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ABSTRACT 

We derive a CP odd effective field theory involving the field strengths of 

the gluon and the photon and their duals as a result of integrating out a heavy 

quark which carries both the chrome-electric dipole moment and electric dipole 

moment. The coefficients of the induced gluonic, photonic, and mixed gluon- 

photon operators with dimension > 8 are determined. Implications of some of 

these operators on the neutron electric dipole moment are also discussed. 
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1. Iutroduction 

It is commonly believed that a nonvanishing neutron electric dipole moment 

(NEDM), if observed at the present level of experimental sensitivity - 1O-26 

e-cm, would be an indication of some new physics of CP violation beyond the 

Standard KobayasIGhIaskawa Model. Present experimental bounds are in fact 

expected to improve by une or twra orders of magnitude in the near future. On 

the theoretical side, a new mechanism of generating NEDM through a purely glu- 

onic process envisaged by \Veinberg il] has stimulated many subsequent studies. 

The mechanism involves the fullowing dimension 6 purely gluonic CP violating 

operator, 

(Is _ +3 f ~b‘+vyy~pC:‘~ ” 1 (1) 

which has been identified as the chrome-electric dipole moment (CEDM) of the 

gluon itself 121. In (l), Cj”,” is the gluon field strength, cz, = itruOdG’aa’ is 

its dual with t01z3 = t~l; 9 and jmac are the gauge coupling and the totally 

antisymmetric structure tensor of S11(3) respectively. Up to total derivstiwsl 

0, is the unique purely gluunic, gauge invariant, CP violating operator with 

dimension 1 6. (As is well known, the dimension 4 topological term 

o* x y’C;,,C”~u 1 (2) 

which is a total derivative: can prwide an enormous contribution to the NEDP*l 

due to the nonperturbative QCD effect. One p o u ar solution to this so-called p I 

strong CP problem is the Peccri-Quinn mechanism [3]. Whether this same mech- 

anism designed to eliminate the effect of 0s can suppress the impact of 0, as 

well has been debated in the literature 141. We will not address these issues here.) 

Besides O,, \Veinberg also puirltetl out [1~,5] that certain dimension 8 purely 

gluonic operators can also induce a NEDM. Such operators, together with 0, 

was investigated by Morozov [6] some time ago. Be observed that there are three 



independent dimension 8 CP odd purely gluonic operators 

where dab' is the totally symmetric: tensor of SU(3) and calculated their anoma- 

lous dimensions. In renormalizable gauge theories, these operators are in generai 

induced by two-loop diagrams when all the heavy particles in the intermediate 

states are integrated out. In many models of CP violation (for example, su- 

persymmetric model, charged Higgs exchange model, and left-right symmetric 

model, which we shall summarily call charged models), there are two different 

mass scales in the intermediate states. Then the process of integrating out the 

heavy particles should be done in two steps. In the first step, the CP violating 

particles with masses of Al lv or higher are integrated out. Typically the CEDM of 

a relatively lighter quark (say, the bottom quark) is then induced at the oneel~~o~~ 

level. After this operator is evolved from JI ,y down to the quark n~ass threshold. 

the operator 0, is induced at the one-luop level when the quark with CEDXI is 

in turn eliminated from the effective field theory [7,8,9,10]. On several occasions 

[I 11, we have briefly discussed the potential importance of the dimension 8 oper- 

ators. However, the coefficients of the dimension 8 operators that are induced in 

specific mod& have wvcr been calculated in the literature except for the simple 

case of the one-particlr~reducible two~loop diagrams [5,12,13] in neutral Higgs 

model. This work is to fill this gap for the charged models. 

In all previous works, the coefficient of 06 was obtained by standard Feyn- 

man diagram calculations using ordinary momentum space perturbation theory 

or background field method [7,8,9,10;14,15]. Th ese approaches become quite 

unwieldy for operators of higher dimensions because of (i) the proliferation uf 

indices of all sorts and (ii) the large number of gauge variant operators that can 



be generated in the intermediate steps. Background field methods based on flat 

connections can simplify the second problem (for example, one can look at the 

eight-point functions in the two-loop diagrams for the dimension 8 operators) 

but not the first one. These complications exist even in the oneloop calculation 

corresponding to the elimination of a heavy quark with CEDM. In this paper, 

we present a systematic and tractable way (based on a functional approach and 

covariant derivative expansioll) to generate all such CP odd purely gluonic or 

photonic or mixed gluon-photon operators of higher dimensions as a result of 

integrating out a heavy quark that carries not only a CEDM but also an electric 

dipole moment (EDM). 

One generally expects the coefficients of the dimension 8 purely gluonic op 

erators to be suppressed by powers of the inverse heavy masses relative to the 

0,. However in the case of the charged models this is the b quark mass and the 

suppression is not too severe. In addition, unlike OS which is suppressed by the 

QCD renormalization effect at low energy [6,7j, one combination of the dimew 

sion 8 operators (mostly 08,1) has a positive and sizable anomalous dimension 

[6!. Therefore its effect can be significantly enhanced by the QCD rlfects at the 

hadronic scale. The effect of tl K operators with dimension higher than 8 are 

expected to be small unless their anomalous dimensions are not only positive 

but also surprisingly large in value. Nevertheless, the coefficients of operators of 

higher dimensions can be obtained easily by our method. 

