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ABSTRACT

We derive a CP odd effective field theory involving the field strengths of
the gluon and the photon and their duals as a result of integrating out a heavy
quark which carries both the chromo-electric dipole moment and electric dipole
moment. The coefficients of the induced gluonic, photonic, and mixed gluon—
photon operators with dimension <. 8 are determined. Implications of some of

these operators on the neutron electric dipole moment are also discussed.
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1. Introduction

[t is commonly believed that a nonvanishing neutron electric dipole moment
(NEDM), if observed at the present level of experimental semsitivity ~ 1072¢
e~cm, would be an indication of some new physics of CP violation beyond the
Standard Kobayashi-Maskawa Model. Present experimental bounds are in fact
expected to improve by vne or two orders of magnitude in the near future. On
the theoretical side, a new mechanism of generating NEDM through a purely glu-
onic process envisaged by Weinberg (1] has stimulated many subsequent studies.
The mechanism involves the following dimension 6 purely gluonic CP violating

operator,

1 -
O = —3g* [HeComrch G, (1)

which has been identified as the chromo-electric dipole moment (CEDM) of the
gluon itself {2]. In (1), G, is the gluon field strength, G_’fw = Le,,aaG" is
its dual with ¢"'** = 1+1; g and f°* are the gauge coupling and the totally
antisymrmetric structure tensor of SU(3) respectively. Up to total derivatives,

(s is the unique purely gluonic, gauge invariant, CP violating operator with

dimension = 6. (As is well known, the dimension 4 topological term
Oy — yz(?iu(’r'“"“’ ) (2)

which is a total derivative, can provide an enormous contribution to the NEDM
due to the nonperturbative QCD effect. One popular solution to this so-cailed
strong CP problem is the Peccei-Quinn mechanism [3]. Whether this same mech-
anism designed to eliminate the effect of (05 can suppress the impact of Qg as

well has been debated in the literature [4]. We will not address these issues here.)

Besides Og, Weinberg also pointed out {1,5] that certain dimension 8 purely
gluonic operators can also induce a NEDM. Such operators, together with Oy

was investigated by Morozov [6] some time ago. He observed that there are three



independent dimension 8 CP odd purely gluonic operators

l 4 1 fU L gy rha
()8‘1 = —g;G ¥ u C'Q,B T 'd 3

12 ne
1 -

0812 — ﬁgq(;il,cbyycgg(}b(‘ﬁ , (3)
1 : recd Fra prbupr e rd o

03_3 — Eg-idabgd d(r'uu(rbp Ga‘j(’d 3 ,

where d°% is the totally symmetric tensor of SU(3) and calculated their anoma-
lous dimensions. In renormalizable gauge theories, these operators are in general
induced by two-loop diagrams when all the heavy particles in the intermediate
states are integrated out. In many models of CP violation (for example, su-
persymmetric model, charged Higgs exchange model, and left-right symmetric
model, which we shall summarily call charged models), there are two different
mass scales in the intermediate states. Then the process of integrating out the
heavy particles should be done in two steps. In the first step, the CP violating
particles with masses of A/1y or higher are integrated out. Typically the CEDM of
a relatively lighter quark (say, the bottom quark) is then induced at the one-loop
level. After this operator is evolved from Ay down to the quark mass threshold,
the vperator Og 1s induced at the one-loop level when the quark with CEDM is
in turn eliminated from the effective field theory [7,8,9,10]. On several vccasions
11}, we have brielly discussed the potential importance of the dimension 8 oper-
ators. However, the coefficients of the dimension 8 operators that are induced in
specific models have never been calculated in the literature except for the simple
case of the une-particle-reducible two-loop diagrams [5,12,13] in neutral Higgs

model. This work is to fill this gap for the charged models.

In all previous works, the coeflicient of Qg3 was obtained by standard Feyn-
man diagram calculations using ordinary momentum space perturbation theory
or background field method [7,8,9,10,14,15]. These approaches become quite
unwieldy for operators of higher dimensions because of (i) the proliferation of

indices of all sorts and (:/) the large number of gauge variant operators that can



be generated in the intermediate steps. Background field methods based on flat
connections can simplify the second problem (for example, one can look at the
eight-point functions in the two-loop diagrams for the dimension 8 operators)
but not the first one. These complications exist even in the one-loop calculation
corresponding to the elimination of a heavy quark with CEDM. In this paper,
we present a systematic and tractable way (based on a functional approach and
covariant derivative expansion) to generate all such CP odd purely gluonic or
photonic or mixed gluon-photon operators of higher dimensions as a result of
integrating out a heavy quark that carries not only a CEDM but also an electric

dipole moment (EDM).

