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ABSTRACT 

The results of [l] ace used to obtain full asymptotic expansions of Feynman diagrams cenocmal- 
ized within the MS scheme in the regimes when some of the masses and external momenta ace 
large with respect to the others. The large momenta ace Euclidean, and the expanded diagrams 
ace regarded as distributions with respect to them. The small masses may be equal to zero. 
The As-operation for integrals is defined and a simple combinatorial techniques is developed 
to study its exponentiation. The As-operation is used to obtain the corresponding expansions 
of arbitrary Green functions. Such expansions generalize and improve upon the well-known 
short-distance operator-product expansions, the decoupling theorem etc.; e.g. the low-energy 
effective Lagrangians ace obtained to all orders of the inverse heavy mass. The obtained ex- 
pansions possess the property of perfect factorization of large and small parameters, which is 
essential for meaningful applications to phenomenology. As an auxiliary tool, the inversion of 
the R-operation is constructed. The results ace valid for arbitrary QFT models. 
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1 Introduct ion 

In the preceding paper [l] the problem of obtaining asymptotic expansions of multiloop Feyn- 
man diagrams was analyzed. From the point of view of phenomenology, it was stressed that such 
expansions must possess the property of “perfect factorization” of large and small dimensional 
parameters. From the point of view of mathematics, it was shown that the key technical problem 
(“the Master problem”) is that of obtaining asymptotic expansions-in powers and logarithms 
of the expansions parameter-of products of singular functions in the sense distributions. An 
explicit solution for the Master problem was obtained in the form of the so-called As-operation 
foe products of singular functions, which acts on Euclidean momentum-space Feynman inte- 
grands and yields an expansion whose all terms ace well-defined distributions (containing, in 
particular, &functional contributions with coefficients depending non-analytically on the ex- 
pansion parameter) so that the expansion allows tecmwise integrations with test functions. 

The purpose of the present paper is to use the results of [l] and obtain explicit expansions 
of multiloop Feynman integrals in the form of As-operation foe integrals.’ It turns out that 
the combinatorial structure of the As-operation for integrals is very similar to that of the R- 
operation’. This similarity allows one to derive expansions of pertucbative Green functions in 
a global form with the help of the same techniques as used in studying the exponentiation of 
the R-operation. 

The present paper is a revised and simplified version of our publications [2], [3] and [4] which 
have been widely discussed in the literature [20]-[22].” Th e revision has not affected the results 
but only the order of presentation. The simplification is due to the fact that the starting point 
of [2] was the so-called EA-expansion for UV-cenocmalized integrals, which is a composition 
of R-operation and the As-operation in the sense of the present paper. Correspondingly, the 
As-operation as defined in [2] mixed up UV-renormalization and the expansion algorithm. In 
the present version we define the As-operation and study its exponentiation directly for the 
uncenormalized integrals, which results in further simplifications. 

The attractiveness of the As-operation is due to the fact that it serves as an organizing center 
of the theory and fully exhibits the structure of the expansions, which is invaluable for appli- 
cations where diagram-by-diagram analysis is necessary to enhance reliability of calculations. 
Its definition is also remarkably simple within dimensional cegularization, which trivializes the 
study of exponentiation. It should be stressed, however, that the use of dimensional cegulaciza- 
tion is by no means essential for the expansion problem; a separate publication is devoted to a 
study of this point [14], [15], and especially [17]. Euclidean asymptotic expansions were studied 
in cegularization independent manner within the framework of generalized MS schemes [15]. 
The main result of [17] is an expansion formula whose combinatorial structure is practically 
identical to that of the As-operation of the present paper. Therefore, all our combinatorial 

‘The two As-operations are different representations of essentially the same operation, which justifies using 
the same name to denote them: the As-operation for integrals is an integrated version of the As-operation for 
products-cl. subsect. 5.1 below. 

2Note that the As-operation for products also has close parallels with the R-operation-but with the R- 
operation in position representation. 

30PE in the MS scheme was also studied in [Kl]. 
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results concerning exponentiation of the As-operation are immediately applicable to [17]. 

The plan of the present paper is as follows. It consists of five sections, each section is 
subdivided into subsections and contains a prologue where further information can be found. 
In the first three sections various aspects of combinatorial structure of the R-operation in the 
MS scheme are studied. In sect. 2 the exponentiation formula for the R-operation is obtained 
using the functional techniques. The result is, of course, well-known. However, since we wish 
to use similar arguments in studying the As-operation, we feel it is useful to present an explicit 
derivation in such a way as to make it immediately applicable to the case of the As-operation 
studied in sects.4 and 5. In sect. 3 the inversion of the R-operation is derived, and in sect. 4 
the renormalization of Green functions with multiple local operator insertions is considered. 

In sects.4 and 5 we study the combinatorial structure of asymptotic expansions of Feynman 
diagrams. In sect. 5 we consider the special case of heavy mass expansions. The As-operation 
for integrals is introduced and its exponentiation is proved. Using the techniques developed in 
sects.l-3, the effective low-energy Lagrangian is presented in an explicitly convergent form to 
all orders in the inverse heavy mass. (It should be stressed that in this paper we only deal with 
purely combinatorial aspects of the theory. A fuller justification of a technical assumption (see 
subsect. 5.8 below) is presented in [17] (f or an informal discussion see [16].) In sect. 6 the results 
of sect. 5 are extended to comprise the case of large external momenta, so that the familiar 
short-distance operator product expansion is reproduced and its generalizations are obtained. 

Note that our final formulae immediately provide the very useful explicit expressions of 
OPE coefficient functions first announced in [ll] (explicit examples of calculations going as far 
as 3-100~ approximation can be found in [18]; for further references see also [23]). 

The notations are on the whole consistent with those of [l]. 



COMBINATORICS OF THE R-OPERATION 

IN THE MS SCHEME 

2 R-operation in the MS scheme. 

In this section we study the combinatorial structure of the R-operation applied to the pertur- 
bation series as a whole. The fact that the R-operation is equivalent to adding counterterms 
to the Lagrangian is of course well-known. But we are interested in exact formulae expressing 
this fact that would be convenient for practical calculations and valid for the MS scheme of UV 
renormalization. Therefore we reproduce a simple proof of the exponentiation R-operation in 
the MS scheme-see (2.25) below-as given in [2]. 0 ur second aim is to present the derivation 
of the exponentiation formula (2.25) in a form sufficiently general to make it applicable to the 
case of the As-operation studied in Chapters 4 and 5. To make the paper more accessible to 
practitioners of applied QFT, our presentation is rather detailed. 

We start in subsect. 2.1 with a description of the R-operation in the MS scheme. Our 
definitions are equivalent to the standard ones [5], and the differences are mainly notational. 
In subsect. 2.2 a convenient order of enumeration of UV subgraphs is fixed in preparation to 
studying the global structure of the R-operation. Subsect. 2.3 summarizes some results of the 
functional techniques that will be needed to us (for more details see e.g. [7]). In subsect. 2.4 a 
formal expression of the statement that the R-operation is equivalent to adding counterterms 
in the Lagrangian, the exponentiation formula (2.25), d IS erived; our reasoning is an extension 
of the arguments of [6]-for comments and comparison see subsect. 2.4). In subsect. 2.5 the 
results are extended to Green functions of fields. Complications due to composite operator 
insertions will be discussed in sect. 4. 

2.1 Basic definition of the R-operation. 

The effect of the R-operation in the MS-scheme on a single Feynman integral G can be expressed 
by the formula 

R~G=~(nAu”ng,).G/(IIso). (2.1) 

Let us explain it. 

One associates a Feynman graph, that will be referred to as “the graph G”, with the integral 
G, and vice versa. The correspondence between graphs and integrals is established by Feynman 
rules. 

Let us fix how p, the ‘t Hooft unit of mass, appears in the integrals. In momentum repre- 
sentation, having taken into account momentum conservation in all the vertices of the graph, 
one can obtain the integrand of the corresponding unrenormalized Feynman integral. Then for 
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each internal momentum integration one replaces the measure as 

2c = 4 - D, (2.2) 

and assumes that integrations (and also the Dirac algebra etc.) are to be done within dimen- 
sional regularization. The role of p is to preserve the dimensionality of the integral as a whole 
under regularization. 

An WV subgraph g of G consists of some vertices of the graph G and some of its lines 
attached by both ends to the vertices of g. If g consists of one vertex and no lines then we call 
it elementary reties. If g has at least one loop and is connected and one-particle-irreducible 
then we call g a proper UV subgraph. (Note that if G is one-particle-irreducible then one of its 
proper UV subgraphs coincides with G.) 

An UV partition of G is a set of its UV subgraphs {g-} such that each vertex of G belongs 
to one and only one gu. Note that one of the UV partitions consists of elementary vertices only, 
and another one consists of only one subgraph, namely, G as a whole. Summation in (2.1) runs 
over all UV partitions of G. 

Now we have to define the operation Auvog where g is an UV subgraph of G . By definition, 
Auvog = g if g is an elementary vertex, and Auvog = 0 if g is not an UV subgraph. If g is a 
proper UV subgraph, then the action of Auv on g can be described as follows. The graph for 
(Auvog) (G/g) can be obtained from the graph for G by shrinking g in G to a point. With the 
new vertex thus obtained one associates a factor-the UV counterterm-that is obtained from 
the integral corresponding to g via a special algorithm which need not be specified here (see, 
however, below). Using the Feynman rules thus extended one finally builds up the integral for 
(Auvog) (G/g). Note that the above rule for p is still operative, i.e. the number of the factors 
$’ is equal to the number of loops of G with g shrunk to a point. 

For the sake of completeness let us describe the recipe for evaluating the UV counterterm 
for a given proper UV subgraph g. If one rewrites the R-operation as 

Rag E Wag + Aov og, (2.3) 

then Auvog is precisely the UV counterterm to be evaluated while FL’ involves only counterterms 
for subgraphs of g which are assumed to be known already. Since we are working within 
dimensional regularization, all our integrals depend parametrically on D, the complex-valued 
dimension of space-time. Let K be the operation that picks out the pole part at D = 4 of any 
function on which it acts. Rag should be finite at D = 4, therefore KaRog = 0. On the other 
hand, the UV counterterms in the MS-scheme are pure poles. So, applying K to (2.3), we get: 

Auv.g = -KoR’og. (2.4) 

Eqs. (2.1), (2.3) and (2.4) provide a convenient description of the R-operation in the MS-scheme. 
We would like to stress that all the manipulations are to be done in momentum representation, 
and that the rule for p remains operative. Also recall that (2.4) is a polynomial of masses and 
external momenta of g and is independent of ~1. 
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The most important points for us here are: 

(i) Auvqg, whatever the subgraph g is, depends only on g but not on G as a whole. 

(ii) Summation in (2.1) runs over all partitions of G. 

(ii;) An UV subgraph is defined as a subset of vertices and some (not necessarily all) of the 
lines connecting the vertices of this subset. 

On the other hand, the fact that Aov is non-trivial only on proper UV subgraphs will be 
completely irrelevant. 

