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Abstract 

The emergence of new levels of complexity that often accompanies the tran- 

sition f?om few- to many-body systems ia clearly illustrated by the progression 

of equilibrium states of N charges on the surface of a sphere as N increas- 

es. The characteristics of these electrostatic equilibrium states in the range 

2<N<65canbe examined in detail by equilibrating 1000 randomized initial 

configurations for every value of N. As N increases, the equilibrium. states 

undergo a succession of structural changes. For instance, a state with non- 

zero dipole moment appears at N = 11, an -tiomeric or mirror image state 

appears at N = 15, and a robust mete&able atate appears at N = 16. For 

values of N exceeding 50 , clusters of four or more m&a&able states with en- 

ergies within 0.01% of each other are the do minant pattern. In analogy with 

some other complex systems, these energetically similar states have strikingly 

dEerent asymmetric configurations. 
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J. J. Thomson’s plum pudding model of the atom is nearing its centenary, yet there 

still is lively interest in the equilibrium configuration of charges confined to spheres 

and disks. This is partly due to the recent discovery of the carbon fullerenes (Go, 

C,c, &.[I]), and also is related to the ‘magic’ stability numbers exhibited by atomic 

microclusters[2]. But the most persistent interest is concerned with the generation 

of ring structures and other complex asymmetric charge patterns by the spherically 

symmetric Coulomb field. Calkin et al.[3] cite 19 articles on this topic just in the 

period ‘85-‘86, and this list is not complete[4]. Thomson[S] and F6pp1[6] were the first 

to show that negative point charges embedded in a sphere of uniform positive charge 

density-the forerunner of the ‘j&urn’ model of solid-state physics-would tend to 

arrange themselves in sequences of rings. However, the uniqueness and completeness 

of these results is still uncertain. Rigorous results are available only for the simpler 

surface Coulomb problem of finding the static equilibrium configurations of N equal 

point charges constrained to move on the surface of a sphere while repelled by their 

mutual Coulomb interactions. In this case topological methods yield lower bounds 

for the number of (not necessarily stable) equilibrium states[‘l]. In addition, Leech[B] 

has shown that for the special values NL = 2 - 6,12, the equilibrium configurations 

remain invariant if the Coulomb law T-’ is replaced by the limiting form T-“,n -+ 

co. This ‘ultra-repulsive’ interaction is the basis of the Tammea problem of finding 

the arrangement of N points on the surface of a sphere with the larg& possible 

minimum distance between any pair[9, 10, 111. Since exact solutions for the Tammes 

problem are known for the set NF = 2 - 12,24; L eech’s theorem also yields optimum 

configurations for the surface Coulomb problem for the values N;% = 2 - 6,12 = NL. 

This equivalence of the Tammes and surface Coulomb problems for small values of 

N shows that in systems with few degrees of freedom symmetry principles alone 

may be sufficient to determine the equilibrium states. The emergence of new levels of 

complexity in larger systems then is illustrated by the divergence between the solution 

sets of these two problems as N increases. 
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Fast computers now make it feasible to investigate the equilibrium states of the 

surface Coulomb problem for particle numbers extending up to N = 65. Comparisons 

with prior studies[4, 121 show that the energies of the states must be known with a 

precision of at least ten significant figures to discriminate nearly degenerate states 

and compute meaningful dipole moments. Furthermore, since current numerical al- 

gorithms can only locate local minima, computer searches must involve high statistics 

to identify the met&able states. These criteria are satisfied by the following proce- 

dures: The set of N unit vectors {?i, 1 < i 5 N} completely specifies the position of 

N points on the surface of a unit sphere. The (dimensionless) Coulomb energy is: 

NN 

and therefore the Coulomb force acting on the jth point is 

N- - 

(i # j). 

It is also interesting to compute the energy associated with a single particle: 

N 1N 
EizjzZJT;lT;~; E(N)=izEi. 

(01) 

(02) 

(93) 

Starting from an initial distribution of points randomly distributed on the sphere, an 

equilibrium state may be found by allowing the points to move in the direction of 

the forces acting on them subject to the constraint of remaining on the surface of the 

sphere. The steepest descent method of iterating: < + r:’ = (6 + r?i)/]< + +yFi], 

with 7 chosen to maximize convergence, was used on this problem by Claxton[l3]. It 

turns out that if 7 -+ 00 the update formula becomes simply rr -t rQ’ = Fi/]$<], which 

is an over-relaxed update step with good convergence. If this step is so large that 

{c’} has a higher energy than (r;} then the 7 is automatically adjusted downward 

for that step until the energy does decrease. The iteration is terminated when the 

energies stabilize within the machine precision of one part in 2-‘*. It should be noted 
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that this calculation involves the cancellation of large forces so it is important to use 

at least 48-bit precision. Conjugate-gradient methods do not improve this technique 

because the energy surface is far from quadratic. 

