAFD treats a proccsa as a DFD.

AFD.
A chosen DFD can have some ancestor DFD that

is allocated to an AFD. In this case, the name of the
AFD to be created must reflect that ancestry by taking
the beginning portion of its name from the nearest
ancestor AFD:

Create AFD

Enter the complete name of the AFD to be

created.

An ancestor of DFD 2.5.3.1 is allocated to AFD

6.2.

Thus. the AFD name MUST be prefixed by that

ancestor’s AFD name.

The AFD name must have 4 levels [as DFD

2.5.3.1].

AFD name:

The final condition is where the chosen DFD has a
descendent DFD that is allocated to an AFD. In this
case, the name of the AFD that is to be created will be
taken from the nearest descendent AFD. For example,
an AFD is to be created for DFD 6.1. If a descendent
DFD, 6.1.4.7, is allocated to AFD 2.10.7.1, then the
created AFD will be named 2.10.

5.2 Open Latest AID

An AID can only be opened or created when its
corresponding AFD exists, both in the AMS and in
the AFD/AID library. The allocation of a DFD to an
AFD is not sufficient in and of itself. The AID takes
on the fame name as the AFD to which the chosen
DFD is allocated.

When an AID is created, the latest generation of
the AFD is copied as the initial generation of the AID.
This is done as an AID’s modules must match those of
the AFD. The UEZI is still responsible for converting
the duplicated AFD to an AID:

. Convert all data and control flows to the appro-
priate module interconnections. These do not
have to match the AFD flows in either routing
or count.

. Label module interconnections with the media
used for communications, rather than the con-
tent of the communications aa in an AFD.

5.3 Renumber AFD

An existing AFD and it8 corresponding AID can be
renamed:

Renumber AFD

Enter the complete name of the AFD to be

renumbered.

Old AFD name:

IO

The user must then enter the new AFD name:

Renumber AFD

Enter the complete name that AFD 2.4 will be

renamed to. Take note that the following DFDs

will have their allocation records changed:

1.3

New AFD name:

ID

I

I
An AFD with the new name cannot already exist.

The AM.5 will be updated: all DFDs which were re-
allocated to the old AFD name will be changed to be
allocated to the new AFD name. As there are DO re-
strictions or checks if the number of levels in the AFD
name ia changed, the user must be careful with this
operation.

If the new AFD name has any DFDa already al-
located to it, the user is given a chance to abort the

Renumber AFD

AFD 4.7.9 [the new name] already has the
following

DFDs allocated to it:

3.10.1 6.11.13

Click OK if you still wish to renumber AFD 2.4

to 4.7.9.

5.4 Error Messages

Whenever an error is encountered, a message is die
played on the screen. The title of the message indi-
cates whether the error occurred when working with
an AFD or an AID. Additionally, the title has a con-
dition name which na,rrow the location of the error.
Finally, the message text gives a fuller explanation of
the problem.

In most instances, the display of a message indi-
cates that the requested operation was not completed.
TWKAFD makes every effort to return the state of the
architecture model to what it was just prior to the
start of the operation. In case TWKAFD is unable to
“fix things up,” the message text will contain a brief
description of what should be done to try to resolve
the problem.

6 Merging teamwork and AFDs

TWKAFD is implemented with the teamwork Ex-
tensibility Language [8] and a group of UNIX C shell
scripts. The teamwork Extensibility Language allows
the addition of pull-down menus to teamwork editor
menu bars. The teamwork Extensibility Language is
not intuitive at first, so a mini tutorial is presented
here.

In general, menu definitions are of the form:

(Menu
ame “string”)

{ kiable variable~definition)
(MenuItem

(Name “string")
(Variable variabledefinition)
(Action(SysCall “interpreteh3trGq”)

)) 1

where Menu, Name, Variable, MenuItem, Ac-
tion, and SysCall are keywords. Variable-definition,
string, and interpreted.h+ng are user-defined. A
string is any set of ASCII characters nested between
double quotes (“). An interpreted&ring is a string
parsed for variables. Definitions are nested and stop
ing rules apply to variables.

It is important to understand that interpreted
strings are the key to doing any work with the
teamwork Extensibility Language. When interpreted
strings are parsed, variables are referenced. The vari-
able’s return value is substituted into the interpreted
string. The syntax for referencing a variable is to pre-
fix it with a percent sign (%).

%v.rinble or %(voriobfe)
%vatioble(orgi, ,) or %(v.riabfe(.rgf,))

Variables can have arguments passed to them. They
can also be enclosed within parentheses if the charac-
ter following the variable is not a variable terminator.