2.2 Enumerating UV subgraphs. 

Let us transform (2.1) to a more convenient form. Let v be a subset of vertices of G and 

A& = ~(Aws) (G/s), (2.5) 
9-v 

where summation runs over all UV subgraphs g with the same set of vertices, u. Denoting the 
set of all vertices of G as V, we can rewrite (2.1) as: 

RoG = 

ul~,=0, for c.@ 

Eqs.(2.5)-(2.6) fix a convenient order of enumerating UV partitions of G. 

(2.6) 

2.3 T-products and functional techniques. 

Let G(z) be a free field operator; ~(2) will denote the corresponding classical field. Let F(p) 
be a functional of the form 

F(lp) = C/F”(Z,. z,)cp(z*). .yqtn)dq.. .dz,. (2.7) 
n 

Replacing the product of v’s in (2.7) by the T-product of 3’s one obtains an operator which 
we denote as TF(+). The Wick theorem allows one to reexpand TF($) in terms of the Wick 
normal products of @ : 

TF($) = cj F,N(r, . z,)N [G(q). $(xn)] dq dz,, 
n 

where F,” are related to F,, in a certain way (see below). 

The generating functional for the coefficient functions is defined as: 

FN(v) = F/ F,N(q . . . G,)(P(I~) . . . (p(z,,)dz, . . . dz, (2.9) 
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The relation between F(p) and FN(v) is expressed, by definition, by 

TF($) = N[FN(v)]+ (2.10) 

The well-known formal expression of the Wick theorem due to Khori (see [7] and refs. therein) 
reads: 

FN(9) = 2 F(v), (2.11) 

where 

I ;/ dxdy- ’ A+, y)b = 
VP(X) 

f&AC&, 
V(Y) 2 

(2.12) 

and 
A’(x,y) =< T+(~)+(Y) >o (2.13) 

(Extension of all our formulae to the most general case of fermionic and complex fields is 
straightforward, therefore our analysis will be quite general.) 

Our purpose is to study Green functions, but first it is convenient to consider the (off-shell) 
S-matrix. The unrenormalized S-matrix is expressed as: 

S(G) = T expMG)l, (2.14) 

where L(G) denotes the interaction Lagrangian integrated over space-time and multiplied by i 
(the normal ordering of fields in L(G) is not assumed). 

The generating functional SN is defined as ( cf. (2.10)): 

T evM41= WN(~L=~ (2.15) 

and from (2.11): 
SN = e’ exp[l(q)]. (2.16) 

Again we have to set the rules for p, in order to establish connection between our earlier 
definitions of Feynman integrals and the expressions generated using the functional technique. 
We assume that: 

(i) all momentum and space-time integrations, g-matrices etc. are D-dimensional; 

(ii) the dimensions of the fields $ and the coupling constants are always the canonical 
4-dimensional ones; 

(iii) each propagator bears an extra factor $‘; note that (2.12) is dimensionless since we 
assume that G/&(z). p(y) = 6(z - y) with D-dimensional &function; 

(iv) the interaction Lagrangian L(cp) in (2.14) contains the factor p-s’ and is therefore 
dimensionless; note that condition (ii;) is equivalent to (iv) extended to the quadratic part of 
the full Lagrangian ( cf. (2.35) below). 

Given these rules, a connected Feynman integral will have the factor p*‘(‘-r) where 1 is the 
number of its internal momentum integrations (loops)-which differs by p-se from what was 
postulated in subsect. 2.1. Such extra p -*’ to each connected component can be easily taken 
into account in what follows. 
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2.4 Exponentiation of the R-operation. 

The renormalized S-matrix is obtained by applying the R-operation to each Feynman integral 
contributing to the coefficient functions of SN. Thus, the starting point of our analysis is the 
following expression: 

SR(‘P) = WT exd~(v))l= ,$co $R”T~N(~)y 

where we have introduced the convenient notation 

T = e’, 

which will be used systematically in the context of the functional techniques. 

(2.18) 

Evaluating functional derivatives, one obtains a sum of terms, each one having a graphic 
representation. In the resulting expression one only has to replace products of the classical 
fields ‘p by the normal (N) products of the free fields $, in order to obtain the operator 
of the S-matrix. (Note that since we wish to use the MS-scheme for UV renormalization, 
the S-matrix will not satisfy correct normalization conditions automatically, but this is of no 
importance because our study of the S-matrix is only an intermediate step in the study of 
Green functions.) 

Note that in (2.17) each L(p) corresponds to a vertex while each I (see (2.12)) generates 
one line of a Feynman graph. This allows one to conveniently perform all the enumerations of 
UV partitions inherent in the definition of the R-operation as given by eqs. (2.1)-(2.4). 

First one has to enumerate all possible partitions of N vertices into groups of vertices of 
various sizes ( cf. (2.6)). N vertices can be split into rzr groups of 1 vertex, ns groups of 2 
vertices n,v groups of N vertices in 

ways. Therefore, applying (2.6) to (2.17) we get: 

(AOL”‘) . . (AaL-+). 

(2.19) 

Now, for each group of vertices we have to expand A according to (2.5). We have to separate the 
lines connecting vertices inside each group A*Lk from the lines connecting vertices of different 
groups, and among the former to enumerate all subsets of lines that will form UV subgraphs 
on which Auv acts. This can be done by ascribing different labels to the RI + + no groups 
of vertices and marking the field 1p in each group by this label. Then we have: 

T [IJ AQL”*CV)] = ew(~~A’4 [l-j AoL”“(v,)] ~o=~ (2.21) 
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2 &AC& + F $LAc6.) v AWL”-] ~~=~ 

= [~XP ( mFo &.Acb) n A0 (exp~fa.Ac6~Ln~~Y~))] 
a fPa=rp 

(here 6, = 6/6qp,). In (2.21), each operator I, = &AC& generates one line attached to vertices 
of the a-th group. There are (:,) = M!(M’!(M - M')!)-' ways to choose M’ lines from a set 
of M lines. Therefore, 

We’ F(v)) = M&(‘“W) (2.22) 

= &ii &go (Et) I”-M’A$(IM’F((o)) = ef A$(& F(p)), 

where 
ACv = /L-s’Auv$‘. (2.23) 

(The origin of the seemingly bizarre p-factors in (2.23) is as follows. The R-operation and the 
operator Auv should be applied to “standard” dimensionally regularized Feynman integrals 
containing one factor p*’ per each loop. But the expression e’F(rp) generates integrals with 
one such factor lacking per each connected component- cf. the end of subsect. 2.3. To remedy 
this, the powers of p are introduced into (2.23), where it has been taken into account that 
Auv is non-trivial only on integrals with one connected component. It should be noted that 
in the context of the functional techniques Auv is systematically replaced by AL,, so that the 
superscript f can and will be omitted.) 

Using (2.22), we rewrite (2.21) as: 

(2.21) = T~Aw(TP=(P)). (2.24) 
01 

Substituting this into (2.20), we finally obtain: 

Sk(v) = Texp[LRl, (2.25) 

where 
LB = Au,,. (T &‘) - 1) (2.26) 

Note that Auv.(L(cp)) = L(p) (recall that A uv 
therefore Ln can be represented as: 

is a unit operation on elementary vertices), 

LR = L(p) + “divergent UV counterterms”, (2.27) 

where 
“divergent UV counterterms” = Auvo T c?(~) 1 - L(9) - 11 (2.28) 

(note that each term in the bracketed expression on the r.h.s. of (2.28) that gives a non-zero 
result after application of Auv has at least one loop). So, indeed, the effect of the R-operation 
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is equivalent to adding some counterterms to the interaction Lagrangian. Eq.(2.28) provides a 
convenient explicit expression for them. 

For clarity’s sake, let us explain the algorithm encoded in (2.26): 

(I) one writes down all the contributions to T exp[L(p)] = exp($Ac6) exp[L(cp)]; 

(2) then one discards all the terms except those that correspond to connected 1PI graphs; 

(3) each of the terms left has the form: 

P-~C J 0 ( dpJ2dD ~~(CpiP’~(m . .Pk)@(Pl) . +‘(pk), 

where 
g(p) = (2p)-” J eip= dDx q(z) (2.30) 

and S(Cpi) expresses momentum conservation while FI(pl . .pk) is a connected 1PI Feynman 
integral constructed according to the rules described after (2.1). To FZ, one should apply Auv 
defined after (2.2), and Auv replaces FI in (2.29) by a polynomial of pi with coefficients that 
are divergent in the limit D -+ 4. That is, A ov transforms (2.29) into an integral over z of local 
products of p(x) and its derivatives. (Note that in the case of the vacuum graphs (k = 0) the 
&function degenerates into an ill-defined factor 6(O), and a special axiom should fix a recipe for 
handling it. Such a recipe is completely non-interfering with what we are doing: the integral 
FZ is correctly defined even in this case for both the R- and As-operations to yield meaningful 
results when applied to it.) 

The method for resolving combinatorics of the R-operation that we have used is an extension 
to the slightly more complicated case of the MS-scheme of a reasoning from subsect. IV.1.3 of 
[6]. In [6] the momentum subtraction scheme [8] was used (so that only one term on the r.h.s. 
of (2.4) was retained, namely, the one corresponding to the UV subgraph containing all the 
lines of the graph G which connect the vertices from the subset u), and it was assumed that 
the Lagrangian is normally ordered. As a result, in [6] the counterterms in (2.28) were to be 
understood as normal products, while no such normal ordering is assumed in our case. 

2.5 R-operation on Green functions. 

Let us now turn to Green functions. To obtain the generating functional G(J) for the Green 
functions one should add a source term to the Lagrangian: 

L-t L+qJ, (2.31) 

and evaluate the vacuum average of the resulting S-matrix. 

The term yJ generates a vertex that can be either isolated from, or connected by only one 
line with the rest of the graph. In either case the resulting graph is nullified by Auv unless it 
consists of a single vertex PJ or does not contain such vertices at all. Formally: 

&w (Te L+w+J) = Aw (TeL) + Auv~(qJ) = A”“0 (T8) + L~J. (2.32) 
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The last equation is due to the fact that A uv does not affect single vertices. Therefore, for the 
generating functional of the MS-renormalized Green functions one has: 

G(J) E Ro < T exp[l(q) + cpJ] >o= (T exp[Ln + cpJ]),=, 

It may be helpful to transform (2.33) to the form of a functional integral: 

(2.33) 

(T exdx(p) + PJI),=, = exp(~bA’b) exp x d 
[ bJ)l exp k4 ) 

=exp[x(&)]exp(iJA’J) =-p[x(&)] /+exp[h.+IpJl 

(2.34) 

= J ~wdk. + x(v) + cpJ1, 
where 

he.(p) = +(Ac)-‘p (2.35) 

is the free classical action (multiplied by in-s”) of the field ‘p. Denoting by L,,, the full classical 
action (multiplied by ip-*‘) of the model: 

Lot = Lrm. + L, 

and using (2.27), we have for (2.33): 

G(J) = J 40 ew[&t(p) + “d’ ivergent UV counterterms” + ipJ]. 

(2.36) 

(2.37) 

This equation together with (2.28) p rovides a convenient link between practical calculations of 
counterterms and the analysis of Green functions by the renormalization group method. 