A survey of the equilibrium configurations of the surface Coulomb problem is 

given in Table 1. The first column lists the number of charges N. The next column 

shows the average number of iterations required to reach an equilibrium state. The 

frequency of occurrence, or ‘capture basin,’ of each state is indicated in the third 

column. The asterisks mark enantiomeric states. The percentages in column 3 are 

based on a statistical sample of a thousand random starts for every value of N and 

therefore are presumably accurate to within 3%. Column 4 lists the dimensionless 

energy E(N) of each state. The ‘center of charge,’ or dipole moment d(N) = 1 Cc, 61 

of every configuration is given in column 5. Column 6 shows the minimum angular 

separation between pairs of points of the surface Coulomb states. A corresponding 

set of values for the Tammes problem, compiled by Professor T. Tarnai, is listed in 

column 7. 

It is apparent that the configurations become more complex as N increases. Specif- 

ically for N = 7 the surface Coulomb distribution is given by the vertices of a pen- 

tagonal dipyramid, while the Tammes solution corresponds to two triangles asym- 

metrically positioned about the equator with the remaining point at a pole. Since 

the Tammes configuration also has a dipole moment = 0.433762, this split of the so- 

lutions is due to dynamic symmetry breaking[l3, 141. The first non-vanishing dipole 

moment for a surface Coulomb state appears at N = 11. The symmetries of this 

configuration[l5], and more complicated examples, can be inferred from the set of 

partial energies (Ei in eq.(3)), th e angular separations cos-r(r< r>), and computer 

graphics. Enantiomeric states appear at N = 15 both in the Coulomb and Tammes 

problems[lO]. The first robust metastable Coulomb state occurs at N = 16. Since 

it is possible for the algorithm to converge to saddle points from certain rare initial 
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configurations, results are only reported for states found for more than one random 

start. Clusters of metastable states become more common as the number of charges 

increases beyond 50. In particular, the patterns for N = 56 and N = 60 show that in 

complex systems the ground state may have low statistical weight[l6]. It is also in- 

teresting that the ‘bucky ball’ (t runcated icosahedron) configuration associated with 

Cs, is not a solution of either the Tammes or surface Coulomb problems for N = 60, 

but rather is similar to the dual of the most common state for the Coulomb problem 

at N = 32. 

Finally we note that the simple empirical formula E(N) Y (N’/2) - 0.5510N3/’ 

provides a good fit for the energies listed in the Table. This expression can be inter- 

preted in two ways: (i) N’/2 is the energy of a uniform charge density on a sphere. 

In order to recover the energy of a distribution of point charges it is necessary to 

subtract the self-energies of a set of N uniformly charged disks, which can be shown 

to be proportional to Ns/‘. (ii) Alternatively, Na/2 can be identified with the average 

energy of a set of N charges randomly distributed over the surface of a sphere. In 

this case the 1V3/’ term represents the correlation energies of the surface Coulomb 

equilibrium states. 
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Table 1: Equilibrium configurations for the surface Coulomb problem 

N Average Frequency Coulomb Dipole Coulomb Tammes 

iterations (percent) energy moment angle (rad.) angle (rad.) 