It is worthwhile to mention that the chrorno-electric dipole moment effect 

that we calculate in this work is not the only contribution at the same level 

in perturbative expansion. In the charged Higgs model for example, from the 

viewpoint of two loop diagrams, this analysis will correspond to only the QCD 

improved version of Fig.1 (a). Tl lere are also diagrams like that in Fig.l(b,c). If 

one integrates out the t quark first in these contributions, operators of dimension 

7 of the forms QOcG and d-,5@2(;. or of dimension 9 of the forms QQ6’G’G’ and 

Qr5QGC(: will be induced. And they in turn give rise to operators of dimension 8 

below the b quark threshold as in l’ig.2. However, at the t quark threshold, these 
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operators of higher dimensions receive large suppression by powers of inverse 

t quark mass. Their eventual contributions are expected to be negligible even 

though some of the dimension 7 operators do receive mild QCD renormalization 

enhancement according to Morozov [6]. 

The induction of CEDM or EDM of lighter quarks (such as b quark) at the 

threshold of heavy CP violating particles in different charged models has been 

worked out before [B]. To be more model independent here, we shall simply 

parametrize these vertices in an effective Lagrangian and calculate their effects 

at the hadronic scale. In the following two sections the heavy quarks will stand 

for quarks. such as b and c, that is lighter than lllrv and heavier than hadronic 

SC&. 

In section 2, we first show the effective action, induced by integrating out a 

heavy quark with both CEDM and EDM, is given by the functional determinant 

of a generaiized Dirac operator. We then evaluate the functional determinant 

to first order in CEDhI using the method by Novikov, Shifman, Vainshtein, and 

Zakharov INSVZ) [16: who had g eneralized Schwinger’s operator method j17i to 

the case of nonabelian gauge theory. The attractive feature of this approah is 

that one deals with the field strength and its covariant derivative directly and 

thus gauqc invariance is manifest throughout the calculation. The ap!xoach is 

essentially a covariant derivative expansion of the external gauge &Ids. This 

method has been used to determine the coefficients of the purely gluonic CI’ 

even opcrxtors up to dimension 8 [ 161, to derive low-energy effective Lagrangians 

involving anomaly-induced vertices, Coldstone-Wilczek currents, and Skyrme 

terms i IH~, etc. In the NSVZ appr<)ach, operators involved the covariant deriva- 

tives arc converted into operators involved only the gauge covariant field strength 

through some nested multi-commutators relations which are not so easy to dr- 

rive. Therefore the calculation is very tedious to say the least. Such tedious steps 

can be bypassed by performing a b-unitary transformations to the functional 

trace, invented and improved by a number of authors [19,20,211. Through these 

transformations, the covariant derivative operator is converted into a auxiliary 
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c-number momentum at the very beginning. The functional determinant which 

originally was an expansion of complicated commutators of covariant derivative 

operators is now expressed as an expansion in the auxiliary momentum and field 

strengths. One can then take the average of the auxiliary momentum in or- 

der to produce the ordinary series expansion of effective action. This approach 

has also been widely applied to many situations 1211 including the calculation 

of the $ functions of QED and QCD, and the derivation of the effective action 

for the Standard Model with a very heavy IIiggs, etc. We also show that the 

later approach reproduces easily the results previously obtained by the method 

of NSVZ. 

In section 3, we include electromagnetism and allow the heavy quark to carry 

EDM as well as CEDXl. A complete local Lagrangian with operators of dimension 

5 8 is given. Besides the two operators with one-photon and three-gtuon fields 

discussed by de Rujula ef 111 (221, we also generate the CP violating four-photon 

operator and three operators with two-gluon and two-photon fields for complete- 

ness. We discuss briefly the phenomenology in section 4. The phenomenologicat 

consequence of this effective field theory related to the NEDhl has been given in 

it recent letter 1231. Here we shall emphasize the analytical aspects. ;I bank of 

formulas and identities which are indispensable for deriving our final results are 

relegated to the Appendix. 