One generally expects the coeflicients of the dimension 8 purely gluonic op-
erators to be suppressed by powers of the inverse heavy masses relative to the
Q. However in the case of the charged models this is the b quark mass and the
suppression is not too severe. In addition, unlike (05 which is suppressed by the
QCD renormalization effect at low energy [6,7|, one combination of the dimen-
sion 8 operators (mostly O ;) has a positive and sizable anomalous dimension
6!. Therefore its effect can be significantly enhanced by the QCD effects al the
hadronic scale. The effect of the operators with dimension higher than 8 are
expected to be small unless their anomalous dimensions are not only positive
but also surprisingly large in value. Nevertheless, the coefficients of operators of

higher dimensions can be obtained easily by our method.

It is worthwhile to mention that the chromo-electric dipovle moment effect
that we calculate in this work is not the only contribution at the same level
in perturbative expansion. In the charged liggs model for example, from the
viewpoint of two loop diagrams, this analysis will correspond to only the QCD
improved version of Fig.1 (a). There are also diagrams like that in Fig.1(b,c). If
one integrates out the ¢ quark first in these contributions, operators of dimension
7 of the forms QQG G and Qs QG (/. or of dimension 9 of the forms QQG GG and
QvsQG GG will be induced. And they in turn give rise to operators of dimension 8

helow the b quark threshold as in Fig.2. However, at the { quark threshold, these



operators of higher dimensions receive large suppression by powers of inverse
"t quark mass. Their eventual contributions are expected to be negligible even
though some of the dimension 7 operators do receive mild QCUD renormalization

enhancement according to Morozov [6].

The induction of CEDM or EDM of lighter quarks (such as & quark) at the
threshoid of heavy CP violating particles in different charged models has been
worked out before [8]. To be more model independent here, we shall simply
parametrize these vertices in an effective Lagrangian and calculate their effects
at the hadronic scale. In the following two sections the heavy quarks will stand
for quarks. such as b and ¢, that is lighter than A and heavier than hadronic

scale.

In section 2, we first show the effective action, induced by integrating out a
heavy quark with both CEDM and EDM, is given by the functional determinant
of a generaiized Dirac operator. We then evaluate the functional determinant
to first order in CEDM using the method by Novikov, Shifman, Vainshtein, and
Zakharov (NSVZ) (16! who had generalized Schwinger’s operator method [17] to
the case of nonabelian gauge theory. The attractive feature of this approach is
that one deals with the field strength and its covariant derivative directly and
thus gauge invariance is manifest throughout the calculation. The approach is
essentially a covariant derivative cxpansion of the external gauge fields. This
method has been used to determine the coefficients of the purely gluonic CP
even operators up to dimension 8 [16], to derive low-energy effective Lagrangians
involving anomaly-induced vertices, Coldstone—-Wilczek currents, and Skyrme
terms 18], etc. In the NSVZ approach, operators involved the covariant deriva-
tives are converted into operators involved only the gauge covariant field strength
through some nested multi-commutators relations which are not so easy to de-
rive. Therefore the calculation is very tedious to séy the least. Such tedious steps
can be hypassed by performing a bi-unitary transformations to the functionai
trace, invented and improved by a number of authors [19,20,21]. Through these

transformations, the covariant derivative operator is converted into a auxiliary



c-number momentum at the very beginning. The functional determinant which
originally was an expansion of complicated commutators of covariant derivative
operators is now expressed as an expansion in the auxiliary momentum and field
strengths. One can then take the average of the auxiliary momentum in or-
der to produce the ordinary series expansion of effective action. This approach
has also been widely applied to many situations [21] including the calculation
of the 3 functions of QED and QCD, and the derivation of the effective action
for the Standard Model with a very heavy Higgs, etc. We also show that the
later approach reproduces easily the results previously obtained by the method

of NSV7Z.

In section 3, we include electromagnetism and allow the heavy quark to carry
EDM as well as CEDM. A complete local Lagrangian with operators of dimension
< 8 is given. Besides the two operators with one-photon and three-gluon fields
discussed by de Rujula ef ol 22}, we also generate the CP violating four-photon
operator and three operators with two-gluon and two-photon fields for complete-
ness. We discuss briefly the phenomenology in section 4. The phenomenological
consequence of this effective field theory related to the NEDM has been given in
a recent letter [23]. Here we shall emphasize the analytical aspects. A bank of
formulas and identities which are indispensable for deriving our final results are

relegated to the Appendix.