3 Inversion of the R-operation and the &mapping. 

Since the effect of the R-operation consists in adding to a graph G a linear combination of 
graphs with a lesser number of loops, it turns out possible to construct an inversion of the 
R-operation-in very much the same way as it is always possible to invert a triangle matrix 
with units on the main diagonal. We construct the inverted R-operation, and to this end the 
so-called formalism of t-mapping is developed. This formalism proves to be a useful conceptual 
tool for studying various aspects of renormalization owing to the universality of the t-mapping 
i.e. owing to the fact that it contains full information on the R-operation in a given subtraction 
scheme for arbitrary models with a given field content. The main application of the inverted 
R-operation will be the construction of Euclidean asymptotic expansion of Feynman diagrams 
in an explicitly convergent form. 

After introducing some definitions in subsect. 3.1, in subsect. 3.2 the t-mapping is defined. 
In sects.2.3-2.5 its inversion, the mapping 5-i is proved to exist. A useful property of 5-r 
is pointed out in subsect. 3.6, and in subsect. 3.7 we briefly discuss how the structure of the 
renormalization group emerges from the point of view of the formalism of f-mappings. In 
subsect. 3.8 the inverted R-operation is defined and an explicit algorithm for calculating the 
corresponding counterterms is derived. 
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3.1 Local operators, local functionals, and Lagrangian functionals. 

Let j,(z) be a full linearly independent set of local products of ip(z) and its derivatives. In 
momentum representation, one has: 

jk(q) = J dDm . . . dDPm PdDP4’~ (P + &) Pk 

xaPl)...aPmL 

(3.1) 

with G(p) defined in (2.30); ‘Pk is a polynomial of pi p,. For convenience we assume that P, 
are polynomials of the masses of the model and are allowed to contain factors depending only 
on p = - Cpk, or in terms of the coordinate representation j,(x) are allowed to contain full 
derivatives in r. 

We say that L is a local functional of fields if 

where /Z,(q) are coefficient functions that are independent of the fields. 

We call ,C defined in (3.2) a Lagrangian functional if 

L(q) = gdq), (3.3) 

where g,, are coupling constants independent of q. For example, L and Ln in (2.14)-(2.16) and 
(2.26) are Lagrangian functionals. 

3.2 The c-mapping. 

One can see that the proof of eqs. (2.17) and (2.25) is valid not only for Lagrangian, but also 
for general local functionals I: : 

where 

ROT exp ,C = T exp <[L], (3.4) 

([L] E Auvo(T expel: - 1). 

It is not difficult to see that E[L] is also a local functional: 

WI = c J a-n[~C; ql;n(q). n 
In momentum representation its coefficient functions are formal series of the form: 

~“[riql=~o~-..~Jdq~... J+N++&i) 

(3.5) 

(3.6) 
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xP~~!.,,RN(Q1...QN)~:n,(Q1)...~*~(qN), 

where P are polynomials in qi. The UV poles are contained in the coefficients of the polynomials 
‘P. In the coordinate representation, &[lC; ] 
derivatives. 

z are sums of local products of L,(z) and their 

The representation of <[L] in the form of (3.5) and (3.6) is in general not unique because 
a factor depending only on q as a whole can be included either into &[L; q] or into j”(q). But 
it can be made unique if one requires that P from (3.6) should not contain such factors. We 
assume that this condition is always fulfilled. 

If &Z is a Lagrangian functional ( cf. (3.3)) then such is t[,Cc] as well, as can be seen from 
(3.6). 

So far we have done very little beyond rewriting the results of sect. 2 in a new form. But this 
exercise is by no means trivial because it exhibits the fact that the t-mapping is universal in 
the sense that it depends only on the field content of the model but not on the interaction. We 
will see that the E-mapping is a convenient tool for studying UV renormalization of interaction 
Lagrangians as well as composite operators. 

3.3 Inversion of the (-mapping. 

We are going to prove that there exists a mapping f-r[~Z] of the form of (3.5)-(3.6) with P 
replaced by some other polynomials p satisfying the same restrictions. More precisely, 

[[<-‘[lc]] = I: and E-‘[t[fZ]) = L: (3.7) 

for any local functional fZ. The equations (3.7) allow one to write down the following inversion 
of (2.3): 

ROT exp [-’ [JCC] = T exp L. (3.3) 

This equation is one of the key results of the present paper. 

3.4 The structure of the @mapping. 

Let us study the structure of &.?I. (Throughout this section we denote A = Aov.) 

The terms that are linear in L: can be extracted from [[.C] as follows: 

Then 

<-‘[L] E Ao(T e’ - 1) = Ao(T ,C) + AQT (e” - fZ - 1) 

and 

Aa = A-T c J dq.C:,(q);m(q) m 1 = c J WC,(dA4T?&)) m 
AQ;m(q)) = ~~m,r&q). 

n 

WY 

(3.10) 

(3.11) 
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Indeed, j,,,(q) is the Fourier transform of a local products of fields so that the operation of 
T-product generates all possible tadpole graphs from T,,,(q). A replaces the loop integrals cor- 
responding to such diagrams by counterterms, and the result is a linear combination of local 
operators, which is what (3.11) states. In any subtraction scheme 

z,,, = 1. (3.12) 

In the MS scheme, s,,, for R # m are poles in D - 4 with numeric coefficients that are 
independent of the dimensional parameters. (Recall that we include masses into the local 
operators j.) 

Let us show that the matrix z,,, has an inverse. To this end we choose a special basis 
T,, such that each T,, is a monomial of fields and masses. Moreover, it is easy to see that the 
basis can be chosen to be ordered so that if the n-th operator is built of a lesser number of 
fields than the n’-th one (provided the dimensionalities in mass units and the numbers of full 
derivatives are the same) or if the dimensionality of the n-th operator is less than that of the 
n’-th one, then n < n’. In such a basis, m < n implies that z,,, = 0. Therefore, t,,, is a 
block-triangle matrix with units on the diagonal. It follows immediately that z-i exists and 
has the same block-triangle structure as z, and the matrix elements of z-r are polynomials of 
non-zero elements of z. 

3.5 Existence of (-I. 

Now we can solve the equation 
I!7 = ([L] 

with respect to ,fZ. 

Rewrite (3.7) in the form of an equation for the sources: 

ud = WC; 4, 

(3.13) 

(3.14) 

using the above information on the structure of E, extract the terms that are linear in L: on the 
r.h.s. of (3.14): 

E”(P) = CLn(Q)%n,n + &nK; 41. 
m 

(3.15) 

Multiplying (3.15) by z-l, we can rewrite it as: 

G(q) = c c&,~,~” - c &nm~; Q1~m~n. 
m m 

(3.16) 

Now the expression of L,, in terms of &, can be obtained by iterating (3.16), taking as a starting 
value the first term on the r.h.s. of (3.16). k iterations allow one to obtain an expression of /Zc, 
in terms of E,, to order k in EC,. Denoting the obtained solution of (3.16) as 

L = <-‘[L], (3.17) 

one can easily see that the mapping [-’ has the properties described in subsect. 3.3. 
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3.6 A useful property of < and EM’. 

If J is a source for the field cp then (2.32) can be rewritten as: 

W + rpJ1 = WI + ioJ. 

It is not difficult to see that 
(-'[L+qJ] = t-'[L]+ 'PJ. 

(3.18) 

(3.19) 

3.7 (-mapping and renormalization group. 

It might be interesting to note that the above proof did not use any specific properties of the 
MS scheme, though E and E-i do depend on the details of the R-operation via P and 2 in 
(3.6). It follows that the above formalism offers an alternative way of studying renormalization 
group problems. 

For instance, let R. and Rb be two R-operations differing by the choice of subtraction 
operators. Then: 

R,nT ,c = T ,t&l = &oT &‘[~&I] s &oT &,‘~I, (3.20) 

One sees that [ has the form of (3.5)-(3.6) with suitable polynomials P which-as can be 
easily understood-stay finite when the regularization is removed. Thus the structure of the 
renormalization group emerges very naturally*. 

The Zimmermann identities for the Green functions with local operator insertions can be 
easily obtained by performing suitable variations of (3.20) with respect to the classical sources 
JC,, entering L: in (3.2) ( cf. sect. 4 below). 

3.8 Practical calculations of R-l. 

Let us derive a diagram-by-diagram recipe for calculating the mapping [-I. To this end it is 
convenient to introduce the inversion of the R-operation, i.e. an operation R-’ such that its 
structure is the same as that of the R-operation (see (2.1)) but th e counterterms are evaluated 
according to a different rule in order to ensure that R-‘aR = 1 and RR-’ = 1. 

By definition, for the inverse R-operation one would have: 

R-‘oTeC = T exp[-‘[L]. (3.21) 

There should exist the operator A-i related to R-’ in the same way as A to R (see (2.1); recall 
that throughout this section A E Au”). Then: 

(-‘[L] G A-‘$Te’ - 1). (3.22) 

41t may be interesting to compare the above rather compact reasoning with the more cumbersome derivation 
of the renormalization group transformation given in [24] in the BPIIZ framework. 

51t should be noted that we use the term “Zimmermann identities” in a slightly different sense than e.g. 
in [24]: we use it to denote the relations between the MS-renormalized and bare (unrenormalized) operators, 
without c-dependent factors like those considered in [24] for the purposes of studying anomalies. 
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From the second equation in (3.7) the following condition on A-’ emerges: 

L = A-‘o[T expA*(Te’ - 1) - 11. 

Now (3.23) can be rewritten as: 

A-‘o(T eL - 1 - .C) + (A-‘OL - Is) 

= -A-‘*[T exp An(T e‘ - 1) - T eL], 

16 

(3.23) 

(3.24) 

where we have assumed linearity of A-i. Note that the argument of A-’ on the r.h.s. of (3.24) 
is equal to (R - l)o(T t?). 

Assume that 
A-‘#] = C> (3.25) 

which means that A-’ is a unity operation on an elementary vertex. Then (3.24) can be 
rewritten as: 

A-‘o(Tt? - 1 -L) = A-‘.[(R- l)oT&]. (3.26) 

Therefore, for (3.23) to hold, it is sufficient that the operator A-’ has the following properties: 
linearity; the property (3.25); equality to 0 on unconnected and non-1PI diagrams; its action 
on 1PI diagrams should be defined by the following recursion: 

A-‘.[Gj = -A-‘@ - IloG. (3.27) 

The r.h.s. should be understood as follows. (R - 1) replaces G by a sum of integrals obtained 
from G by replacing one or more non-trivial UV subgraphs by the corresponding UV coun- 
terterm (see the definition of the R-operation in subsect. 2.1). Therefore, A-’ on the r.h.s. 
acts on a linear combination of Feynman integrals with divergent coefficients, all the integrals 
having one loop less as compared to G, while the divergent coefficients remain unaffected by 
A-’ because of its linearity. On one loop integrals: 

A-‘o[g] = -A-‘aA.[g] = -Ao[g], (3.28) 

and the recursion stops correctly. 