6.1 “Subroutine” Calls

The teamwork Extensibility Language does not
provide subroutines. Instead, a variable is referenced.
In essence, most everything done within the team-
work Extensibility Language involves variable refer-
ences, even performing conditional tests:

%.IF(%.EQ(%varl,%varZ),%then-action,
%else-action)

where .IF and .EQ are teamwork control variables.
Two important control variables are

.SYS.CALL(commond)

.RETRIEVE(file)

where SYSXALL passes the interpreted string, com-
mand, to the native shell for execution. .RETRIEVE
can then be used to read a result from a file. For ex-

ample:

%.SYS..CALL(%.STRING(echo ‘Hello!’ >
%tmpfile))

%.IF(%.EQ(%.RETRIVE(%~~~~~~~),
%.QUOTE(Hello)),. ,. .)

6.2 TWKAFD Implementation

As much of the work aa possible is done with the
teamwork Extensibility Language. The attempt is to
reduce the dependence upon the native system under
which TWKAFD is being used.’

Still, a considerable amount of work is done using
C shell scripts. All scripts have a standard set of argu-
ments (via the variable afdstdarg) passed to them,
mainly to indicate which teamwork object ww se-
lected by the u8er. Each script returns a status by
echoing to stdout. Usually, an output of “Success”
indicates successful completion by the script. Any
other output is the actual error message to be dis-
played by the teamwork Extensibility Language code.

Below, is an example section of code. It implements
the Open Latest AFD menu item:

‘TWKAFD currently works only on SunOS=‘.’ platform..
But, becaux TWKAFD is X bamd, this is not a restriction.

(MenuItem
(Neme “open Latest AFD”)

(Varieble (Id afd$afdopen) (Value -

Initialiw ad dctcrmine what objsct ws’ll bc
working with (tbie DFD or one of it* prmms~m),

%afd$init
%hofdSche&objtyp
%.IF(%.EQ(%Dafdobjtyp,%.NULL),%afdSr~tuxrx(

%.~TRING(%AFDBADCHOICE).
%.STRING(~ AFD C-Ot be opcncdfor a

%(t.SELECTED.OBJECT-TYPE). Sslsct * prom,. to
open M AFD for it, or ‘elect mthing to open a AFD for DFD
%(t.OB;.yT$,

Check whether tbc chosen object is als& &xsted
to AFD. If it is, there’s no ncsd to query the umr for
M AFD number. otherwise, aldSafdmfdnm*et will
query ths U.CT for M AFD n-c u,d do kg&y
checking. lf all is fine, &d&&am will havs the
AFD name.

armget %afd*tdmg ‘AF6’ ‘EXACT > %-+fd>t,f))
%.ASSIGN(%~d&dmm.

%.I‘EMOVE-WS(%.STEING(%.4dS,t~tu,)))
%.IF(%.EQ(%~ddafdnam.Sb.NULL~.

%~dSd~~~amdct(k.~UOT~~C~=~t=AFD)),
%.NULL)

Open AFD. *Xdopen obtains cxclu&e a~~em to the
choxn object, invokc# XFIG, md updstes the AMS.

%.SYS.CALL(%.STEING(
aXdopcn %&dstdq ‘AFD’ ‘%~ddmfdr,m,’ >

W&d-tnf))
%afd$rctumonrrror(%.STIUNG(SbAFDOPENERR))
3.

))
(Aetion(SyaCall “%oafd&fdopsn”))

)

The Action(SysCall “. “)) line is invoked when
the user selects the menu item from the pull-down
menu. Few extensions to teamwork are so simple
where Action can perform all the work. Instead, a
variable under the MenuItem is defined which does
the work and Action simply references that variable.

In the above example, teamwork variables, pre-
fixed by t., are used. t.OBJECT is the name of the
teamwork object, such aa a DFD, a DFD process hub-
ble, a store, etc., that is selected. t.SELECTED-
OBJECT-TYPE specifies the type of that object:
process, store, data flow, etc. Additional control vari-
ables are also used: .REMOVE-WS removes white
space, including carriage returns, from its argument
while .ASSIGN assigns its argument’s value to a vari-
able. For .IF conditionals, .NULL a8 an action does
nothing.

As can be seen in the example, user-defined vari-
ables are used to behave as subroutines:

afd$init

afd$check.objtyp

afdSreturn

afd%status

afd$afdafdnamget

afd%returnansrror

Initialize variables to known
V.?.l”e&

Determine which object the user
selected to operate on.

Return to teamwork with a
message, aborting the current
menu operation.

Retrieve the status text from
the file described by the variable
afdatsf.

Get an AFD name from the user
and check its legality.