2. Covariant Derivative Expansion

Suppose the CEDM (') and the EDM (") of a heavy quark @ with mass Af
and electric charge e was induced at a large mass scale A > Af when the particles
with mass greater than A were eliminated from the spectrum of the low energy
effective theory. (It is not necessary here to specify the physical origin of CP
violalions associated with these heavy particles.) At the renormalization point

g = A, the effective Lagrangian can be parametnzed, up to terms of dimension



five, as
1 1 ¢ ' . X
L= ST G Gr =g B P QP '—.-U—%gf.-"ysa'-Gf%t‘QC' 450 F)Q . (4)

Here (7, = G4, T with T the generators in fundamental representation of a
simple Lie algebra associated with color, F,, is the electromagnetic field strength;
-G =0,G"ando-F =0, F* withe,, = %[7#,71,]; and P = ~,P* where
P, =0, + A, with A, = gAiT“ + ¢oB,, the gauge connections including
the color group and electromagnetism. Here we have assumed that the terms
of higher dimensions are negligible. This assumption is certainly valid in most
of the charged models (except maybe the supersymmetric models). As long as
no other particle masses lie between A and M, one can evolve the above theory
from A to A via the standard renormalization group machinery. However, when
it evolves below A, we must change the effective theory to a new one with
the heavy quark Q removed from the particle spectrum [24]. The new effective
theory thus obtained involves an infinite tower of non-renormalizable operators

constructed out of the field strengths and their covariant derivatives but with

coeflicients suppressed by inverse power of the heavy quark mass M.

To evaluate this, first consider the path integral representation of the vacuum
to vacuum transition amplitude {010}, = [DA*DBDQDQ exp i [d'rL.
Since the Lagrangian (4) is quadratic in @ and @, we can integrate out the

heavy quark and obtain

out {0{0)in = /'DA”'DB exp tSolol
~ [ DADB exp il 500l 471 + Sl B])

« Det (P — A - é—g(."‘,r:—,a’ G %eQC"}sa FY,
Ser|A] = Sqeu| A% + 54eal Bl + AS[A]

ASIA| = —iTeln(P - M — SyCrso - G - %eq(-"‘ysa- Y.

The effective action, AS|.Al, involves the generalized Dirac operator and 1s non-

=1



local. It corresponds to the sum of all one-loop diagrams with arbitrary numbers
of external gluon attached to the heavy quark leop. Since we are only interested

tn the induced operators in AS to first order in ¢' and €', it can be written as

ASIA] = —iTr [In (P - M)
t+1n (l-—(P -Ary*(égcqsa.c:+-%chqua.Fu)} ,

= —{Tr {In(P - M) (6)

_%(;D S AN (gCqs0 - G egClyso - ) + J

The expansion in {6) is valid as long as |G|? and |F|* < M?. The first term of
AS is CP even and has been studied before i16|. We will concentrate on the

second term which is CP odd. To the first order in (' and (",

, 1 .
ASep = #—2-Tr (P - M)y "(gUys0 -G +egC'ys0 - F)| |
Iw 2 2 1 -1 " 1 v (7)
:—?Tr (PT - M7+ 50-G) (gCs0 - G+ eqys0 - FY|

where we have defined o -G = go (¢ + ego - I

For brevity, we present the details of following calculation without electro-
magnetism for the rest of this section. Incorporating this additional effect is
straightforward and will be given in the next section. Setting ("' =0 and ¢ =0

in (7) and expanding the chromo-magnetic moment in the denominator, we de-

duce
[y 1
ASeqp = —g—_;—"l‘r [75(}:’2 — M2 +§ga-(£)‘la-(;} \
gC' Al g g g3 (8)
= Ip I p I i
5 { 572 47‘).! 8'P4+O(g)} .

with Py, P4, and P, defined by

Py = Tr [1:A(P)o - GA(PYo - G, (9)



Py = Tr [vsA(P)r - GA(PYo - GA(P)e - G}, (10)
and
Py =Tr [v:A(P)o - GA(P)o -GN P)o - GA(P)or - G] . (11)

Here A(P) = (P? — AM?)'. The O(g¢*) term in (8) is necessarily of dimension
10 or higher and will be ignored here.

To evaluate P 3 4, we treat the gauge field as an external background field
and apply Schwinger’s operator method [17|. The main obstacle to evaluating the
functional traces in {9)—(11} is that for a general position dependent background
field ¢/, P and ¢ do not commute. The trace is not diagonal in either position
space or momentum space. Methods to circumvent this difficulty were developed
in Refs. [16] and [18|. The essential ingredient of the method is to put all the
propagators A(P) in Py ;4 to the leftmost position inside the functional trace.

The algebra is performed by repeatedly using the following identities:
XA(P) = A(PYX + AYP)[P2 X| + AXP)[P?,P? X||
HAUPYPE PP X e
A(PIX = XA(P) - [PLXIAYP) + PP, X1AYP)
JAY P+,

{12)

_[P2,[P2,[PY, X

where X is any operator. Using these rules, one can obtain the expressions for
P33,4 that involve all the propagator A(F) moved to the leftmost positiocn and
a string of multi-commutators at the rightmost position inside the functional
trace. P, is in fact casy to handle. Since Py already has four field strengths in
the numerator, to obtain the dimension 8 operators one can ignore the noncom-
mutative algebra and set the gauge connection to zero in all the propagators.