2. C’ovariant Derivative Expansion 

Suppose the CEDM (C) and the EDM (C’) of a heavy quark v with mass AI 

and electric charge eq was induced at a large mass scale A z, AI when the particles 

with mass greater than A were eliminated from the spectrum of the low energy 

effective theory. (It is not necessary here to specify the physical origin of CP 

violations associated with these heavy particles.) At the renormalization point 

p = A, the effective Lagrangian can be parametrized, up to terms of dimension 



five, as 

L = +Tr G,,G”” -;FpJp“+Q(p ~-.I,-~Y(175~.G’~~‘C(l’-,jb.F)Q (1) 

Here G,, = c;,,TP with 7’” the generators in fundamental representation of a 

simple Lie algebra associated with color, F,, is the electromagnetic field strength; 

(r. G = g,,G”” and C. F = n,,,F’” with gP,, = ;[y,,,-yv]; and p = r,P” where 

P, = id, + A, with A, : yA;‘I’” + eQB,,, the gauge connections including 

the color group and electromagnetism. Ifere we have assumed that the terms 

of higher dimensions are negligible. This assumption is certainty valid in most 

of the charged models (except maybe the supersymmetric models). .\s tong as 

no other particle masses lie between 11 and AI, one can evolve the above theory 

from A to M via the standard renorrnatizatiun group machinery. However, when 

IL evolves below M, we must change the effective theory to a new one with 

the heavy quark Q removed from the particle spectrum [‘L-l]. The new effective 

theory thus obtained involves an infinite tower of none-renormalizable operators 

constructed out of the field strengths and their covariant derivatives but with 

coefFicirnts suppressed by inverse ~~uwer of the heavy quark II~SS .2f. 

To evaluate this? first consider the path integral representation of the vacuu~n 

tu vacuum transition amplitude .u,(O~O~)i, r J”V.4”VBVQV~ exp i J‘ J”J:L. 

Since the Lagrangian (4) is quadratic in Q and 0, we can integrate out the 

heavy quark and obtain 

“,,(OjO)i,, :: 
J 

V.4”VB exp i.S,& , 

z 
1 

‘V.~“VBexpi(S,,~i.-l”! i S,.d[B]) 

x Det (p (T. C: ~ ;c&‘y+~. F), 

.SeR[d] = .5&dj.JU! + .&rdlB] + A.S[dI~ 

AS[,$ ; emiTrln(p .- ,\I - $C’-,jn. G - iegC”l~0. 6’) 

(5) 

The effective action, ASjAj, involves the generalized Dirac operator and is non- 



1oca.l. It corresponds to the sum of all one-loop diagrams with arbitrary numbers 

of external gluon attached to the heavy qrlark loop. Since we are only interested 

in the induced operators in AS tu first order in c’ and C:‘; it can be written as 

AS!d] = -iTr [in ($ .-. !\I) AS!d] = -iTr [in ($ .-. !\I) 

+ln I - (p ‘lr)+C:75n~ G’ + ;qlC8-,5a F) +ln I - ( p ‘lr)+C:75n G’ i ;qlC8-,5a F) 
c c 

( , 

= -iTr [ln (p ill) = -iTr [ln (p ill) 
(‘51 (‘51 

-$p ~~;\I),-‘(yC’yju.Gi~eyC’ysu.F) t”’ -$p ~~;\I),-‘(yC’yju.Gi~eyC’ysu.F) t”’ 1 1 
The expansion in (6) is valid as lung as lC! ’ 2 and IFI’ -:, 31’. The first term uf 

AS is CP even arid has been studied before j161. We will concentrate on the 

second term which is CP odd. To the first order in (’ and c”, 

AScp = -;Tr [(p - Al)~~‘(yVls~. c: + t.q~“~s”. q] 1 

= -pr 
(7) 

(P’ qC”ysu. F) , 
I 

where we have defined (T cj = yn G .t CQ~ F. 

VW brevity, we preserlt the details of following calculatio” without electro- 

magnetism for the rest of this section. Incorporating this additional effect is 

straightforward a”d will be given ill the rlext section. Setting (” = 0 ad t’~ = 0 

in (7) and expanding the chromo~magnetic moment in the denominator, we de- 

duce 

~Scp = ~- Y(,‘i\I ;I’r 

2 [ 
-,5(P2 - M2+;yo.G)-%G , 

I 
gc’Al 

--- 
2 1 

~+P2 + $3 - $4 + O(y’) , 

with pp,, P,, and ?‘p, defined by 

(8) 

P, = Tr [y5A( P)u CA(P)” G] , (9) 
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P, = Tr [-,sil(P)fl. GAG. GA(p)u. GJ , (10) 

and 

P, = Tr [-,5A(P)u. GA(P)a. CA(P)u. GA(P)g G] (11) 

Here A(P) = (P’ M’)-‘. The O(g”) term in (8) is necessarily of dimension 

10 or higher and will be ignored here. 

To evaluate P2,3,a, we treat the gauge field as an external background field 

and apply Schwinger’s operator method [171. The main obstacle to evaluating the 

functional traces in (9)-( 11) is that f or a general position dependent background 

field G, P and G do not commute. The trace is not diagonal in either position 

space or momentum space. hlethods to circumvent this difficulty were developed 

in Kefs. [16j and [181. The essential ingredient of the method is to put all the 

propagators A(P) in P,,,,, to the leftmost position inside the functional trace. 