Return to teamwork in case of
an error (afd$status does not
return “Success”); the error
text returned by afd$status is
displayed.

6.3 Impressions

Developing with the teamwork Extensibility Lan-
guage is not efficient. The language is not very read-
able and the need to devise communication techniques
between the teamwork Extensibility Language and
host system scripts is an obstruction to productiv-
ity. In addition, there are no debugging facilities
available!’ Coding was improved by using variable
references to nest “subroutine” calls.

Nevertheless, the design, implementation, and test-
ing of TWKAFD took only one person-month. This
included the time spent learning the teamwork Ex-

tensibility Language. Considerable time could have
been saved if the teamwork documentation [g] wan
clearer and extended examples (more than one line)
were provided.

7 Results

It is important to classify where our successes and
failures lie. The methodology of using Architecture
Diagrams to supplement and enhance our use of DFDs
for structured analysis has been successful and quite
fruitful. On the other hand, the use of the teamwork
CASE tool with its limited ability to be extended was
not an unqualified success.

‘The Beta rdsa.s did dump mmcwhat useful information
when it encountered any error within the teamurort Extcnsi-
bility Langvags so&. But, this “fcsturc” disappeared with the
.hndard release.

7.1 The Methodology

The Architecture Diagrams did provide us with a
useful alternate view of the Digital Sky Survey data
acquisition system. Our initial uses of this method-
ology saw software developers specifying the data ac-
quisition system using DFDs; the hardwareoriented
engineers used Architecture Diagrams. The hierar-
chical decomposition of the system did not necessar-
ily go down to the same levels between DFDs and
AFDs. Usually, AFDs decomposed further down than
the DFDs allocated to them.

Our meetings showed that each view of the system
exposed flaws in the other view. For example, the data
acquisition system had hardware constraints placed on
it prior to system specification. These constraints were
easily incorporated into the AFDs/AIDs, but did not
surface in the initial DFDs. Yet, it was important
that the process structure reflect these real-world con-
straints. The iterative feedback between DFDs and
AFDs allowed us to converge on two system views that
specified the same system.

7.2 The Tools

The tools used to facilitate the use of both the DFD
and AFD methodologies did not work an smoothly.
They did allow multiple users to work concurrently
on the same project. Both teamwork and TWKAFD

provide exclusive access to the objects being edited.
Both tools also enforce some formalism in the use of
the methodologies (although users must be careful not
to let the tool define the methodology). Still, problems
were encountered:

l The XFIG Utility is inadequate for drawing and
manipulating AFDs and AIDS. The greatest
deficiency is that there are no AFD/AID con-
structs. As mentioned earlier, the user needs
to use simple drawing primitives to build up an
AFDfAID item. Moving or modifying these con-
structed structures is a cumbersome and sloppy
pPXe**.

XFIG is also inadequate as it does not provide
any means to allow the user to correlate AFD
information flow vectors with AID information
flow channels. This information still needs to be
maintained by hand.

l The lack of automatically updating bookkeeping
operations when changes in a DFD affect AFDs
and the AMS or vice-versa prevented the full use
of both tools. During initial stages of specifica-
tion, many changes were necessary. These were

not done as quickly as they should have been
because of the reluctance to manually update
many affected structures.

Problems such aa these can be remedied if team-
work did not limit its Extensibility Language to
just providing new menu items. Instead, if it
were possible to extend the teamwork editors,
software could be developed to automate much
of the TWKAFD tool. For example, when a DFD
bubble (process) is deleted, the DFD editor can
notify TWKAFD by calling a TWKAFD-supplied
routine.

The resolution to these problems is to have the users of
these tools work consistently, especially between each
other.

The ability to extend a vendor-supplied tool to in-
corporate a new methodology is a powerful capability
that can enhance a user’s performance. However, in
this case, there is considerable room for improvement
in the teamwork product.

References

[l] Tom DeMarco, Structured Analysis and System
Specification, YOURIQN Press, 1979.

[z] A Digital Sky Suruey of the Northern Galactic
Cap, 1991.

[3] Derek J. Hatley and Imtiaz A. Pirbhai, Strategies
for Real-Time Syslem Specification, Dorset House,
1988.

[4] Ibid., p. 19.

[5] Ibid., p. 25.

[6] Tom Nicinski and Bill Burt, Architecture How
Diagrams under teamwork,@ Fermilab PN 449,
1991.

[7] Teamwork/SIMTM U$er’s Guide, Release 4.0,
Cadre Technologies, Inc., 1990.

[8] Teamwork@ CJaer Menw User’s Guide, Release
4.0, Cadre Technologies, Inc., 1990.