The functional trace can then be easily evaluated by going to momentum space.

Thus,

Py =Tr [vsA%(p)o -CG)] +O(C°)

: v [dale-G) - 06 (%)

Il

———t
tenzeari'"



where ‘4r' denotes the trace over the color gauge group and the Lorentz space.

For P 5, we get

Py = Tr [1:2%P)eo-G)*] — Tr {125 P) (o G + A(P) P0G
+ AXP)P?IP? o G|+ AY(P)PY[PE[PY o -Gl +--+) [P0 - G}

1

(14)
Py =Tr [v:A%(P)(o - G)°!
+Tr {ysAYPY ([P o - (o -G) — (0-G)* P o -C))}
= Tr {ysA°(P) ([P?. (0~ G)*|[P?,0-C
+ P2 oGP (o - ()] + (P o -Glo-GIPLa -G} +-- .
(15)
By using the Heisenberg equation of motion,
{pﬁn(-’,nd] = ":D,u(;a.d ) (16)
one can easily evaluate all the multi -commutators,
PPo. (= -D*-G+2iD,0-GP" | (17)
[P, (PP oG =D -G - %D, D* - GP* + 4gD,0 - GG** P,
(18)
—2iD*D,o-GD* -4D,D,a-GP,P,
(P2, [P (P o- -Gl = -8iD, D, Do -GD,D, D, + - , (19)

cte. D, is the covariant derivative acting on the field strength with the following
rule of operations: For a matrix-valued function M = M*T*, D, M is defined
to be J M —-ig|d,, M| and [D,, D |M = —ig4(G,,, M]|. In the above equations,

those terms that give rise to dimension 10 operaiors or higher have been ignored.

10



[t is interesting to note that the dimension 4 topological termn Oy is also

induced by P,

Py = Tr [ysA%(p)(o - G)?] + O(G°) . (20)

This term is in fact logarithmic ultraviolet divergent. Introducing a momentum

cut off Ay, we get

!

= 1672

P, In A, + finite) trvs [ d*z(o - G)? + O(G*) . (21
g

This divergent term comes with no surprises since the induced operator has a
lower dimension than the quark CEDM operator in (4). Thus, this term does not
belong to the threshold effects. Instead, it should be interpreted as the operator
mixing between the quark CEDM and the topological term due to the QCD

renormalization group evolution. The divergent coefficient in {21) implies that

the anomalous dimension is vy = —2M, which agrees with Morozov’s result [6].

In the following, we will simply sketch the calculation of the other termns in
P> and Py which are somewhat lengthy. After applying the commutator relations
(16)-(19) to P, 3, one can choose the position space representation to evaluate the
functional trace since the vperators involving the field strength and its covariant
derivative are diagonal in this representation. One obtains at this stage the

following generic expression
[t BN B PG (22)

where F#*7[(#] 1s only a function of the field strength and its covariant
derivative. The final thing one has to know is the diagonal matrix element
~ z|A™(PYP, P, - PJe . For the operators with dimension < 8 considered
in this work, one can set the gauge connection to zero in these matrix elements,

which can then be easily evaluated by going to momentum space. The algebra is

11



tedious but straightforward. The answer is given by

J ' A
AScp = 3217r2gCtr ¥s / d*e {g___ {ln A}, + finite) (o - G)?

1 4 r 2 g2 3
+-m|: 30"(!D0' G+ 2(0‘ G)

. _ _
+ [9 (51),10‘,5 .GD*D*e - G —ng,wG,,u(a-G)z)

2401
2ypte Gle-0) 4 Lo'e- G)ﬂ |

(23)
So far, the gauge group has not been specified. The two operators of dimension
6 in Eq.(23) come from £, and P, in Eqgs.(9-10). They are actually related to
each other through Eq.(A.21) in the Appendix, as a consequence of the Bianchi
identity. We do not include those dimension 8 operators which vanish when the
equation of motion for the sourceless external gauge field D, G*? = 0 is imposed.

We have dropped all the total derivatives except the topological term in order to

obtain the desired form of (23).