Eq.(3.27) provides a most convenient recipe for explicit calculations. For example, in the 
scalar g’p4 model one has: 

f!? [CA =-A [e] 1 
A-‘[e]= 3A[e] l A[n] 

(3.29) 

and so on. 



4 Renormalization of multilocal operator insertions. 

It is not difficult to generalize the above results to arbitrary Green functions of composite 
operators. The main point here is that it is simply sufficient to consider T-exponents of arbi- 
trary local functionals L as defined in (3.2) instead of Lagrangian functionals, and then derive 
expressions for specific composite (multi-) local operator insertions by performing suitable vari- 
ations. In subsect. 4.1 we present some explicit formulae for the case when one wishes to express 
renormalized Green functions in terms of unrenormalized ones, and in subsect. 4.2 we consider 
the opposite case. Note that the case of one local operator insertion within the momentum 
subtraction scheme was first considered by Zimmermann [9]‘. 

4.1 Generalized Zimmermann identities. 

Consider a Green function of arbitrary local operators (without loss of generality we take the 
local operators to belong to the basis introduced in subsect. 3.1): 

IL < T%(a). .k(qn)eL >o, (4.1) 

where jk are Fourier transformed local products of p(z) and its derivatives as defined in (3.1). 
Using the formalism introduced in the preceding section, one gets: 

5, 
eq.(4.1) = 

( 

6 6 

w&N) . . .6&, (Pl) 

ROT ec 
) Lc=l 

T 
i 

6 6 
zz 

‘%,(?‘N) ‘.. AL, 

,W 
) f=L. v=o 

= T ,-6[4 
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6 6 

6’kbN) ‘.‘6&(Pl) ,EICl 1 ,Wl 
C=L 

(4.2) 
q=o 

The expression in the square brackets on the r.h.s. of (4.2) . IS a sum of products of terms like 

6 
’ 6Lin(Pn) t ’ 6L, (Pl) WI 

I 
= A0 [T.Ti, (p) ji,(p,,)exp L] . (4.3) 

It is not difficult to see that (4.3) is a local functional which can be expanded in j as: 

eq44.3) = C~&JI + +PA .@,Y!.ini,(~~. . .P,), 
m 

(4.4) 

where Z are polynomials in p and in the parameters of L. Z is independent of p if the dimen- 
sionality of j in units of mass is greater than that of the product jil . . ji,. Moreover, since we 
include full derivatives into j, Z can not contain factors depending only on pi + . + p,,; in 
particular, Z;)(p) are independent of p. 

‘see also the remark in the footnote in the last paragraph of subsect. 3.7. 
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Examples will help to understand the above. Denoting (4.3) as A(j, j,,), one has (LR 
was defined in (2.26)): 

Ro < T jle‘ >o= (TA(jl) exp[L&+ (4.5) 

Ro < Tjtjd h= (T [A( + A( exp[LRI),,o, (4.6) 

Ro < Thhh eL >o= (T [A(jl)A(jdA(j~) + A(j&)[A(j,) (4.7) 

+&k)Ai(j2) + A( + A(jlj&)] exp[L~])~=~. 

Since A(P) = ‘p and A(lpjl . jk) = 0 (this is because it is impossible to form a 1PI graph 
with one “v-insertion”), one can see that for j = 9 the above formulae degenerate into 

Ro < T@(R). +(qn)eL >o= (T@(ql) $(q,,)eL”(‘+‘))9=o, (4.8) 

which agrees with (2.33), as expected. 

Using (4.4), one can represent (4.5) as: 

R4T31(p)eL) = c@,!, + (Tj,(p)exp[L~]) (4.9) 
m 

(identities of this kind were first obtained by Zimmermann [9]), 

WT%(pl).$pdeL) = C -%$,(PI,P~)(T~(PI + pz)exp[L~]) 
m 

(4.10) 

+ c @,!a c .%;kKin(~&n(pz) =p[h]), 

etc. Note that all the sums ir(4.9) azd (4.10) are finite. Identities like (4.10) and their gener- 
alizations can be called (generalized) Zimmermann identities for multilocal operator insertions. 

4.2 Inverted Zimmermann identities. 

The equations derived in the preceding subsection allow one to express renormalized Green 
functions in terms of unrenormalized ones. Using the inversion of the R-operation obtained 
in sect. 3, one can easily do the opposite, i.e. reexpress unrenormalized quantities in terms of 
renormalized ones. Thus, instead of (4.1)-(4.2) one has: 

< Tjl(ql) . .Tn(qn)eL >O (4.11) 

6 6 

= 6&,&N) ’ ’ ’ ‘%I, (Pl) 
Tee 
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= ROT ,-rrc1 6 6 

G3 (PN) . JL”, (Pl ) 
,A4 

and instead of (4.9) one has: 

T&(p) eL = c 5::: R+(T&(p) exp t-‘[L]) 
m 

(4.12) 

(note that 2(l) = [%)1-l), 

Tjl(n).h(m)eL = C~~?~;,.(P~,P~)RO(T~,(P, +PZ) exp C’[Ll) (4.13) 
m 

+ c ~~~~ c ~~&Tk(p~)j,(p~) exp<-l[L]), 
m m 

(one can check that i$,(p~,p~) = -Cl i&!,(pl,p2)~~.~~). And SO on. 

In a similar manner one can relate expressions renocmalized in different renormalization 
schemes, cf. subsect. 3.7. 
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AS-OPERATION FOR MULTILOOP INTEGRALS. 

5 Heavy mass expansions. 

We now turn to asymptotic expansions of Feynman diagrams. In this section we consider the 
case when the set of the heavy parameters contains only masses, which corresponds to studying 
low-energy effective Lagrangians to all orders in the inverse heavy mass. The reasoning in 
the more general case is very much the same, so that in the next section we will be able to 
concentrate only on specific complications due to large external momenta. 

In subsect. 5.1 the As-operation for unrenormalized (or UV-convergent) integrals is defined 
as an integrated version of the As-operation for products of singular functions introduced in 
(11, in subsect. 5.2 the combinatorial structure of the corresponding subgraphs is studied. In 
subsect. 5.3 the &functions corresponding to the counterterms for the IR-subgraphs are inte- 
grated out and in subsect. 5.4 the final form of the As-operation for IPI integrals is presented. 
In subsect. 5.5 the obtained expression for the As-operation is extended to non-IPI integrals, 
in subsect. 5.6 its exponentiation is proved, and in subsect. 5.7 it is transformed to an explicitly 
convergent form using the inversion of the R-operation. In sects.4.8 and 4.9 the results are 
extended to UV-renormalized diagrams and models, respectively. Explicit expressions for low- 
energy effective Lagrangians are presented to all orders of the inverse heavy mass. Subsect. 5.10 
contains a simple example. 

5.1 As-operation for integrals: definition. 

Let us introduce notations and formulate the problem that we are going to consider here. Our 
notations on the whole will be consistent with subsect. 3.1 of [I]. 

Let P be an Z-loop 1PI Feynman diagram, and let p = (pi pr) denote its integration 
momenta. We assume in this section that I depends on the light and heavy masses m and M, 
and that all the external momenta of F are light (and denoted as Ic). All M are non-zero and 
independent of the expansion parameter denoted as n, while m, k = O(n) and some masses m 
may be equal to zero. Unlike the abstract analysis of [l], h ere it will be convenient to show the 
dependence on m, k and M explicitly. 

Thus, the unrenormalized integrand is denoted as l?(p, m, k, M). We assume that F is UV- 
convergent, i.e. r(p, . .) is absolutely integrable over p in infinite limits. Denote the integrated 
diagram as: 

r(k, 772, h4) 52 J w(P, km, Ml. (5.1) 

In [l] we introduced the As-operation for products of singular functions like I’(p, k, m, M) which 
yields asymptotic expansions of such products with respect to the light parameters in the sense 
of the distribution theory. It is natural to expect (for more details see subsect. 5.8; a fuller 
justification is given in [17]) that if (5.1) is UV- convergent, then the asymptotic expansion of 
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r(k, m, M) can be obtained by expanding its integrand I’(p, k, m, M) using the As-operation 
of [l] and then performing termwise integration of the resulting series over p. 

Let us introduce an operation that acts on integrated Feynman diagrams in accordance with 
the above recipe. This new operation will be referred to as the As-operation for integrals. To 
distinguish the two types of As-operations, one could use e.g. the notations ASprod and Asbt. 
But as it is normally clear whether the As-operation acts on a product of singular functions or 
on an integral, we will use the same notation As without subscripts in both cases. Formally, 
one has: 

AsC( k, m, M) dAf J dpAsd’(p, k, m, M). (5.2) 

Let us exhibit the structure of the As-operation on the r.h.s. of (5.2). The general expression 
for it was given in [l]. Specifying it to the case considered here, one obtains: 

As%+ k, m, W (5.3) 

= Trn,c~ F(P> k> ml W + ~P%(P, k, m)l x [Tm.d’\y(p, km, hi’)], 7 
where the notations used are as follows. 

The operation T,,,k performs the Taylor expansion in powers of the light parameters. 
Summation runs over all IR-subgraphs of I. Specifying to the present case the definitions 
of subsects.9.2-3 of [l], one sees that an IR-subgraph 7 can be described as follows: (i) the 
set of lines of 7 is a full subset of the light lines of I, i.e. if one puts to zero the momenta 
flowing through all the lines of y together with the light external momenta k, then no light line 
which does not belong to y should have the momentum flowing through it nullified owing to 
momentum conservation (cf. [l]); (“) zz an vertex of F whose incident lines all belong to 7, is y 
included into 7. The product of the lines and vertices of y is independent of M and is denoted 
as T(P, k, m). 

The product r\y in (5.3) comprises all the factors from F that do not belong to y. Graphi- 
cally, I’\y is obtained from F by deleting all the lines and vertices of y. 

The operation E (expressions for it were derived in [l]) applied to an IR subgraph returns 
a linear combination of counterterms that are proportional to S-functions of p. Our first aim 
here is to integrate out those J-functions explicitly. 

5.2 Structure of l?\y. 

It is not difficult to verify that in the case under consideration (no heavy external momenta) 
the IR-subgraphs are uniquely characterized by the properties of their complements. Indeed, 
denote the connected components of r\y as h. These subgraphs (which will be referred to as 
heavy knots) have the following properties: 

(i) since 7 consists of only light lines, each hi has only light external lines while all the heavy 
lines of I are hidden within all hi; 
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(ii) since 7 is full, none of hi can have a light line whose momentum vanishes due to 
momentum conservation when one puts to zero all the external momenta of h;. This is an 
analytical formulation. Graphically, it implies that each hi is “IPI with respect to light lines” 
which means that it cannot be divided into two disconnected graphs (which may consist of a 
single vertex) by cutting any one of its light lines. 

Note that a heavy knot hi may consist of a single heavy line (including both vertices to 
which it is attached). 

One has: 
I-\-y = n h;. 

t 
(5.4) 

In the final form of the As-operation for integrals, the heavy knots will play the same role as 
UV-subgraphs in the expression (2.1) for the R-operation. 

