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Abstract. If the inflationary epoch lasted only O(l0) e-foldings longer than required to 
solve the horizon problem, observable “remnants” of the pre-inflationary Universe may 
exist. They include dipole and quadrupole anisotropies of the cosmic microwave back- 

ground radiation (CMBR). These “remnants” arise due to pre-inflationary fluctuations in 
scalar fields such as the inflaton, the axion, and the ilion, or due to pre-inflationary den- 
sity perturbations. The dipole anisotropy can lead to the illusion of a “tilted Universe”: 

Viewed from the rest frame of the CMBR galaxies throughout the entire observable Uni- 

verse would have a uniform streaming velocity. A dipole CMBR anisotropy could provide 

a very unconventional explanation for the large peculiar velocities measured for galaxies 

in our 0(60h-‘Mpc) neighborhood. Among things very unlikely to be a “remnant” of 

inflation is a value of 0 today that is significantly different from unity. 
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I. Introduction 

Inflation is very appealing because it makes the present state of the Universe relatively 

insensitive to its initial state and provides a “blueprint” (baryon asymmetry. density per- 

t,urbations, total matter content) for the subsequent evolution of the Universe.’ Inflation 

accomplishes the former by “inflating” a small, smooth patch of the pre-inflationary Uni- 
verse to a size that encompasses all that we see today. To make this point more concrete, 

consider the present size of a pre-inflationary Hubble-sized patch: 

d PATCH = H;’ N e” ($)I’? (2) H;’ s exp(iV - iVmi,)H,‘: (la) 

where HI = v’8nM4/3mp12 is the Hubble constant during inflation, Ho cx (lO’sh-’ cm)-’ 
is the present value of the Hubbl e parameter, the Plan& mass mpi = 122 x 10” GeV. 

Z’RH is the temperature to which the Universe is reheated after inflation, and M4 is the 
vacuum energy that “drives” inflation.* 

The value of the cosmic-scale factor R(t) is R START at the beginning of inflation, REND 
at the end of inflation, and Ro = 1 today, and N z I~(REND/R~TART) is the number of 
e-foldings of inflation. If N exceeds 

lv,,,j, = 53 + 21n(M/10’4 GeV)/3 + ln(TRH/lOiO GeV)/3, 

then today the pre-inflationary patch is large enough to encompass the present Hubble vol- 
ume. thereby solving the so-called “horizon problem.“’ (Note, we have taken the smooth, 
pre-inflationary patch to be Hubble sized because this is the largest size region that could 

have become smooth due to causal physical processes; for more details see the Appendix.) 

A similar amount of growth in the cosmic-scale factor is required to solve the “flatness” 

problem: Namely, the fact that the value of R today (E 22s) is still of order unity; or 
equivalently, that the curvature radius is comparable to the Hubble radius. The curvature 
radius of an FRW model can be related to either the 3-curvature k or the ratio of the total 

energy density to the critical density (S ~2): 

&urv = R(t)lkl-“2 = ,nB;;l,2, 

where Cl = 8?rGm0~/3H’, and PT~T includes all forms of energy density. The radius 
of curvature of the Universe today is equal to that at the beginning of inflation times 

* In slow-rollover inflation the inflationary era is usually followed by a matter-dominated 

epoch, where the energy density is dominated by the coherent oscillations of the in&ton 

field, and then by the usual radiation-dominated epoch; thus T’H < M4. In inflationary 

models where reheating takes place through bubble nucleation and collisions, e.g., extended 
inflation, there is no matter-dominated era just after inflation and TnH = M. 



R~/RSTART. Using this, the relationship between R,,,, and R. and Eq. (la). we can 

relate fis to !&TART: 
. 

1% - 11 = (dpT;;H)2 PSTART - Ij = eXp(72Vmin - El~)l&T,LRT - 11, (lb1 

The essence of Eq. (lb) is clear: Unless the size of the smooth, pre-inflationary region is 

much larger than H;l, the amount of inflation required to solve the flatness problem is 

comparable to or less than that required to solve the horizon problem. (See Appendix for 

more details concerning the kinematics of the transition to the inflationary epoch.) 