The algebra is performed by repeatedly using the following identities: 

XA(P) = A(P)S + A2(P)[Pz,.Y] t A3(p)[P2,[P2,S]] 

+A~(P)IP*,jPZ,[PZ,.sI]] f”’ ( 

A(P).Y = .YA(P) - [P2,SjA2(P) ~1 jP’.:P’:sj]A3(P) 

- [P’,[P2,[I’z,s!I]~~(P)+“’ , 

(‘2) 

where S is any operator. Using these rules, one can obtain the expressi,)ns for 

‘P2,3.4 that involve all the propagalor A(P) moved to the leftmost position and 

a string of multi-cornrrlutaturs at the rightmost position inside the lunctional 

trace. P., is in Fact easy to handle. Since P4 already has four field strengths in 

the numerator, to obtain the dimension 8 operators one can ignore the noncorn- 

mutative algebra and set the gauge connection to zero in all the propagators. 

The functional trace can then be easily evaluated by going to momentum space. 

Thus, 

Pg = Tr [y5A4(p)(a .G)‘] it U(G5) , 

i 1 
zz 

+ 16+ 6M4 
--tr ys d%(n. G)4 f O(G5) , 

(13) 



where ‘tr’ denotes the trace over the color gauge group and the Lorentz space. 

For P,,, , we get 

P, = Tr [ysAz(P)(o. G)‘] ~ ‘I’r {ysA3(P) (0. G + A(P)/P2,c. G] 

+ A2(P)[P2,(P2>u.GlI t 13(P)[P2,[P2,[P2,u .G]]] ~+ . ..) [P’>o .G]} , 

(1-l) 

P3 =Tr [ySAs( P)(o C)“] 

+ Tr {ySA4(P) ([P2,q. C:;(u. C:)’ ~ (u. G)‘;P’,a. Cl)} 

-Tr {ysAS(P)([P2.(~.G)2J[P2,u.G~ 

f[P2, ~. (T, c:IIP’ ,(u’(:)2]~t(P2,~.Gj~.G[P2,~.(:])}+... 

By using the Heisenberg equation of motion, 

If’,, Go,] = iD,G<,,: > 

one can easily evaluate all the multi ~commutators, 

if”> c G] = - D2u G + 2iD,,u GP’ , 

[P’, jP’,c~. G;] -D’u G - %iD,D2u. GP” it -lgD,o GG”“P, 

~ 2iDZD,a. GD” - 4D,D,,u. CP,P, , 

[P2,(P2,[f”,n. Cl]] = .-81D,,DuD,~. GD,D,D, -+ . , 

(15) 

(16) 

(17) 

(18) 

(19) 

etc. D, is the covariant derivative acting on the field strength with the following 

rule of operations: For a matrix-valued function JM = Al”T”, D,,M is defined 

to be i),,M - ry[zl,,.M! and [D,, D,]M = -ig[G,,, M]. In the above equationsl 

those terms that give rise to dimension 10 operators or higher have been ignored. 



It is interesting to note that the dimension 4 topological term 00 is also 

induced by P2 

P, = Tr [ysA*(p)(u’ C)‘] + U(G3) (‘LO) 

This term is in fact logarithmic ultraviolet divergent. Introducing a momentum 

cut off A[,V, we get 

pz = & (In Ay~,V t finite) tr y5 
J 

d%(cT~ G)’ ~+ U(G”) (21) 

This divergent term comes with no surprises since the induced operator has a 

lower dimension than the quark CEDM operator in (4). Thus, this term does not 

belong to the threshold effects. Instead, it should b e interpreted as the operator 

mixing between the quark CEDhl and the topological term due to the QCD 

renormalization group evolution. The divergent coeificient in (21) implies that 

the anomalous dimension is yys = -2AI, which agrees with Morozov’s result [6]. 

In the following, we will simply sketch the calculation Iof the other tcrrns in 

P2 and P, which are somewhat lengthy. After applying the commutator relations 

(16).-( 19) to P,,,, une can choose the position space representation to evaluate the 

functional trace since the operators involving the field strength and its covariant 

derivative are diagonal in this representation. One obtains at this stage the 

following generic expression 

I ‘<PE . ciAyP)P,,P, ‘. P& .:, F‘““““[C](.x) ~ (22) 

where .F”““‘?[G’] is only a function of the field strength and its covariant 

derivative. The final thing one has to know is the diagonal matrix element 

L. xIA”(P)P,P,,~~. P71z I~.._ For the operators with dimension 5 8 considered 

in this work, one can set the gauge connection to zero in these matrix rlements, 

which can then be easily evaluated by going to momentum space. The algebra is 
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tedious but straightforward. The answer is given by 

-;y’D%. C(r. G)’ + ;y’(u. C)‘] } 

(23) 

So far, the gauge group has not, been specified. The two operators of dimension 

6 in Eq.(23) come from P2 and P3 in Eqs.(S--10). They are actually related to 

each other through Eq.(A.21) in the Appendix, as a consequence of the Bianchi 

identity. We do not include those dimension 8 operators which vanish when the 

equation of motion for the sourceless external gauge field D,G^” = 0 is imposed. 