Example. Consider the diagram F as shown in Fig.la. Fat lines correspond to propagators 
of heavy particles, the rest to light particles. In Figs.lb-ld various IR subgraphs are shown 
with dashed lines. Heavy knots in each case are clearly visible as connected components built 
of solid-normal and fat-lines. 

5.3 Integrating S-functions. 

Before substituting explicit expressions for En7 into (5.3), the dependence of each term in 
(5.3) on p should be studied. One can see that 7 does not depend on those components of p 
that correspond to the loops of F\y. Let us denote the collection of such momenta as pr\-,+. 
Furthermore, each loop of F\7 belongs to only one heavy knot hi from the decomposition (5.4), 
so that: 

PT\-r,int = {Pi,int}i. (5.5) 

The remaining momentum components of p form exactly the proper variables of 7 introduced 
in [l] and denoted as py, so that 

P = (P77PT\7,int). (5.6) 

Note that F\7 is independent of those components of p, that correspond to the loops of 7. 
Denote as PI-\~,~.~ those components of 7 on which F\7 does depend. 

Now, substituting (5.3) into (5.2) an d using the explicit expressions for Eoy derived in [l], 
we can rewrite (5.2) as: 

Adyk,m,M) = T,.,&-(k,m,M) (5.7) 

+ F I${ [ / ‘P~‘P~~~(P~) Y(P~, kr ml] / dpy J &\y.int&rr(p~) 

xTm,ii~ [r\7(a,,..xt,pr,,,i”t, km, Ml] 1, 

The polynomials ‘Pa and the J-functions 6, in (5.7) form full dual sets (cf. [I]) so that the sum 
over a represents the Taylor expansion: 

Ig pw(P;) / &&w&,)~ f(p,) = T,;~~(P!,). (5.8) 
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(It does not matter that the expression that plays the role of f in (5.7) depends not on all 
p, but only on some of the components of p,, namely, on pr-\,,e,,.) Using (5.8) and renaming 
PL,,.,, -+ hxtr we get: 

AsC(k, m, M) = T,,&(k, m, M) (5.9) 

+ Et / G-h,, k ml x ‘LPT~~,,,.~,~ [r\-dPr\r, exW\7, int, km, WI. 
-7 

Now recall the representation of I’\-y in terms of heavy knots (5.4), (5.5). It is easy to see that 
the last line in (5.9) can be rewritten as 

I-/ TOhi(Pi,int,Pi.extt k, m, Ml, (5.10) 

where I)+~ comprises those components of pr-\7,.Xt on which the heavy knot hi depends. The 
operation r in (5.10) Taylor-expands in m and in all the momenta that are external with respect 
to the subgraph hi, i.e. both pi,ext and the corresponding components of k. It should be stressed 
that each factor in (5.10) is independent of the rest of the original diagram I. Therefore, we 
arrive at the following expression of the As-operation for integrated Feynman diagrams: 

[I’/ n h;]. 

The meaning of this formula is as follows. One enumerates all sets of pairwise non-intersecting 
heavy knots h; and contracts each heavy knot h; to a point, replacing it by a formal series in its 
external momenta which is obtained by Taylor-expanding the corresponding Feynman integral. 

To avoid confusion, it should be understood that the IR-counterterms Eoy in (5.3) have 
transformed into the expression in the square brackets in (5.11), while the “counterterms” r.hi 
in (5.11) have originated from the expression r\y in (5.3). In other words, “counterterms” and 
“noncounterterms” have changed places in the transition from (5.3) to (5.11). 

5.4 As-operation for integrals: the final form. 

Eq.(5.11) can be rewritten in the following form which is analogous to the representation (2.1) 
of the R-operation: 

Asor = C (A,&) . [I-/ l-J h;]M=m. (5.12) 
thil i 

The summation here runs over all sets of pairwise non-intersecting subgraphs hi of I such that 
each vertex of I belongs to one of hi. (A subgraph h is defined as a subset of vertices of I 
together with some lines of I which are connected by both ends to the vertices included into h. 
Sb u graphs are non-intersecting if they have no common vertices and, consequently, no common 
lines.) One of such sets consists of a single subgraph h = I which corresponds to the first 
term r*r on the r.h.s. of (5.11). The operation A, coincides with r on heavy knots, is a unity 
operation on single vertices without loops, and returns zero otherwise. Setting M = cc is a 
formal expression of the fact that one should discard from the r.h.s. those terms in which some 
heavy lines remained outside all hi so that (5.11) could be restored from (5.12). 
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There is no need to introduce special rules for heavy knots containing tadpoles made of light 
lines (cf. Fig.2), our formalism takes them into account correctly. For practical purposes it is 
sufficient to note that such heavy knots are nullified by the operation T due to the well-known 
property of the dimensional regularization to nullify momentum integrals without dimensional 
parameters. 

The combinatorial resemblance of (5.12) and the expression (2.1) for the R-operation is 
nearly complete except for the minor difference described above. However, this difference can 
be easily taken into account to make the reasoning of sects.l-3 to be applicable to the As- 
operation. But first expansions of diagrams F other than 1PI should be considered. 

5.5 As-operation for non-1PI diagrams. 

We have derived explicit expressions for the operation As on IPI integrals. Remarkably, one 
can expand arbitrary-not necessarily lPI-integrals using the same expression (5.12). 

For the operation As to be applicable to any graph F, its structure should satisfy certain a 
priori requirements. Let us first enumerate them. 

If F is disconnected, i.e. there are two subgraphs I’i and Fs such that P = Fi Ps, then the 
expansion of F is a product of the expansions of Pi and Fs, i.e. 

AsO(rr . rs) = (Asor,) (AsOr,). (5.13) 

If l? falls into two parts connected by only one light line (the corresponding propagator is 
denoted as Dl), i.e. F = Ii D, Fs, then 

A+, . D/. r,) = (ASCi) Dl’ (ASS*). (5.14) 

This is due to the fact that both the mass of this line and the momentum flowing through it 
(which is a combination of the light external momenta of F) are expansion parameters so that 
DI is proportional to a negative power of n and need not be expanded. 

If F consists of two subgraphs connected by one heavy line (the corresponding propagator 
is denoted as DA), i.e. F = Fi D,, I’s, then 

Aso(rl Dh l-,) = (Ad’,). (TkoD,,) . (Asor,). (5.15) 

(Recall that Tk Taylor-expands in k, and that the momentum flowing through Dh is a combi- 
nation of the light external momenta of F.) 

Now, note that the definition (5.12) d oes not use lPI-ness of I’. Therefore, let us define the 
operation As by (5.12) on any graph I. Let us prove that the operation thus defined satisfies 
the above a priori criteria (5.13)-(5.15). 

Eq.(5.13) is true because each h; from (5.12) lies strictly within either I’i or Fz, so that each 
partition of F consists of a partition of Pi and a partition of Fs, and a sum over all partitions 
of r is equivalent to a sum over partitions of ri times a sum over partitions of rs. 
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The same argument proves (5.14) because Dl cannot belong to any of hi without making it 
1PI with respect to light lines, which implies that each hi with non-zero A,, lies strictly within 
either Ii or Ts. 

To prove (5.15) we note that D,, must always belong to one of the hi. Denote this heavy 
knot as h. Then h = h’ Dh h” (where h’ and h” each consist of at least one vertex) and 

A.,o(h’ . Dh . h”) = (A.,.h’) (?I$&). (A,,oh”). (5.16) 

Then one applies the same argument as above. 

An induction with respect to the number of IPI components of l? enables one to conclude 
that (5.12) remains correct on all Feynman diagrams. 

5.6 Exponentiation of Aas. 

Now we are in a position to apply the combinatorial results of sects.13 to (5.12). 

Let (o and Qi be the fields of the light and heavy particles that have the masses m and 
M, respectively. Let L = L(cp, @) be an interaction Lagrangian. Consider the generating 
functional of Green functions of the light fields < Texp[L(v,@) + @] >s It is assumed 
that all the external momenta of the Green functions are light, i.e. O(n). We ignore the UV 
divergences for a while, because we are now interested only in the formal global structure of 
the operation As; one can simply assume that there are no UV divergences at all in the model 
described by L. 

As was noted above, the combinatorial structures of the As- and E-operation s are very 
similar. The similarity goes far enough to allow one to write down the following analogue of 
(2.31): 

Aso < Texp[L((o,Q) + 41 h = < Tex&r,tdv) + PJI >o, (5.17) 

where 
L efT,barc(LP) = &so [T@‘9*) - 11 o=. (5.18) 

Setting Q to zero in (5.18) is formally equivalent to setting M = co in (5.12) and is an expression 
of the fact that each heavy line in (5.11) must belong to one of the heavy knots. 

The algorithm of (5.18) is as follows: 

(i) all the diagrams contributing to Texp L(p, a) are evaluated; 

(ii) A, nullifies all the terms except those which correspond to connected diagrams that 
are 1PI with respect to light lines; 

(iii) on single vertices, A, acts as a unit operation, i.e. A,a[L(p, @)]e=o = [L(cp, Q)]Q=~; 

(in) the remaining terms are exactly the heavy knots and can be represented as (2.28), 
where FZ also depends on m and M. A, performs the formal Taylor expansion of FI with 
respect to m and all the external momenta of such terms, i.e. pi in (2.28). 
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Note that the recipe for A, allows a remarkably “fool-proof” reformulation (which may be 
useful in writing computer programs): it is sufficient to apply the r-operation to all connected 
terms generated by the T-exponent. Then the terms that should be discarded will either develop 
singularities l/O, or be nullified owing to the property of the dimensional regularization to nullify 
integrals without dimensional parameters like 

J dDpp-‘” = 0. 

It is no less remarkable that this “fool-proof’ reformulation stays valid in the most general case 
comprising heavy external momenta with arbitrary linear restrictions. 

5.7 Explicitly convergent form for the heavy mass expansion (5.17). 

As was noted in [l], our method of expansion leads to expressions containing spurious di- 
vergences in different terms which should cancel in the final result. Let us reorganize our 
asymptotic expansions in such a way as to reexpress them in an explicitly convergent form. In 
(5.18), &,b,(v) is a Lagrangian functional (in terms of subsect. 3.1) of the field 9 whose co- 
efficients (“coupling constants”) are functions of the heavy masses. Irrespective of the specific 
values of these functions, the diagrams on the r.h.s. of (5.17) may contain UV divergences. 
Using (3.11), one can explicitly extract the R-operation on the r.h.s. of (5.17) and rewrite it as: 

Aso < Texp[l(q, @) + cpJ] >o= R* < Texp[L,tr(p) + $1 >o, (5.19) 

where 
h(P) = t-‘[&T,bare(‘P)1. (5.20) 

Since the mapping t-r transforms a Lagrangian functional again into a Lagrangian func- 
tional, &r(p) can be represented as 

Ldv) = C / dz gedgr M, P, t)idz), n 
(5.21) 

where j,(z) are defined in subsect. 3.1 and 9 denotes the set of coupling constants of the original 
interaction Lagrangian L; the “effective couplings” ge~,n have the form: 

!m,“(S>M,PL,~) = dd -p c ($J’(zL)geK,“.l(~4 ,>a 
(5.22) 

where the summation over powers of g reminds one that we are working within perturbative 
framework; gen,R,r(c) have a pole singularity at s N 0 of a finite order depending on n and 1, 
while the integer exponents d, (which can be negative) are determined on dimensional grounds. 