It 1s clear that the NSVZ approach is a covariant derivative expansion and
one might wonder if there exists a more efficient way to perform the calcula-
tion. Indeed, a more elegant formalism of covariant derivative expansion has
been advocated in the literature [19,21,20]. We now illustrate how such this
technique can simplify our calculation. The first step is to make two consecutive

B

unitary transformations § = eZe* to the functional trace, wheré 1 = —ip,u#

and B = (D, Jd/0p, with p, an auxiliary Fourier momentum parameter. The

transformation e*

is a simple Fourier transform to momentum space. The sec-
ond one e? is to shift the momentum by the covariant derivative. The next step
is Lo take the average over the auxiliary momenturn parameter p,. Take the trace

in (8) for illustration, we have

. 1
Tr |ys(P? - M? 1—590-(;)”0’-(;

12



1 d*p . 1 _ .
= {227 P _ A4 —go-G) oG ‘} :
s r{g[%( b igr-G)o ]g

(24)

where V denotes the volume of momentum space. Since the trace is invariant

under the unitary transformation, all the p-integral does is to average all values

of p. Furthermore, p, commutes with everything except J/8p,, we thus have

9 .
4, Pil = =pus [B.Pu) = =[Di, Dyl [Bop,] =D,

Using (25), one can show |21|

, 1
TI' {"Is(Pz - 1112 -+ §ga' . (:)710' . (r‘

1 d*p , d ., , 1 ')—1
= — | ——Tr | — ) — A ~go- (G + &
% f (21r)4Tr [ s ((py + Gwapu) I + 2go‘ (G + 86G)

:%/((2134 T 2 (”2 M ’G'*‘}ai G""G*uﬁp?;!’»
where
G = 3L, 10,100, 0, i
and

(25)

(28)

From (28), we note that 4/ contains at least one ordinary derivative. We thus

dropped the term 6G in the numerator in the last line of (26) since it gives

zero when acting on unity at its right. Eq.(26) is a compact formula for the

13



functional trace which has ‘integrated’ all the tedious non-commutative algebra
encountered step by step in the NSVZ approach. To obtain local operators, one
simply expands the field strength and its covariant derivatives in the denominator
in Eq.(26). Note that the ordinary momentum derivative still acts nontrivially
on the free propagator. After all the derivatives are evaluated, one is left with the
trivial momentum integral. Using this compact expression, one can reproduce the
effective action (23) directly. Alternatively, one expands the chromo-magnetic
moment first, and then applies the unitary transformation technique {o the func-
tional traces of Py 34 given in (9), (10), and (11). We have checked that all three

approaches give the same result.

3. Incorporation Of Electromagnetism And The Effective Action

It is straightforward to extend previous calculation to include the electromag-
netic effect when ' # 0. First of all, it is impossible to write down any gauge
invariant dimension 6 purely photonic or mixed gluon-photon operators. Sec-
ondly, dimension 8 operators involving the photon and gluon field strengths and
two or four derivatives can be eliminated by the equations of motion 9*F,, =0
and 9?F,, = 0. Therefore the additional dimension 4 and 8 operators must be
all constructed out of field strengths ¢, and F,,. The complete effective action

can be obtained from {23) by the following substitutions

¢ Clo-G)" — gC(o-G)' ot egC(o-G)" o (n=23,4) (29)
and

9'CG LG (o -G — gCG,.G" v - Go -G +egC'GG" 0 -Ga - F . (30)
Thus the complete CP odd effective action is given by

AScp = ASc +ASe (31)

14



where

1 ’ M
ASe = wﬁg(}tr—ys / d'e {% (In A}, + finite) (o - G)?

1 1 A ¥ 1 T ¥
EYYYE [g (EDHDUO' -GD"D*s -G - ¢*G .G (o 6)2)

3 1
- igzDza LGla -G+ ;)—gz(cr -G)!

1
+ ;gzeQ (3(c-GYo-F-2G, G0 -Go - F
~4F,,G*(a - G)?)
L

1‘——9—9832 (¢-Fo-Go-Fo- -0 +2a- F)*o-G)?
2R, F* (g -GV —4F, G0 - Fo - G)|}

(32)
and
: : eoM . |
ASer = 3272 eql’ tr'ys/d‘*x{ ‘92 (ln f\%rv + finite) (J_F)z
1 l 9 vy 3 P . .
* 24M12 [59 ((0‘(,-) a- F— 2(11“,(1 g Fo (I)

1 33
+§g28Q(J-FU-GJ-FO’-G+2(O‘-F)2(0’-G)2 (33)

—26G,, G (0 - F)? — 4F,,G* 0 - Fo - ()