We have dropped all the total derivatives except the topological term in order to 

obtain the desired form of (23). 

It is clear that the NSVZ approach is a covariant derivative expansion and 

one might wonder if there exists a more efficient way to perform the calcula- 

tion. Indeed, a more elegant formalism of covariant derivative expansion has 

been advocated in the literature [19,21,201. We now illustrate how such this 

technique can simplify our calculation. ‘The first step is to make two consecutive 

unitary transformations 6 = rner’ to the functional trace, wher& .A = ~~~-ipPep 

and B G iD,i)/i3p, with pP an suxiiiary Fourier momentum parameter. The 

transformation eA is a simple Fourier transform to momentum space. The sec- 

ond one eB is to shift the momentum by the covariant derivative. The next step 

is to take the average over the auxiliary momentum parameter pP. Take the trace 

in (8) fur illustration, we have 

Tr rs(P’ -M2 ++)-‘a.(: 
I 
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where V denotes the volume of momentum space. Since the trace is invariant 

under the unitary transformation, all the p-integral does is to average all values 

of p. Furthermore, pr commutes with everything except 13/8p,,, we thus have 

[A,P,,] = -p,, , 15, J’p] = -[LD,$- , [B,P,] = iD, (25) 
Y 

Using (25), one can show 1211 

Tr 
[ 
is(P’ - Al2 + $0 G-‘u c: 1 

=- - ; (;+ ! YS 
J 

(PM + G& y )’ - W + $c. (G + 6G)) -’ 

(T. (G + 6G)] , 

p2 a -- M’ t {p~,G,.p}r- .- G,,,G* p 
iI’ 

dP” aPA+,, 
(‘6) 

where 

G ..=~~~~~~~~l~,.,,..-!o,.“,~D.,,D, I)... i&y,; , (27) 
77=” P,” 

and 

SG (281 “=I 
From (28), we note that 6G contains at least one ordinary derivative. We thus 

dropped the term 6G in the numerator in the last line of (26) since it gives 

zero when acting on unity at its right. Eq.(26) is a compact formula for the 
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functional trace which has ‘integrated’ all the tedious non-commutative algebra 

encountered step by step in the NSVZ approach. To obtain local operators, one 

simply expands Ihe field strength and its covariant derivatives in the denominator 

in Eq.(26). Note that the ordinary momentum derivative still acts nontrivially 

on the free propagator. After all the derivatives are evaluated, one is left with the 

trivial momentum integral. Using this compact expression, one can reproduce the 

effective action (23) directly. Alternatively, one expands the chrome-magnetic 

moment first, and then applies the unitary transformation technique to the func- 

tional traces of P2,3,4 given in (9), (lo), and (11). We have checked that all three 

approaches give the same resull. 

3. Incorporation Of Electromagnetism And The Effective Action 

It is straightforward to extend previous calculation to include the electrornag- 

netic effect when C’ # 0. First of all, it is impossible to write down any gauge 

invariant dimension 6 purely photonic or mixed gluon-photon operators. Sec- 

ondly, dimension 8 operators involving the photon and gluon field strengths and 

two or four derivatives can be eliminated by the equations of motion ?PF,,, = 0 

and fYF,, = 0. Therefore the additional dimension 4 and 8 operators must be 

all conslructed out of field strengths G’,, and F,,“. The complete effective action 

can be obtained from (23) by the following substitutions 

y”c’(u. c)‘c - yC(u i;)“-‘o, c: it eqC’(u. g”-‘o. 1; ,(I, = 2,3,4) (29) 

and 

~‘CG,,G”“(LT CT’)’ - ~~C~,,~~‘l”rr. C-h. G + e,C’~,,,~‘“o &, F (30) 

Thus the complete CI’ odd effective action is given by 

A&p = asc + A& : (31) 



where 

‘!I&! = $f (In A:,, f finite) (~7. G)’ 

1 
- 

+ 4111 
+ GD’r . G + ;(T G)” 1 

1 

+ 24h13 ’ 5 ’ + 
‘D D,,u. GD”D’u. G - y’G,,G,,(u. G)’ 

- ;y’D’a. G(u G)’ + ;y3(c. G)” 

+ ;y2eu (3(c7. G)3 u.F-2G,,G’“u.Gu.F 

~-4F,,,Gyu~ G)Z) 

and 

+ $e:, (c. Fa Gc Fo ‘6 + 2(u. F)‘(u G)’ 

~--2E;,F”“(u. C:)’ - 4F,,G““u Fc. G)]} 

(i2) 

A&~:, = - 32;2 ecgws 
s 

d4x { f$ (In A;,, t Me) (a. F)’ 

1 
- 

+ 2.1,\{3 [ 
‘g” ((0. G)3g. F - ‘LG,,G”“IT. Fu G) 
2 

t ;y2rQ (u. Fu. Gu. Fu. G + 2(u. F)2(g. G)’ (33) 

~2G,,G”“(c7. F)’ -lF,,,G~“~. Fa G) 