Indeed, the coefficients gem,” are polynomial expressions built of UV counterterms (each 
of which is just a polynomial in l/c) and heavy knots which are Taylor-expanded in powers 
of their external momenta and m. The resulting loop integrals depend only on M, and on 
dimensional grounds this dependence has the form Md’-*“’ x C(E) where d’ is an integer and 1’ 
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the corresponding loop number, while C(E) has a pole singularity l/e” (the latter information is 
strictly speaking not necessary). The powers of momenta and the light masses m resulting from 
the above Taylor expansion are included into j (recall the definition in subsect. 3.1). Recalling 
that the UV renormalization parameter p enters all expressions via integer powers of $‘, one 
arrives at (5.21) and (5.22). Note that the range of summation over I is finite for each n and k. 

Now one can easily convince oneself that the parameters of the effective Lagrangian are finite 
at c = 0. Indeed, the initial expression (the 1.h.s. of (5.19)) is finite at c = 0 by construction in 
each order of the perturbation theory (in the absence of UV divergences in the initial model- 
recall the assumption at the beginning of this section). When transformed into the form 
of the r.h.s. of (5.19), it is, of course, still finite but has now the form of UV-renormalized 
(and therefore, finite) loop integrals times products of geirn(g,M,nrc), in each order of the 
perturbation theory. Taking into account linear independence of j,, one concludes that all 
ges+(g, M, p, t) are finite at E = 0. 

5.8 As-operation on UV-divergent diagrams. 

Eq.(5.2) was used to define the As-operation on UV convergent diagrams. However, that defi- 
nition can be formally extended to the UV-divergent case (then, of course, the UV divergences 
should be regularized; but the dimensional regularization which is used at the intermediate 
steps of the As-operation for products as derived in [l], regularizes UV divergences as well; 
therefore, no new regulators are really needed). The combinatorial results (5.17)-(5.20) remain 
valid though now the effective couplings geE,n(g, M, p”, E) are not finite at c N 0 because they 
inherit the UV divergences of the unrenormalized Green functions on the 1.h.s. of (5.17). 

Let RaI(k,m,M) be a renormalized graph (the dependence on the renormalization pa- 
rameter p is implicit). The R-operation was defined by (2.1), which can be represented as 
follows: 

where i enumerates all the individual terms in the sum in (2.1), 2; are products of divergent 
coefficients of the corresponding UV counterterms and are polynomials of all their arguments, 
I’i are the (unrenormalized) diagrams obtained from I by shrinking the corresponding UV 
subgraphs to points. 

Naively, to expand (5.23) one would expand each term on the r.h.s.: the factors 2, are 
polynomials in m and are already “expanded”, and I; can be expanded by a straightforward 
application of the definition (5.2). Indeed, all the intricacies of the As-operation are essentially 
aimed at extracting the terms that are non-analytical in light parameters, and the very fact 
of the polynomial dependence of UV counterterms on masses and momenta makes one expect 
that UV renormalization in the MS scheme and the Asexpansion are, in a sense, “orthogonal” 
(cf. the analysis of [17]). 

Motivated by the above, we define the As-operation on renormalized graphs by applying 
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the As-operation (5.2) termwise to F; on the r.h.s. of (5.23) as follows: 

Aa~R~r(k,m,M)d~C2i(l/E,m,M)AS~ri(k,m,M). 
t 

(5.24) 

We assert that the expansion thus obtained is a correct asymptotic expansion for RoT(k, m, M). 
This is not obvious, but for that matter neither is obvious the UV finiteness of the r.h.s. of (5.23) 
or even (2.1). In the next paper of the present series [16] we will represent the R-operation in 
such a form that its UV finiteness will be made apparent [15] and the proof of correctness of 
the above definition of the As-operation will be reduced to a rather straightforward technical 
exercise. 

For a more practically oriented reader it may be sufficient to learn the following. On 
the one hand, the final expressions for the coefficient functions of short-distance expansions 
(see subsect. 6.3) imply highly non-trivial cancellations of UV and IR divergences between 
different terms which cannot be understood without the underlying theory. Such cancellations 
were checked by explicit three-loop calculations in [ll] and in several other calculations (see 
e.g. [IS]). On the other hand, from the point of view of our methods there is no essential 
difference between the short-distance operator-product expansion and the most general Eucli 
dean regimes with heavy masses, and all the non-trivial patterns of combination of UV and IR 
divergences manifest themselves at the three-loop level. One should also take into account that 
we are dealing with relatively primitive integrals of rational functions where all the effects are 
governed by the power counting so that there is no reason to expect any pathologies. Therefore, 
the explicit calculations of [ll] and [18] provide a very strong evidence in favour of the above 
assumption while [17] provides formal arguments. In what follows, we will concentrate on the 
combinatorial structure of the definition (5.24). 

(Note that the aggregate operation AsoR defined in (5.24) was denoted as As and studied 
as a whole in our original publication [2], and the starting point there was the so-called EA- 
expansion. Such a way of reasoning resulted in superfluous complications which are avoided in 
the present exposition.) 

5.9 As-operation in models with UV divergences. 

If the model described by the interaction Lagrangian L(q, a) p assesses UV divergences, then the 
UV-renormalized generating functional of Green functions can be represented as (cf. (2.33)): 

Ro < Texp[l(v, a) + $1 >o=< Texp[lR(q, a) + cpJ] >O 

with Ln(v, a) defined analogously to (2.33). 

(5.25) 

Since the As-operation is defined to act formally on each term of the renormalized diagrams, 
one can apply it to both sides of (5.25). Then one can simply use the results obtained for the 
case of the models without UV divergences (see (5.17)-(5.20)). Our final formulae are as follows: 

Ro < Texp[l(cp, a) + qpJ] >O Mzo 
AsoR < Texp[l(lp, (a) + PPJ] >O (5.26) 
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where 

= R~R-‘QAs~Ro < Texp[l(p, a) + cpJ] >o= Ro < Texp[l,s(‘p) + cp.J] By, 

&(c+,) = A$.. [T e’*ff.b*rc(V1 - l] , 

L eff,bare(‘+‘) = &,o [T v++‘~) - 11 m=. , (5.28) 

LR(p, a) = Auv. [Tt+‘) - l] . (5.29) 

The algorithms of the three A-operations have been described in detail in sects.l.1, 2.8, and 
4.4. 

Eq.(5.26) means that the effects of virtual presence of heavy particles on the effective low 
energy theory of light particles can be described by an effective Lagrangian L.R (explicitly given 
by (5.27)-(5.29)) to all orders in l/M. Our derivation of this result is valid within the MS-like 
renormalization schemes and in all models including those with massless particles like &CD. 

Note that the R-operations in the original model and in the effective model need not be 
the same; this can be equivalently described by saying that the renormalization parameters in 
the two models may be different. In such a case the parameters of L,R will depend on both 
renormalization parameters. 

It should also be recalled that the As-operation derived in [I] is essentially unique because it 
leads to series in powers and logarithms of the expansion parameters. This uniqueness property 
(up to the choice of renormalization schemes) is inherited by (5.26)-(5.29), whatever the guise 
in which such expansions might appear when derived by alternative methods. Our form of 
presentation is dictated by computational convenience. 

If one deals with gauge models, then a most convenient way of studying gauge properties 
of Lee is to employ the techniques described in [lo]. 

5.10 Example. 

To get a feeling of how the above formulae work, consider QED with a light electron G and 
a heavy muon @. The well-known interaction Lagrangian is denoted as L($, @, A) where A is 
the photon field. Restricting ourselves to the two-photon sector in the l-loop approximation, 
we get (fat lines correspond to the muon): 

LR($!J, ‘I?, A) = Auvo [T.+‘(“v”*~) - l] 

(5.30) 

=A+--J-] +Aw[~] +... 
=Ui/dz [-+z)]+..., 

Lbare,e,T($, A) = A,. [Te”R(“.Al - l] 
+L=0 

=Lx($,A)+b[~]+..., 
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and, finally, 
&($I, A) = A& [T &fl.b*r*(+*a) - l] 

Since 

eff,bare(‘,? A) + A;:. [o] +.... 

A;;:,.,- =-a,~[~,, 

&a($, A) = A,. [e] +Auv 

we obtain: 

30 

(5.31) 

(5.32) 

(5.33) 

where the dots denote other field structures, and 

6z(W, p’) = & [Cl + c2 log(Ms/$)] + O(l/@). (5.34) 

Note that cancellation of the UV divergences in the final result is obvious even without explicit 
calculations. 

6 Generalized operator-product expansions. 

In this section we turn to the case when the set of heavy parameters includes external momenta. 
Recall that we regard the diagrams and Green functions to be expanded as distributions with 
respect to the heavy external momenta [I]. 

We start by considering in subsects. 6.1-6.3 the case corresponding to the usual short- 
distance operator-product expansion, i.e. when there are no heavy masses and no linear restric- 
tions on the heavy external momentaexcept the overall momentumconservation. In subsect. 6.1 
notations are introduced and the As-operation for integrals is derived for the case under study, 
in subsect. 6.2 the global structure of the As-operation as applied to Green functions is stud- 
ied, and in subsect. 6.3 the final results are presented. Modifications due to heavy masses are 
studied in subsect. 6.4. 

In subsect. 6.5 we impose the so-called “natural” linear restrictions on the heavy momenta, 
and in subsect. 6.6 the corresponding version of the As-operation and the expansions for Green 
functions are presented. In subsect. 6.7 the structure of the general formulae is explained with 
a simple example. 

In subsect. 6.8 we briefly discuss the contact terms in the obtained expansions. The section 
is concluded in subsect. 6.9 with a discussion of the most general linear restrictions imposed 
on heavy momenta; it is pointed out that the contact terms in such a case may contain the 
so-called paralocal operators. 
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6.1 As-operation and heavy momenta. 

Let us assume that all the particles of the model are light, but some of the external momenta 
of the Green function to be expanded are heavy. 

More precisely, let j numerate the heavy external lines of the diagram F, then Qj are 
the corresponding ingoing external momenta. There are also some light external momenta 
collectively denoted as k, which are of order O(n) together with the masses m (recall that K is 
our standard notation of the expansion parameter [I]). The fact that Q are heavy is formally 
expressed as 

Q = O(1) as K + 0. (6.1) 

One cannot assume all Qj to be independent of n because of the momentum conservation which 
reads: 

CQ=-xk=O(n). W-4 

Therefore, let us introduce the “heavy” components of Q that are independent of n : 

Qj E Qjlc=O. 

Q can be represented as: 
Qj = &j + qj, 

where qj = O(n) are linear combinations of k. 