+5e% (0 F) < 2F, e )] |

Equations (31}, {32), and (33) are the main results of this work. The results
are valid for any color gauge group where the heavy quark Q transforms in any
representation. Besides the purely gluonic operators, there are also operators
involving the covariant denvatives in (32). For instance, besides the Weinberg
operator tr ¥;5(c - 7)?, we also induce tr y50 - GD?s - G. However we show in the
Appendix that, up to total derivatives, all the latter operators can be expressed

solely in terms of the field strength. To apply this to the NEDM we have to

15



fix the color gauge group to be SU(3). In the Appendix, we also show that for
SU(3) all the operators in {32) and (33) can be expressed in terms of the chosen
bhasis of I‘:'M,F"“‘, Qg, O, Os.({ = 1,2,3), and the following set of dimension 8
operators
1 7 QU rooe
08‘4 = gngsdachFUG H Gg’dG s y
l abc .-Ll T voe o
03‘5 = gquad b GFpr"J GGEF s )
1 .
Ose = —eng2FMF“”G:‘ﬂG“°‘3 ,

T (31)
Os1 = —epg Gl G Py 1P

[a—

2
1 . - ,
Oss = 5e09" Fun (" FupGee”
L ” v a
Os g = ﬁengwF“ FogFeP

Therefore, after integrating out the excitation of the heavy quark @ with mass

M, we have the following effective action for the NEDM,

ngEDM = Sqcp + SqEn T Siight quarks T 25¢ + ASor (35}
with
e C \ 1 1 (1 1 1
380 = g [ g0 g (0n 100 10us -
1 1 1 (36)
+ goa.s + F)OB,G + ‘3‘08.8)] )
and
, o L[t 1 .
ASer = “TenZ Al d [goe‘s + '6'08,7 + '3‘08,8 + 303‘9] - (37)

Note that we have not included the terms GG and FF in (36) and (37). There
is no topological effect from the £ F contribution of the {/{1). The effect of GG

term has been discussed in Ref.[25|. Besides the kinetic terms, Slight quarks 11

liq.(35) contains the EDMs and CEDMs of the light quarks as well.

16



4. Conclusions

Using the functional approach together with the covariant derivative expan-
sion, we have deduced an effective action for the neutron electric dipole moment
that are related to the electric dipole moment and chromo-electric dipole moment
of a heavy quark. Local operators of dimension < 8 and their Wilson coeflicients
are worked out explicitly. The coeflicients for the Weinberg’s three-gluon opera-
tor and the one-photon three-gluon operators agree with previous works [7,8,22].
The coeflicients for the other dimension 8 operators are new. This effective action
is the starting point for the hadronic matnx element calculation. Implication of
the dimension 8 purely gluonic operators to the neutron moment has been dis-
cussed in a recent letter (23], in which we showed that at the hadronic scale, due
to the QCD renormalization effects, these operators of higher dimensions may
dominant over the dimension 6 three-gluon operator. Thus, the dimension 8
purely gluonic operators listed in 12q.(3) may provide either a dominant mecha-
nism generating an observable neutron moment or a stringent constraint on the

underlying dynamics of CP violation beyond the Standard Model.

[n the following, we summarize the phenomenological results [23]. T'he oper-
ators Oy 4 and Oy 5 may not give an important contribution to NEDM because
of the heavy mass suppression and the absence of QCD enhancement [22]. The
effects in NEDM from other operators in Eq.(34) are of higher orders in a,,,
and thus negligible. However, they could have observable effects in systems with
strong electromagnetic field, such as the large—Z nucleus. Now we concentrate

our attention to the effective Lagrangian of the form:

3

Leg(pe) = -+ 4 Co{p)O6(e) + Z(*'u,i(ﬂ)oa@(#) : {38)

i=1

where (‘g ,(my) and Cg(rn,) are related to 'y, the CEDM of the & quark, via
Eq.(36). The coefficient (', = C'4(m;) depends on details of the models of CP

viclation. The scale y dependence follows the standard renormalization group

17



equation. The size of the NEDM can be estimated using the naive dimensional
analysis [27} accompanied with the unknown nonperturbative correction factors

£s, &5, which are naively of order about one,

Dn(06) ~ (eMy/4m)g* (1)Celpt)€s

Dn(0n) ~ (eM{/167%)g" (1)Cs (1)Ess - (39)

Here M, = 4rF, =~ 1.19 GeV is the chiral symmetry breaking scale. The strong
coupling is set at g{u) = 4r//6 as in Ref.[l]. With the QCD enhancement

mostly for the component : = 1, we obtain

Dn(0s)/Dn(O6) =~ 3.6881/&s (40)