+;e:, ((cr. F)4 - 2F,,F’“(u. F)2)]} 

Equations (31), (32), and (33) are Ihe main results of this work. The results 

are valid for any color gauge group where the heavy quark Q transforms in any 

representation. Besides Ibe purely gtuonic operators, there are also operators 

involving Ihe covariant derivatives in (32). r ‘or instance, besides the Weinberg 

operator tr ys(u. G)9, we also induce tr -fSc. GD ‘cr. G. However we show in the 

Appendix that, up to total derivatives, all the latter operators can be expressed 

solely in terms of the field strength. T” apply this lo Ihe NEDM we have lo 
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fix the color gauge group lo be S(f(3). In the Appendix, we also show that for 

W(3) all the operators in (32) and (33) can be expressed in terms of the chosen 

basis of F,,,F”“, 00, 06, O,.,(i = 1,2,3), and the following set of dimension 8 

operators 

1 
08.4 = TjeQ9 d 

3 abcpp”p”“G~,G”“~ , 

o,,, 7 
1 
jrqg3d”“‘~;,(, ‘bPY[;ziiF“i-i , 

o~,~ = +;g2F,,.~~u~:pGa~o , 

I (34) 
og,7 = &y2(;‘;, GUpYFallFLIP , 

’ 2 2- Oa,* = 2cQy F,,.G”““F,&Y”’ , 

1 - 
08,8 = --r;FpuFpYF~pF+ 

12 

Therefore, afler integrating out the excitation of the heavy quark Q with mass 

M, we have the following effective action for the NEDhI, 

SNEDn’ et7 ~ SQCD its SQED + .%gh, quar!e it As,: t &-,-, - , (35) 

with 

(36) 

, 

and 

ASc, = -&& /d’z [;O~,E t ;Oa,T + ;Oe,B +X&j (37) 

Note that we have not included the terms c:C and FF in (36) and (37). There 

is no topological effect from the FF contribution of the I:(l). The effect of CG 

term has been discussed in Ref.[25]. B esi d es the kinetic terms, Slight quarkn in 

Eq.(35) contains the EDMs and CEDhls of the light quarks as well. 
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4. Conclusions 

Using the functional approach together with the covariant derivative expan- 

sion, we have deduced an effective action for the neutron electric dipole moment 

that are related to the electric dipole moment and chrome--electric dipole moment 

of a heavy quark. Local operators of dimension 5 8 and their Wilson coefficients 

are worked out explicitly. The coefficients for the Weinberg’s three-gluon opera- 

tor and the one-photon three-gluon operators agree with previous works [7,8,221. 

The coefficients for the other dimension 8 operators are new. This effective action 

is the starting point for the hadronic matrix element calculation. Implication of 

the dimension 8 purely gluonic operators to the neutron moment has been dis- 

cussed in a recent letter [23!, in which we showed that at the hadronic scale, due 

to the QCD renormalization effects, these operators of higher dimensions may 

dominant over the dimension 6 three-gluon operator. Thus, the dimension 8 

purely gluonic operators listed in Eq.(3) may provide either a dominant mecha- 

nism generating an observable neutron moment or a stringent constraint on the 

underlying dynamics of CP viulatiun beyond the Standard Model. 

In the following, we summarize the phenomenological results [23!. The oper- 

ators O,, and 08,5 may not give an important contribution to NEDM because 

of the heavy mass suppression and the absence of QCD enhancement [22]. The 

effects in NEDM from other operators in Eq.(34) are of higher orders in a,,,, 

and thus negligible. However, they could have observable effects in systems with 

strong electromagnetic field, such as the large-Z ~~ucleus. Now we concentrate 

our attention to the effective Lagrangian of the form: 

LIT(P) = ,. + G(PL)O&) t e (:8,;(PL)os,i(P) I (38) r=l 
where ( 8,<(mb) and (16(rrrl,) are related to C b, the CEDM of the b quark, via 

Eq.(X). The coefficient Cb = C,( rn,) depends on details of the models of CP 

violation. The scale /L dependence follows the standard renormalization group 
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equation. The size of the NEDM can be estimated using the naive dimensional 

analysis 1271 accompanied with the unknown nonperturbative correction factors 

&r ts.2 which are naively of order about one, 

DN(O,) = (ehr,l~~)s”(~)cs(fl)~~ 1 

DN(Oa) 2 (~~~:/16~‘)s’(~)C,,~(~)~s,~ (39) 

Here AI, = 47rF, z 1.19 GeV is the chiral symmetry breaking scale. The strong 

coupling is set at g(,u) = 4=/v’% as in Ref.[l]. With the QCD enhancement 

mostly for the component i = 1, we obtain 

DN(‘%)/DN(o,) = 3.6&,1/& (40) 

The naive dimensional analysis is certainly not reliable because it is ambiguous 

about normalization of the operators. One has to rely upon educated guess to 

determine the normalization. Recently, Chemtob[l3! used the QCD sum rule 

method to provide a more systematic estimate of the hadronic matrix elements 

of the operators 00, O,, and 08. In this scheme if one assumes the nucleon pole 

dominance, the results are t6 = 0.07, [ 8,1 = 0.08, which correspond to smaller 

DN compared to the dimensional estimates given above. However, their ratio 

is still about 1. Therefore it is reasonable to conclude that the ratio k,i matrix 

elements can be more reliably estimated than the individual elements themselves. 