(6.3) 

(6.4) 

The momentum conservation should hold separately for heavy and light components, so 
that: 

CQj =O. (6.5) 
j 

We have assumed that there are no other restrictions on Q except (6.5). Considering the dia- 
gram F as a distribution with respect to the heavy momenta means that we expand expressions 
of the form 

r(k, m, F) s J a’~(@ J + UP, a + q, k, ml, W) 

where F is a smooth test function independent of n, and the integration runs over the manifold 
described by (6.5). 

It is convenient to represent F as a vertex attached to the vertices corresponding to Q by 
the lines that are heavy by definition-see Fig.3. 

To expand r(k, m, F), one repeats the reasoning of subsects.4.1-4.4 and arrives at the fol- 
lowing equation instead of (5.12): 

Asor = C(A,.h) . [r/h]. (6.7) 
h 

Now there is only one heavy knot shrunk to the point in each term in the sum. Its description- 
owing to the above agreement that the lines connecting the F-vertex with F are heavy- 
coincides with that given in subsect. 5.2: it must be IPI with respect to light lines. But it may 
be easier to follow the “fool-proof’ recipe given at the end of subsect. 5.6, which remains valid 
here. 
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A reasoning similar to that of subsect. 5.5 shows that the above formula is also valid in the 
case of a non-1PI graph P; in particular, it is valid for disconnected graphs. 

6.2 As-operation on Green functions. 

Let us now turn to Green functions. Let Hj(Z) be local products of light fields p(t) and their 
derivatives. Consider the following generating functional of Green functions: 

< T{n fijij(Qj)eL} >o, 
j 

where the tilde marks Fourier transforms and L is a local functional (see the definition in 
subsect. 3.1). To obtain specific correlators from (6.8), it is sufficient to perform suitable 
variations with respect to the coefficient functions of IZ and replace L: by the Lagrangian L. The 
momenta corresponding to any additional operator insertions are light, i.e. O(K), by definition. 

Without loss of generality, the test function is introduced as follows: 

G(F,L)-< T{ F*%'} >o, (6.9) 

where 
F*X= JQF(Q)nri,(Oj+qj), 

j 
where the momenta &j and qj are the same as defined in subsect. 6.1 

The sum of all qj should in general not be taken to be zero in (6.9) in order to get rid of the 
disconnected diagrams contributing to (6.9) which normally are of no interest in phenomeno- 
logical applications. If, however, the kinematics of the problem require that Cqj = 0 for the 
connected component, one can take the corresponding limit termwise in the final expansion. 
Taking such limits commutes with the expansion procedure unless there are connected diagrams 
like the one shown in Fig.4 where the wavy lines correspond to massless particles and may give 
rise to an infrared divergence. Whether or not the problem under study allows such terms 
can be checked by a straightforward inspection. However, it is still possible to regularize such 
contributions e.g. by introducing a non-zero mass (which, of course, should be considered as 
light in the expansion procedure); then the Q-dependent part of the final expansion as obtained 
by our methods will be insensitive to the light mass structure of the model (see below). 

Now, using (6.7) and reasoning as in subsect. 5.6, we obtain the following analogue of (5.17): 

AsoG(F, ,c) =< T (A-0 [TF + %c] e”} >a (6.11) 

The algorithm for evaluating A,[TF * w exp ,C] is exactly the same as described in subsect. 5.6 
(recall that according to the graphical conventions introduced after (6.6), the lines connecting 
the F-vertex with the proper Feynman diagram are heavy by definition; note also that the 
s-function which expresses momentum conservation in the relevant diagrams contains a sum of 
only light momenta due to (6.5), so that a formal expansion in light parameters will not affect 
it; if one wishes, one could introduce a formal integration in some of the qj to get rid of it 
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completely). One sees that A,[TF * ‘H: exp L] is a local functional in the sense of subsect. 3.1, 
so that (cf. subsect. 6.8): 

A,. [TF + 7-k?] = C ” ‘$W, G?dz), (6.12) 

where q = C qj and 

C;y(F,L) = J @‘F(Q)C@(Q,L). (6.13) 

We have introduced the subscript “bare” to indicate that the C’s contain divergences, so that 
a procedure analogous to what was described in subsect. 5.7 is needed, in order to transform 
(6.11) to an explicitly convergent form. 

To accomplish this, one proceeds as follows: 

AsoG(F,L) = ~C;~(F,L) < T {&)eL} >o 
n 

(6.14) 

= cC$y(F,L)& < ‘.fe’ >o 

= ~C~~(F, L)&,. < T&-‘f4 >s 
n n 

C$3F, L)Z,,, RQ < T {&(q)t+-‘frl} >o, 

where we have used the fact that [-*[fI] d e ne m sect. 3 is a local functional. fi d 

To complete the reasoning, one should take into account that the initial expression on which 
the As-operation acts may contain UV divergences and be renormalized via the R-operation, 
as follows: 

GR(F, ,C) z Ro < T {F * ‘HeL} >o (6.15) 

The arguments justifying correctness of a straightforward application of As to renormalized 
expressions are the same as in subsect. 5.8. 

6.3 Short-distance expansions. 

Now let us exhibit the general structure of the expressions for the case when ,C = L + L~J where 
L is a Lagrangian functional. 

Using the results of sect. 4 (cf. (4.9)), one represents (6.15) as: 

GR(F,L + cpJ) = c < T {F * 2x+ * &e[LR+‘P4} >o, 
a 

(6.16) 

where Ja are multilocal products of the currents j, defined in subsect. 3.1, 2 is a “matrix” 
of divergent coefficients, and the +‘s denote some contractions over the heavy momenta. Ln is 
defined in (2.26). Applying As to both sides and using (6.14), one gets: 

AsaGn(F,L+cpJ) = J @‘F(Q)~~,(&J,P)R~ < T{jm(q)e[L+“4} >o, (6.17) 
m 
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J dQ’F(QMB,g, cl) = c c CJ+S(F * -%a, LR)2”.m (1 n 
are linear functionals of the test function F that are finite in the limit c -+ 0 (which is proved 
similarly to the reasoning at the end of subsect. 5.7); g are the coupling constants of the 
Lagrangian L, and n is the renormalization parameter. The expansion (6.17) has the form of 
a familiar operator product expansion at short distances. 

It should be stressed that (6.18)-despite its cumbersome appearance-describes a fully 
constructive algorithm for getting explicit expressions for the coefficient functions C,,,(Q,g, p). 
This algorithm is equivalent to the one described in [ll], w h ere an assumption on existence and 
properties of the operator-product expansion in the MS scheme was made. Namely, in [II] it 
was assumed that the coefficient functions of such OPE are analytical in masses. One can easily 
see that the expressions (6.17))(6.18) p rove that assumption: indeed, the coefficient functions 
as defined above have turned out to be independent of m, but the local operators j have been 
allowed to contain non-negative integer powers of m; if the local operators are built of only 
fields, then the coefficient functions would become analytical in masses. Non-trivial examples 
of two- and three-loop calculations of coefficient functions using this algorithm together with 
explicit formulae can be found in [ll] and [18]. 

Finally, note that if one wishes to consider Green functions of composite operators, then 
suitable variations in L: should be introduced into (6.14), (6.15) etc., giving rise to additional 
terms in the final result. Thus, if one considers the expansion of a correlator of the form 

< T {jn(&)?m(-& + g)ji(+L} >or (6.19) 

then the final expansion will contain the correlators 

< T {3,(q)&(~)@} zo and < T {j.(q + k)eL} >O (6.20) 

The latter expression is a typical “vacuum condensate”, i.e. a vacuum expectation value of a 
local operator (cf. [12]). It is not equal to zero, even within perturbation theory, because the 
normal ordering of local products of fields is not used in the MS scheme. 

6.4 Effects of heavy particles on operator expansion. 

If there are heavy masses in the model, then the above results will get modified in the following 
way. The expression (5.12) for the As-operation will remain valid provided one includes the 
heavy knots corresponding to the F-vertex that were described after (6.7). Note that the 
‘Lfool-proof’ recipe of subsect. 5.2 is still valid here. Instead of (6.11) one will have: 

AsoG(F, L) =< T {A,. [TF * ~ec] exp A,. [T ec - l] } >s (6.21) 

And the final result (6.17) will take the form 

AsGt(C L(ip, ‘p) + vpJ) (6.22) 
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= J dg’~(Q)Cc,(Q,~,g,~,q) x Ro< T{j,(~q)expL-rr((o) + ~4) >oT 
m 

where &n(p) is defined in (5.20), while c, are analytical in q. Note that the operators j, are 
here built of the light fields only, while the currents entering into the multilocal operator ‘H in 
the initial expression are allowed to contain heavy fields as well. 

6.5 Natural restrictions on heavy momenta. 

Let us turn to the case when there are linear restrictions imposed on the heavy external momenta 
other than the overall momentum conservation. Of immediate phenomenological importance 
are the so-called natural restrictions [3], [I]. In terms of position space, one can describe them 
as follows: all the “heavy” operator insertions are arranged into several groups, the distances 
within each group tend to zero while the distances between groups stay finite (cf. Fig.5). More 
precise definitions in terms of momentum representation are presented below. 

Consider (6.8) and let the “heavy” operator insertions Hj (which are allowed to be built of 
both heavy and light fields) be divided into several non-intersecting groups (numerated by X) 
in such a way that the heavy momentum conservation holds separately within each group: 

JzQj = O(K), for each X. (6.23) 

In terms of the independent momenta a : 

ZSj =OY for each X. (6.24) 

For each group it is natural to introduce a separate test function Fx(Q,,) (where 0~ denotes 
the set of all &j for j E X), and the corresponding integration dQ; over the manifold described 
by (6.24). Now eqs.(6.9) and (6.10) are replaced by: 

G(Fx, ,c) s< T n Fx * li~e~(“‘~) >o> 
x 

(6.25) 

where 
FA * WA = J @iFA n fij(&j + 9,). (6.26) 

jeX 

To use graphical representation, one introduces an F-vertex of the same type as described after 
(6.6) for each of the test functions Fx. 

6.6 Generalized operator expansions. 

The As-operation on a diagram r contributing to (6.25) will have the form 

Asor = & (p=+) . ~y!h~]M=,.F=o (6.27) 
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(cf. (5.12)), where the heavy knots h are 1PI with respect to light lines and must contain at 
least one F-vertex or heavy line. Setting M = 00 and F = 0 is an expression of the fact that 
all the “heavy’ elements (F-vertices and heavy lines) must be contained within the h’s, 

Applying As to (6.25), one obtains the following expression instead of (6.21): 

A-WA, L(cp, @I) (6.28) 

= ‘g < T{ fl A,. 
‘WA) 

T g F,, + 31&‘P*Q) 1 x exp A,0 [Tec(V”) - l] 1 >o, 

where {A} denotes a splitting of the set of all X into non-intersecting subsets numerated by A, 
so that 

n I-J F~*-H~=~~F~*w, (6.29) 
&{A) AEA x 

and the first summation on the r.h.s. of (6.28) runs over all such splittings {A}. 

The action of A, can be most easily described using the ‘Lfool-proof’ recipe presented in 
subsect. 5.2: A, nullifies unconnected diagrams as well as all those connected ones which result 
in meaningless expressions like l/O when formally Taylor-expanded in light parameters. The 
remaining diagrams are exactly 1PI with respect to light lines and get formally Taylor-expanded 
in the light parameters. 