The naive dimensional analysis is certainly not reliable because it is ambiguous
about normalization of the operators. One has to rely upon educated guess to
determine the normalization. Recently, Chemtob[13] used the QCD sum rule
method to provide a more systematic estimate of the hadronic matrix elements
of the operators Og, Og, and Os. In this scheme if one assumes the nucleon pole
dominance, the results are £ = 0.07, {51 = 0.08, which correspond to smaller
D compared to the dimensional estimates given above. However, their ratio
is still about 1. Therefore it is reasonable to conclude that the ratio oi matrix
elements can be more reliably estimated than the individual elements themselves.
So is the conclusion that the Qg operators give the dominant contribution to the
NEDM. Using the current experimental bound{11] 1072?° ¢ c¢m and the matrix

elements of Chemtob, one can put a constraint on the CEDM of the b quark, i.e.
Oy < 0.6 Gp‘mb/167T2 . (41)

If the chromo-electric dipole moment is given to the charm quark initially, the ra-
tio Dn(Oa)/ Dn(Os) will be even an order of magnitude larger hecause the quark
mass suppression factor is less severe. In conclusion, the induced Oy operators

can place strong constraint on parameters of the CP violation.

i8



APPENDIX

In this Appendix, we collect all the formulas that are essential for deriving
Eqs.{(36) and (37) from Eqs.(32) and (33). To this end, we first prove that, for
SU(N) with N > 4, there are only four independent dimension 8 CP odd purely
gluonic operators. For SU(3) and SU/(2) one can further reduce the number of
independent operators down to three and two respectively. These results were
stated in {6] without proof. We provide here an independent proof of these
nontrivial facts because the identities used in the proof may be useful for other

purposes as well.

We kick off with some well-known Dirac trace identities.

bC Y50 T0n = 426,005
tr V5T uoTagFrp = 4 [gyaﬁuﬂ)\p — Gud€raip — Juatpudrp + guﬁf,uu}.p] b
tr V5T T T xo0cq = 4 {(gz\fgprj - gkquf)fpua,d + (guuguﬁ - g,uﬁgua)flpgn

— (94agre€u3,m — (15 permutations of p « v, a0 — 3, A — p, € — )|}
(A.1)

Since there is no rank 5 totally antisymmetric tensor in 4 dimension, the ¢ tensor

in 4 dimension satisfies the identity

I\

CEFVQ'Bg o t_puaﬂg-\{+tvu;:])~gp{+Eaﬁ%ggp5+tﬁ,\yugofth_/\,uuag,df -0 . (‘42)

Let T be the generators of SU(N) in the fundamental representation. Some

useful SU(N) identities are:

b T = gt ,
2
1
ambmc + pabc abc
trTTTzE[Lf +d } ,
1 1
tr TquchTd - Ij_\r_éabécd G g {dabedcde N fabefcde b : (fabedcde }- dabefcu'e)]

(4.3)

Despite the fact that we have imposed on Eq.(32) the following sourceless
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equations of motion

H*F,, =0, 9*F, =0, (A.4)

and

DFG L = 0%Cpy —igld*, G =0, (4.5)

not all the covariant derivatives were eliminated. Operators that involved the
covariant derivatives in Eq.(32) can always be expressed in terms of the field
strengths of the gluons (modulo total derivatives), by imposing the Bianchi iden-
tity

DoGiy + DyCro+ DyGas =0 (4.6)

and

D3y = 2ig(G* s, Gayn - (A7)

Therefore we only need to classify those operators constructed solely out of the
gluon field strengihs. There are only three types of Lorentz invariant CP odd

urely gluonic operators of dimension 8 one can write down:
P YE p
abed __ Fiu thuv 1o sdad
A = (rMG GQﬁG ,

Bubcd = eﬂyQﬁGiniuG;aG‘:‘ﬂ K (AS)
tabed  _ Fra Bro e vd3p
¢ =G, GGG

Note that the Lorentz indices are factorized in 42%¢¢ but not in B4 and (254,

These operators have the following permutation symmetry:

abed _ bacd _  qabdc
qobed = gbacd _ 4 ,

Babcd = _ancd — _Babdc , (‘49)

(vubcd _ Cradcb

Using the identity ¢*#%¢ 4 = det(g??), (p = 3,7,8; ¢ = A, ,v), one can
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derive a linear relation among the 4°%¢ and €%,
1
Ciubcd + C1bacd — §.‘lab‘:d . (A.IO)

Then, with the help of Eqs. (A.9) and (A.10), we reorder indices in (' several

times to obtain

C-abcd a vaucd — {44‘“““ _ Abdac] . (A].].)

b —

Adding Egs.(A.10) and {A.11}, we derive

1
Cuubcd o {‘4udbc _ :’1bdac + ‘_1abcd] . (A]z)

&

Note that Eq.(A.2) implies
Bubcd . Cmbdc _ Cvabcd ) (A13)

Egs.(A.12,13) imply both B and (" can be expressed in terms of A type operators
which we shall use to define our independent sets of operators. General SIU(N)
invariant operators are constructed by contracting A%*¢ and B**¢ with the

following invariant tensors
511{‘)(‘11':11 6uc5bd, dubedcde, dacedbde . (‘4-14)