So is the conclusion that the O8 operators give the dominant contribution to the 

NEDM. Using the current experimental bound[ll] 1O-25 e cm and the matrix 

elements of Chemtob, one can put a constraint on the CEDhI of the b quark, i.e. 

Ca i 0.6 GFm~/167r2 (-II) 

If the &coma-electric dipole moment is given to the charm quark initially, the ra- 

tio DN(O,)/DN(O~) will be even an order of magnitude larger because the quark 

mass suppression factor is less severe. In conclusion, the induced 08 operators 

can place strong constraint on parameters of the CP violation. 



APPENDIX 

In this Appendix, we collect all the formulas that are essential for deriving 

Eqs.( 36) and (37) from Eqs.(32) and (33). To this end, we first prove that, for 

SU(N) with N 1 4, there are only four independent dimension 8 CP odd purely 

gluonic operators. For SU(3) and SU(2) one can further reduce the number of 

independent operators down to three and two respectively. These results were 

stated in [S] without proof. We provide here an independent proof of these 

nontrivial facts because the identities used in the proof may be useful for other 

purposes as well. 

We kick off with some w&known Dirac trace identities. 

tr -r5~pyfled = 4it,,,p , 

tr -YS~,~~~L~~A, = 4 [gpe~tjj3+ - grti~uoXp ~ gudpp+ f g+e,,x,] , 

tr Y~~,~~~o~A~~~, = 4; {(gAFg,, ~ sw7,d~,uej + (i7rd7Y~ - grp.9&bt., 

- i9PYW”?P? - (15 permutations of 1~ ++ V, u - 3, X - p, [ i ,q)]} 

(A.l) 

Since there is no rank 5 totally antisymmetric tensor in -1 dimension, the t tensor 

in 4 dimension satisfies the identity 

tlPuOl,og*i< = eP’““tiy.q + ,4~yPc + ,,=?byd +,oh~.y”l + ,w~~y”~ = 0 (‘4.2) 

Let T” be the generators of SO(N) in the fundamental representation. Some 

useful SU( N) identities are: 

tr T”Tb = $i”’ , 

tr T”TbTc = i [if”“’ + d”“‘] , 

t,. T”TbTcTd = &b&=d 
4N 

ube,l’“e _ f”b.f’“. t j (jabed’& ,~ &&p’), 

(AA) 

Despite the fact that we have imposed on Eq.(32) the following sourceless 
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equations of motion 

W'F,, = 0, i3'F,,, = 0 , (.4.4) 

and 

D’G,, = WC:,,, - iy[A”,G,,] = 0 , (‘4.5) 

not all the covariant derivatives were eliminated. Operators that involved the 

covariant derivatives in Eq.(32) :I c&n always be expressed in terms of the field 

strengths of the gluons (mod& total derivatives), by imposing the Bianchi iden- 

tity 

D,G,,~t D,,G,, +D,Gop = 0 , (A.6) 

and 

D2CeJ = 2ig[GAa,G’pAl (.4.7) 

Therefore we only need to classify those operators constructed solely out of the 

gluon field strengths. There are only three types of Lorentz invariant CP odd 

purely gluonic operators of dimension 8 one can write down: 

;I”b’” _ gt;;,(;b’“G’;,G”“” 

plb’” = pc4(y p G’ L’d 
Ap ‘.A” pu p&t 1 (~43) 

(,,“b’” _ C” (p”G” 
PU 4 

GdP, 

Note that the Lorentz indices are factorized in .Aubcd but not in Bdb’” and C’“b’“. 

These operators have the following permutation symmetry: 

(A.9) 

Using the identity e”-j7bt,A *” = ~- det(yP”), (p = ,ti,y,S; 0 = X,.,u), one can 
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derive a linear relation among the .aabcd and Cabcd, 

C’“b’d ~~ pwd = 2’ obcd “4 (A.10) 

Then, with the help of Eqs. (A.9) and (A.lO), we reorder indices in C several 

times to obtain 

p’” .- C’b”‘” = ; [.4od*c - Abd-1 (A.ll) 

Adding Eqs.(A.lO) and (A.1 I), we derive 

p’d 2 ; [;i”“*’ _ ;jbduc ~+ ;l&d, (A.12) 

Note that Eq.(A.2) implies 

p”cd ~~. ,-/,&de _ c&d - (A.13) 

Eqs.(A.12,13) imply both D and C’ .. can be expressed in terms of 3 type operators 

which we shall use to define our independent sets of operators. General SU( IV) 

invariant operators are constructed by contracting ;I”*‘” and B”*‘” with the 

following invariant tensors 

6u6bd, huchbd, d.bezde, pedbde (A.l-l) 