2 1 100 0.50000000 0 3.141592 3.141592 

3 14 100 1.73205081 0 2.094395 2.094395 

1 4 /I 16 100 3.67423461 0 1.910633 1.910633 1 

5 78 100 6.47469149 0 1.570796 1.570796 

6 42 100 9.98528137 0 1.570796 1.570796 

7 2161 100 14.45297741 0 1.256637 1.359080 

8 183 100 19.67528786 0 1.251299 1.306527 

9 280 100 25.75998653 0 1.207589 1.230959 

10 440 100 32.71694946 0 1.134387 1.154480 

11 501 100 40.59645051 0.013220 1.021708 1.107149 

12 77 100 49.16525306 0 1.107149 1.107149 

I 13 II 1288 100 58.85323061 0.008820 0.913103 0.997223 I 

14 256 100 69.30636330 0 0.922687 0.971567 

15 437 100’ 80.67024411 0 0.859136 0.936506 

16 293 72.7’ 92.91165530 0 0.854098 

394 27.3 92.92035396 0 0.874880 

17 679 100 106.05040483 0 0.874550 

18 501 100 120.08446745 0 0.829632 

I 19 II 9123 100 135.08946756 0.000135 0.783822 0.832381 I 

20 II 662 100 150.88156833 0 0.804480 0.827827 I 

21 3957 100 167.64162240 0.001406 0.773536 0.796089 

22 547 96.9 185.28753615 0 0.755763 0.780863 

1377 3.1 185.30795160 0 0.746305 

23 440 100’ 203.93019066 0 0.723982 0.762883 
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N Average Frequency Coulomb Dipole Coulomb Tammes 

iterations (percent) energy moment angle (rad.) angle (rad.) 

I 24 11 445 100’ 223.34707405 0 0.734178 0.762548 1 

/~~GT 7515 100 243.81276030 0.001021 0.691333 0.726658 ( 

I 26 11 2283 100’ 265.13332632 0.001919 0.677923 0.716191 1 

1~27 [ 673 100 287.30261503 0 0.697089 0.709958 / 

28 529 100’ 310.49154236 0 0.660149 0.685449 

29 3144 100’ 334.63443992 0 0.635147 0.675571 

) 30 /I 2442 100’ 359.60394590 0 0.644763 0.673647 / 

31 387 100 385.53083806 0.003205 0.634831 0.658160 

32 239 97.5 412.26127465 0 0.652358 0.654066 

676 2.5 412.46839720 0 0.621525 

I 33 II 7829 100 440.20405745 0.004356 0.588174 0.633280 1 

I 34 (1 1582 100’ 468.90485328 0 0.580730 0.624829 I 

35 3796 80.6’ 498.56987249 0.000419 0.577711 0.616418 

5335 19.3 498.57345404 0.001266 0.581227 

36 19189 100. 529.12240842 0.000049 0.579500 0.614174 

37 1855 18.7 560.61888773 0 0.564307 0.598581 

3553 81.3’ 560.62797306 0.000925 0.558252 

38 636 44.2 593.03850357 0.000001 0.580086 0.597786 

1114 55.8 593.04894354 0.001687 0.563323 

39 472 66.7 626.38900902 0 0.559429 0.583334 

5202 28.8’ 626.44095841 0.000399 0.547982 

4040 4.5 626.44096635 0.000371 0.547924 

40 751 66.9 660.67527883 0 0.557045 0.578722 

7632 22.9’ 660.72530410 0.000004 0.551384 

745 10.2 660.74121431 0.001465 0.545251 
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Y Average Frequency Coulomb Dipole Coulomb Tammes 

iterations (percent) energy moment angle (rad.) angle (rad.) 

11 475 94.2 695.91674434 0 0.550264 0.571223 

1467 5.8’ 695.97869944 0 0.545295 

L2 481 97.3 732.07810754 0 0.545324 0.567343 

1748 1.5’ 732.15182672 0 0.540498 

4775 1.1’ 732.19816736 0.003638 0.529379 

L3 7192 100 769.19084646 0.000400 0.538723 0.557814 

14 3598 100 807.17426309 0.000060 0.545548 0.557814 

L5 6731 100’ 846.18840106 0 0.527214 0.544976 

46 711 11.7’ 886.16711364 0 0.519938 0.537244 

1367 45 886.17021602 0.001066 0.504669 

1835 26.7’ 886.17143242 0.001395 0.509081 

1524 16’ 886.17710517 0.001838 0.509578 

12308 0.6 886.25028042 0 0.500098 

*7 1473 54’ 927.05927068 0.002483 0.502432 0.537244 

4236 32.5’ 927.06226967 0.002536 0.487302 

12172 9 927.07222457 0.004684 0.505445 

2255 4.2’ 927.08823351 0.000803 0.505048 

2147 0.2. 927.14108835 0.001525 0.491380 

48 1158 100’ 968.71345534 0 0.518182 0.536912 

49 1118 100’ 1011.55718265 0.001529 0.495439 0.519287 

50 832 100 1055.18231473 0 0.501108 0.519287 

51 1489 98.5’ 1099.81929032 0 0.491578 0.511448 

1502 1.5 1099.94023114 0.002506 0.474308 
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N Average Frequency Coulomb Dipole Coulomb Tammes 

- 

52 

iterations (percent) energy moment angle (rad.) angle (rad.) 