Contractions with other S{/(N) invariant tensors can be shown to be redundant

due to the relation liké

‘

fabefcde — (6'ac6bd o 6(1;!6!)«:) + (dacedbde _ dadﬁdbce) , (.4_15)

=] rs

etc. Also contraction with the mixed invariant tensors, like feb¢d<¢¢ etc, gives

null results. Thus, one obtains the following set of gauge invariant operators by
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contracting the invariant tensors (Eq.(A.14)) with A420%:

0, = G5,G G G0

Oy = G2, GGG

Os - dabeézuGbpudcdeG;ﬁGdQﬁ ’
04 = dabeG"zyGiﬁdcdchpquQﬂ

(A.16)

Thus for SUV{N) there are at most four independent dimension 8 CP odd purely
gluonic operators, To express the result of the threshold calculation Eq.(23)
in terms of these four operators, some identities involving B type or C type

operators may also be useful. For example, contracting both sides of Eq.(A.13)
with §2¢6%¢ and d°°*d*¥® and using Eq.(A.12), we deduce

- 1712 .

05 = e8G3, G4, Go,Ghs = 5 [01 - 0a]

_ o2 L (A.17)
Os = ¥R G5, G5, d** G5, Gy = 5 [Oa = O]

Similarly, contracting Eq.(A.12) with f2%¢ f¢¢ and using Eq.(A.15), we also de-

duce

;i — fabefcdeéincuyGl;‘JGdﬁu :
o pabe pede “ra pbragie vdiFp 2 A A = (‘418)
= 2 UGS, GG, G = — (01 - 0g) + (05 - 04)

For SU/(3), we have one further constraint arise from the so-called Cayley—

Burgoyne’s identity [26],
é'abécd + (Sac&bd + é‘adb'br: =3 [dubedcde + dacedbde + dadedbce} ) (Alg)

The identity can be proved by using the characteristic equation 4? — (tr 42)4 —
det A = 0 for any traceless 3 x 3 matrix. This matrix identity implies the trace

identity tr 4* = (tr 4?)?. The traceless matrx can be expanded as 4 = Y AeT*,
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Eq.(A.19) then follows by expanding both sides of the trace identity in A’s with

complete symmetrization. Contracting Fq.(A.19) with A2°* one deduces
0, - 20, . (4.20)

Thus for SU(3), A=10, 0, + %éa Since d** = 0 for SU(2), only 0, and

O, exist. Finally for U(1), only Os ¢ survives. This completes the proof.

1
2

By using the above formulas and dropping total derivatives, the following

trace identities are deduced for SU(N):

I. Purely gluonic:

gitrys(o - G)? = 4i0p
g2trvs(o - GYD?c - G = ¢* trv5(0 - G)* = ~24i0,

b

tr v5sG G (o - Q) =i [%Ol + 03} ;

N
tr ys(D?c - G)D?a - G = 8ig?d

tr 4G (o - G)G*o - G = i Fo‘l + 0, - m] :
tr 45[Gpu, (D*o - G)|D"o - G = 294
tr vs(D,D,o - G)D"D¥e - = 10ig?A |
trys(D, Do -GYD*D*o - = 12ig°A
trys(o - G)? D% -G = -2tcys0 - G(D,o - G)D o - ¢ = 8igd
tr ys(o - ) = 4 %O, + 05+ 24
(4.21)
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II. Mixed photon-gluon:

eQg’tr 1sG L. G o - Go - I = 61044
eqg’tr ys F,,G* (o -G} = 6i0y 5
egg’tr ys(o - G)lo - F = 12i[0g.4 + Oss]
e@’tryso - Fo-Ga - Fo (= ~16i[0g6 + Qg7 —404s]

2 .2 v ; . (4.22)

egg-tr V5 F, G" o Fo (G =805, ,

eégztr vs B, F*¥ {0 - G)? = 81047

e"égztr v5G L G o - F) = 8i0gs

eZngtr vs(o - F)} (o - G)?* = 16i[0g ¢ + Os 7]
II1. Purely photonic:
64 tr ’}‘5F UF’“J(G"F)z :961‘03‘9 N

“ g (A.23)

ei—;tr vs{o - F)* = 384i04 4

Using Eqs.(A.21-A.23) with N = 3, one can readily obtain Eqs.(36) and (37}
from Eqs.(32) and (33).
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Figure Captions

Fig.l1 Feynman diagrams due to the CP violating interactions of the heavy par-

ticles which contribute to the dimension B gluonic operators.

F19.2 Feynman diagrams for the dimension 8 gluonic operators due to the ef-
fective heavy quark vertices which arise from shrinking the short distance

interactions.
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