Contractions with other SI’( N) invariant tensors can be shown to be redundant 

due to the relation liktt 

frnb’fCd’ = ;(~~oc~bd ~ ~ad~bc) + (&m@de ~ dad<&<) , (A.15) 

etc. Also contraction with the mixed invariant tensors, like fabrdcde etc, gives 

null results. Thus, one obtains the following set of gauge invariant operators by 
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contracting the invariant tensors (Eq.(A.14)) with ilYbed: 

0 
1 

= & L”‘“‘Gb Gb”” 
PU d 

& = & 
PO 

Gb’“G” 
4 

pw3 

& = d”b’G;:.Gb~udcdeG~iiGdap , 
(A.16) 

& _ d”b’G”,,G~,d’d’G”‘“Gd”” 

Thus for SO(N) there are at most four independent dimension 8 CP odd purely 

gluonic operators. To express the result of the threshold calculation Eq.(23) 

in terms of these four operators, some identities involving L? type or C type 

operators may also be useM. For example, contracting both sides of Eq.(A.13) 

with h”‘6bd and d”“dbd’ and using Eq.(A.12), we deduce 

& = t’-~G” XpGb,,G;eG$ = ; [d, - dl] , 

6, = e’““Bd”b’G~,G~,dcdeG~~G~~ = ; p, - i).,] 

(A.17) 

Similarly, contracting Eq.(A.12) with fobefcde and using Eq.(A.15), we also de- 

duce 

j = fabefcde~or,G’“‘G~,GdPu , 

= -%fubefcdeil~“~C:bvoG~aG!d?ir = i(d, -&+(& -0,) 
(A.18) 

For SI:(3), we have one further constraint arise from the so-called Cayley- 

Burgoyne’s identity 1261, 

~a.ascd f psbd + hadhbc = 3 [dubedcd. + dacedbde + dadedbce] (A.19) 

The identity can be proved by using the characteristic equation .43 ~ (trA4*)4 ~ 

det A = 0 for any traceless 3 x 3 matrix. This matrix identity implies the trace 

identity tr .A4 = (tr .4’)*. The traceless matrix can be expanded as rl = s XV’“. 



Eq.(A.lS) then follows by expanding both sides of the trace identity in X’s with 

complete symmetrization. Contracting Eq.(A.lS) with Aabcd one deduces 

6, = ;cJ + g, - ;o, (‘420) 

Thus for SU(3), .i = to, ~ & + i6)3. Since dQbc = 0 for SU(2), only 6, and 

6, exist. Finally for U(l), only Og,p survives. This completes the proof. 

By using the above formulas and dropping total derivatives, the following 

trace identities are deduced for SC{(N): 

I. Purely gluonic: 

g%r y5(u G)2 = ‘Ii08 ) 

g’tr ys(o. G)DZu. G = g3 tr ys(a. G)3 = -24iOs , 

tr y~Gp~Gpy(e~ G)’ = i[$,+&] , 

tr ysG,,(u C)Gp”u. G = i ;d, + 6, - 21i 
1 I 

, 

tr T~(D’u. G)D’n G = 8324 , 

tr y,[Gp.,(Dp’o. G)]D”u G = 2gi , 

tr ys(D,D,u G)D”PCr. G = 10ig2.4 , 

tr ys(D,D,,u G)D”D”n G = 12ig’A , 

tr ys(u. G)*D’u G = -2tr y5a. G(D,o G)D’u G = 8iga-i , 

I 
(i4.21) 



II. Mixed photon-glum: 

eqg’tr y,G,,G’“u Gu F = 6iC& , 

eq& yd’,,,Gp”(u. G)* = 6iO,;, , 

q&r ys(u G)30 F = 12i [o8,4 + Oe,5] , 

q&r ysu. Fu Ga Fu. G = -16; [Oa,6 + 08,, - 4f&] , 

e&‘tr YSF~~G”“U Fu. G = 8iOa,s 
(A.22 

, 

e$g’tr y5 Fpu F’“( (T C)’ = 8iOa 7 , 

e;g’tr ysG,,Gpu(c~ F)’ = 8iOs B , 

e&h -rs(c F)‘(r G)’ = 16; [O8,8 + 08,1] 

III. Purely photonic: 

e;tr ysF,,F”(o. F)* = 96iO,,, , 

ebtr ys(u. F)4 = 384iOsso 
(A.23) 

Using EqsJA.21LA.23) with N = 3, one can readily obtain Eqs.(36) and (37) 

from Eqs.(32) and (33). 
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Figure Captions 

Fig.1 Feynman diagrams due to the CP violating interactions of the heavy par- 

ticles which contribute to the dimension 8 gluonic operators. 

Fig.2 Feynman diagrams for the dimension 8 gluonic operators due to the ef- 

fective heavy quark vertices which arise from shrinking the short distance 

interactions. 
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