954 56.8’ 1145.41896432 0.000457 0.482930 0.509055 

1118 27.1’ 1145.42198063 0 0.485412 

1342 9.9’ 1145.43570898 0.000720 0.484667 

4490 6.2* 1145.43759698 0.002189 0.480119 

53 7813 68.2 1191.92229042 0.000279 0.473629 0.499761 

1052 31.8’ 1191.93158471 0.000293 0.471423 

54 1825 80.4’ 1239.36147473 0.000138 0.471755 0.496935 

2125 3.9’ 1239.36525530 0 0.475519 

3861 8’ 1239.37119227 0.000371 0.474284 

1371 7.6’ 1239.37320071 0 0.478224 

55 1052 31.1’ 1287.77272078 0.000392 0.464521 0.493271 

1598 19.4’ 1287.77702746 0.000114 0.461470 

2337 15.8 1287.77726081 0.000118 0.470319 

2937 12.4’ 1287.78870934 0.000025 0.466465 

1488 20.1’ 1287.78905724 0.000191 0.464988 

2844 1.2’ 1287.80015929 0.000552 0.467767 

56 

57 

1896 10.3’ 

1951 48.7’ 

2789 40.9’ 

2499 89.9. 

2547 2.6 

3735 2.7’ 

1882 4.4. 

1286 0.4’ 

1337.09494528 0 0.465704 

1337.09534827 0.000174 0.464409 

1337.09872742 0.000275 0.465149 

1387.38322925 0 0.466045 

1387.42008235 0.000753 0.453765 

1387.43037248 0.000285 0.453468 

1387.43113006 0.000273 0.452877 

1387.47189278 0.000870 0.452564 

0.485048 

0.480759 
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N Average Frequency Coulomb Dipole Coulomb Tammes 

iterations (percent) energy moment angle (rad.) angle (rad.) 

58 1372 25.5’ 1438.61825064 0 0.456495 0.480759 

2611 18.9’ 1438.62550858 0.000058 0.455361 

2337 5.7’ 1438.62628995 0 0.454155 

2920 26.4’ 1438.62722515 0.000308 0.456654 

6352 5.19 1438.63370800 0.000002 0.454608 

1597 18.2’ 1438.63810500 0.000198 0.452373 

2470 0.2’ 1438.64735982 0.001029 0.453854 

59 1992 27.7’ 1490.77333528 0.000154 0.456757 0.474241 

2609 61.4’ 1490.77438608 0.000623 0.456849 

6143 3.3’ 1490.78475584 0.000245 0.457361 

1645 7.6’ 1490.79077309 0.000608 0.453876 

60 937 24.8’ 1543.83040098 0 0.453046 0.474241 

977 70.4’ 1543.83509960 0.000130 0.452967 

2026 3.6’ 1543.84153514 0.000177 0.452851 

1258 0.6 1543.86465762 0.000018 0.447471 

6581 0.5’ 1543.96947231 0 0.451689 

61 1953 63.6’ 1597.94183020 0.001092 0.443168 0.464456 

1132 10.4’ 1597.95155534 0.000648 0.442475 

8210 13.6’ 1597.95512785 0.001364 0.444070 

2825 9.7’ 1597.97036059 0.000634 0.445656 

3051 2.7’ 1597.98080362 0.001003 0.437863 
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N 

62 

- 

63 

Average Frequency Coulomb Dipole Coulomb Tammes 

iterations (percent) energy moment angle (rad.) angle (rad.) 

1223 27.4’ 1652.90940990 0 0.451689 0.461411 

3138 62’ 1652.92859368 0.001117 0.444936 

1538 10.6’ 1652.94201427 0.000513 0.446840 

2135 99.8’ 1708.87968150 0 0.440812 0.457888 

964 0.2 1709.00838502 0 0.434249 

64 

- 

65 

2444 

2323 

3001 

1107 

2021 

1644 

4579 

6515 

2269 

84’ 

3.8 

8.9’ 

1.2 

0.8’ 

1.3’ 

93.8’ 

1.6’ 

4.6’ 

1765.80257793 0 

1765.81619775 0 

1765.82032129 0.000254 

1765.87533511 0 

1765.89790410 0.000152 

1765.91167428 0 

1823.66796027 0.000400 

1823.69459614 0 

1823.71802820 0.001283 

0.434936 

0.435611 

0.430896 

0.434467 

0.427295 

0.439880 

0.428072 

0.434582 

0.423836 

0.457888 

0.454333 
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