Each A, results in a local functional (cf. (6.12)), so that (6.28) can be represented as 

As*G({FA),~v,@)) (6.30) 

= z < T’,$j C “**,t,b~c({FAIxEi\r M, Lc, {qj}jen, E)?,~ a* i )I jgqj 

x exp &.bare(‘P)} >O, 

where each C is a coefficient function which is independent of fields and is at the same time a 
linear functional with respect to each F,,. The dependence on qj is analytical. 

To obtain an expansion for the renormalized Green functions in an explicitly convergent form 
one should-as has been done in all the special cases considered above--“sandwich” the As- 
operation between R and R-i (cf. (5.26)). Further reasoning is similar to that of subsects.4.7 
and 5.2-3: one should first get rid of the R-operation using the generalized Zimmermann iden- 
tities of subsect. 4.1, then apply the As-operation, and, finally, use the identities of subsect. 4.2 
to extract the R-operation and thus transform the expansion to an explicitly convergent form. 
In this way one arrives at the following final result: 

As~R~G({FAI, L(vP, @I + ~4 

=CRO<~{ n C 
(A) [ AE{h) aA 

CA,~* ({Fx}xeAz,M,g,{qj}jea)3~, ,Gilj ( )I 
x exp Mcp) + ~41 >o, 

(6.31) 

which should be compared with (6.17); L,R is given by (5.20) and has the form of (5.21). 
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6.7 Example. 

To clarify the above general expansion, consider the case of two groups of two currents each (the 
corresponding phenomenological problem is the deep inelastic scattering of two deeply virtual 
photons [13]). There are two heavy momenta ar and &a, and two test functions, FAB(Q~) and 
FcD(QZ). The expression to be expanded is: 

JJ d&l &Fm(Q1) FcD(~z) (6.32) 

xR0 < T {~A@,)~B(-QI + q&(@&(-~z + qz)~[L(~~4)+cp4} >o, 
where q are introduced to get rid of the non-connected components. Its expansion is as fol- 
lows. There are two sets {A} over which the summation in (6.31) runs: {(A,B), (C, D)} and 
{A, B, C, D}. The first of them corresponds to that term in the expansion where the two pairs 
of currents are “shrunk” into (linear combinations of) local operators separately; the second 
corresponds to a single sum of local operators. The resulting expansion reads (cf. Fig.6): 

JJ ~Q,~Q,J'AB(~,)FcD(&) (6.33) 

C~c*B,~(91,M,g,~)ccD,*(Q?,~,g,~) 

T {%(q1)$(q2) exp[&(v) + 41) >O 

+CCABCD.~(~L~Q~~M~~,~L)R~ < T{j.(q~ + q2)exp[LK(p)+pJ]} >o). 
(I 

6.8 Contact terms in operator expansions. 

The expansions that we have derived should be valid for arbitrary test functions F(Q). For 
example, if there are two independent heavy momenta, sI and a~, then the expansion will 
in general contain terms proportional to 6(Qr), S(f&), S(Q, + Qz), S(Qr)S(Qs) etc. (for a 
discussion of the role of such terms see [l]). Let us explain how such terms are generated by 
the As-operation. 

Within the context of subsect. 6.2 (no heavy masses etc.), consider the case corresponding 
to the product of two currents in (6.8): 

F*‘H= J dQ F(QP(Q + q)H(-a). 
The non-trivial terms are generated from the following expression (cf. (6.12)): 

Asd~ [TF * XeL] = c C$(F, L);,(q), 
n 

(6.35) 

where L is the interaction Lagrangian. 



6 GENERALIZED OPERATOR-PRODUCT EXPANSIONS. 38 

There are two classes of terms generated by TF * UeL that give non-zero result after ap- 
plication of A,. The first class contains the terms whose graphs remain connected after the 
F-vertex is deleted. Such terms can be represented as: 

P 
--2c 

/ dD8F(~)f(Q,pl,...,Pn,m,~) X s(~+C~j)n(~(~j)d~~j), (6.36) 
j 

where the Feynman amplitude f depends on the masses m of the theory, contains one factor 
pzc per each loop, and the &function that expresses the momentum conservation is shown 
explicitly. The action of Ab. on (6.36) consists in Taylor-expanding f in masses and pj. The 
result has the form: 

Aaao(6.36) = j dD8J’(8) c A(&, P) 
0 

(6.37) 

x /l-2< 1 J ‘P~(~,PI,...,zJ~I~(~+ CPj)~I(G(Pj)dDPj) j 1 
The square-bracketed term in (6.37) corresponds to 3 in (6.12), and the dependence of f@(&,p) 
on & and p is as follows: 

JAQ, P) = L(&, ($)‘,. (6.38) 

In the I-loop approximation, fy is a polynomial of order I in its second parameter, while its 
dependence on the first parameter is determined by power counting and covariance properties. 

The second class contains the heavy knots that consist of two parts connected only via the 
F-vertex (cf. Fig.7). If there are no heavy masses, then there is only one such subgraph that 
is not nullified by the operation r-it consists of the two vertices corresponding to the “heavy” 
operators H (see (6.34)) connected to the F-vertex. The corresponding contribution to (6.35) 
has the following form (for definiteness we assume that H(z) = y(z)‘): 

L--i/ dQ F(Q) J(q t Q t PI + PZ)~(-Q t P; + P;) (6.39) 

x~(P~)~(Pz)~(P:)~(P;) dp: .&:I 

= ddQF(Q) 6(-Q + P: + ~21 

x6(4 + PI + PZ t P: + P:)~(P~)~(Pz)~(P:)~(P;) dpl . dp;, 
where the two h-functions in the first line are inherited from the two operators H (cf. (3.1)), 
and we have extracted a &function in the last line that depends only on the light momenta. We 
have deliberately not performed the integration over Q on the r.h.s. because r should Taylor- 
expand the square-bracketed expression in p: and this can be done by applying r directly to 
the J-function. The result has the form 

I& J dQ [~(Q)~(m'(Q)l x id,), (6.40) 

and one sees that the “bare” coefficient functions in (6.12) receive &functional contribu- 
tions. Such contributions-“dressed” by the appropriate divergent renormalization factors (cf. 
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(6.18))-are finally inherited by the coefficient functions of the short-distance expansion (6.17). 
It may be not quite obvious that the coefficient functions thus constructed will be integrable 
around Q N 0. However, cancellations between different terms can be traced if one performs the 
expansion procedure explicitly starting from the As-operation for products of singular functions 
prior to performing the integrations of &functions described in subsect. 5.3. Alternatively, an 
interested reader can verify validity of our recipes by straightforward calculations in a simplest 
situation, e.g. within the model ‘p3 in two dimensions for the currents H(s) = p’(z) in one 
loop approximation. 

6.9 General linear restrictions on heavy momenta and paralocal 
operaiors. 

Consider the following operator product instead of (6.10): 

F*‘H=/dQ’F(B) J(q+C&j)nS(qc+$ (6.41) 
j x j 

where the &functions are introduced to impose linear restrictions on the heavy momenta. 
With a special choice of cA,j one reproduces the restrictions (6.24). Examples of more general 
restrictions are presented in Fig.8. We are not aware of any phenomenological applications 
where such restrictions might emerge naturally. Therefore, we offer only a few comments 
concerning the most general case (6.41). 

First, it should be stressed that the expansion procedure as described by (6.11) remains 
fully correct and well-defined provided the “fool-proof” recipe for A, from subsect. 5.6 is used. 
No simple graphical description for heavy knots exists, though. 

Second, the representation (6.12) should be replaced by a more general one: the sum on 
the r.h.s. may now contain operators that can not be interpreted as local operators and differ 
from (3.1) by additional &functions besides the one expressing momentum conservation. Such 
operator monomials can be called pamlocal operators [3]. A simple example of a paralocal 
operator in position-space representation may be as follows: 

P(z) = / I-J 4 n 42 + C hCxj)> X j A (6.42) 

but more complicated patterns are possible: note in this respect that a natural position-space 
representation for the multilocal operators which are a special case of paralocal ones, is 

where all J are local operators. 

Jl(~l)..Jn(Z?J, (6.43) 

The renormalization properties of paralocal operators can be studied most easily using the 
techniques of [15] (also [IS]) and are similar to those of (multi-) local ones: a paralocal operator 
renormalizes via paralocal ones. Zimmermann identities (including the inverted ones) can also 
be generalized to this case. Therefore, expansions in explicitly convergent form for the case of 
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general non-natural restrictions on heavy momenta can be obtained in a manner completely 
similar to the case of natural restrictions. 

Conclusions. 

We have developed a simple combinatorial technique for studying global exponentiation 
properties of the As-operation and obtained Euclidean asymptotic expansions for MS-renorma- 
lized Green functions of arbitrary local operators in arbitrary models. The expansions are true 
infinite asymptotic series that run in powers and logs of the expansion parameter. The obtained 
expansions exhibit perfect factorization of heavy and light dimensional parameters (masses and 
external momenta) which means e.g. that the coefficient functions of operator expansions are 
analytical in light masses and momenta. It should be stressed that the expansions are valid in 
models with massless particles like &CD, and are most convenient for practical calculations. 
Uniqueness of such expansions (cf. [I]) greatly facilitates study of their properties in gauge 
models. 
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Figure captions. 

Fig.1. A diagram (a) and its heavy knots (a)-(d). All the external momenta are light. The 
fat lines correspond to propagators of heavy particles. Various IR subgraphs are shown with 
dashed lines in (b)-(d). 

Fig.2. (a) An example of a diagram with a “light” tadpole subgraph (the notations are 
the same as in Fig.1). The tadpole corresponds to a non-expandable global factor. The As- 
operation should not affect such factors. (b) and (c) are two IR-subgraphs. The contribution 
corresponding to the IR-subgraph shown in (b) is automatically set to zero by the operation T 
due to the properties of dimensional regularization, so that the tadpole can be factored out in 
the result produced by the As-operation, as expected. 

Fig.3. A graphical representation of the test function corresponding to the heavy exter- 
nal momenta. The lines connecting the F-vertex with the rest of the diagram are heavy by 
definition. 

Fig.4. If the wavy lines correspond to msssless scalar particles then setting q = 0 would 
result in an IR divergence in D = 4. 

Fig.5. An example of kinematics of heavy momenta with linear restrictions. (a) differs from 
(b) by the restriction Qs = -Qz. ( ) h c s ows the corresponding position space picture: e, C --t 0. 

Fig.6. A diagrammatic illustration of (6.33). The two terms on the r.h.s. correspond to two 
ways of cutting off the heavy knots corresponding to the heavy external momenta. 

Fig.7. Graphical representation of the heavy knots contributing to contact terms. Each 
blob corresponds to a subgraph that is 1PI with respect to light lines. If there are no heavy 
masses then each blob is just 1PI and is nullified by r unless it consists of a single vertex. 

Fig.8. Examples of “non-naturaln restrictions on heavy momenta. (a) differs from Fig.6 by 
an additional restriction Qi = Qz. 
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