Provided that the amount of inflation exceeds that required to solve the hori- 
zon/flatness probiems, i.e., N > N,i,, a scale that had a pre-inflationary size greater 

than H;’ will today still be outside the horizont In particular, if the scale was of physical 

size 1 G ePH;’ at the beginning of inflation then its size today L s R~~/RSTART = ep H,,-‘, 
where P = p + N - LVmin. The content of the kinematic relationship P = p + A’ - N,i, 
is perhaps more clearly expressed in words: A scale that was a factor of eP larger than 
the Hubble radius at the beginning of inflation, is today a factor of ep larger than the 

present Hubble radius, where the difference between P and p is simply the logarithm of 
the size of our inflationary patch divided by the present Hubble radius. If the duration 

of inflation exceeds the minimum amount required to solve the horizon/flatness problems 

by a large amount-that is N >> Nmin 5 50-then all superhorizon-sized scales at the 

beginning of inflation are “exponentially superhorizon sized” today. On the other hand, 
if the duration of inflalion does not ezceed the minimum by a large amount, then scales 
that were svperhorizon sized at the omet of inflation are not exponentially far outside the 
horizon today. It is this possibility that interesta UJ here. 

Scales that were superhorizon sized at the onset of inflation are the ones that we will 

be concerned with in this paper. These scales cannot be affected by events during inflation 
or the post-inflationary epoch, and thus contain information about the pre-inflationary 

Universe. We will show that provided N 5 N,,,;. + U(lO), fluctuations on such scales 

can lead to observable consequences: Quadrupole and dipole anisotropies of the cosmic 

microwave background radiation (CMBR). The dipole anisotropy can create the illusion 
that the Universe is tilted: If an intrinsic dipole anisotropy exists, the rest frame of the 
CXMBR does not coincide with the cosmic rest frame, and viewed from the CMBR rest frame 

all the matter in the Universe will be seen to be moving with a uniform velocity. Such 
an effect could be the explanation for the large peculiar motions (relative to the CMBR) 

t When we refer to a scale crossing inside (or outside) the horizon, we mean more 

precisely that its physical size becomes less than (or greater than) the Hubble radius, H-‘. 
In the standard cosmology, the distance to the particle horizon, dH z R(t) $ dt’/R(t’), is 

up to factors of 0( 1) equal to the Hubble radius. Of course, this is not true in inflationary 

Universes, and in fact dH is much greater than H-‘. 
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measured for almost 1000 galaxies in our 50h-’ Mpc neighborhood. Consideration of pre- 
inflationary inhomogeneity on superhorizon-sized scales also provides the basis for a strong 
argument that the value~of R must be very close to unity in an inflationary Universe. 

Before we begin, it is only fair to warn the reader that in many-if not most-models of 

inflation ,V > N,i, N 50, in which case the issues discussed here are moot. However. there 
are models of inflation in which N can be O(50);’ moreover, the question of whether or 
not the Universe even inflated-let alone the details of inflation-has yet to be answered. 

Thus, we feel justified in considering the possibility that the amount of inflation is not too 

different from that required to solve the horizon/flatness problems. 

II. Preliminaries: Scalar-field Fluctuations 

The behaviour of curvature fluctuations that are superhorizon sized at the onset of 
inflation is well known: Ordinary (scalar) density perturbations enter the horizon in the 

post-inflationary epoch with the same amplitude that they would have in the absence of 
inflation, albeit at a time well after the present epochL3 the same holds true for anisotropic 

curvature perturbations (that is, growing modes of anisotropy). Inflation does not solve 

the woes of an anisotropic or inhomogeneous Universe permanently; it merely postpones 
the epoch that we become aware of the inhomogeneity and anisotropy. 

Inhomogeneities can also arise due to fluctuations in various scalar fields including 
the scalar field.responsible for inflation, often referred to.as the infiaton, the (complex) 
scalar field responsible for Peccei-Quinn symmetry breaking (whose phase is the axion 
field), and the “ilion” field, the field responsible for producing the baryon asymmetry in an 
unconventional and interesting model of baryogenesis. ’ We will use 4 to denote the scalar 

field whose fluctuations we are considering at the time. 

On length scales greater than the pre-inflationary Hubble radius there is no reason to 

expect 4 to be homogeneous. As a simple ansatz for the spatial configuration of C$ at the 

start of inflation, we take the mean value of 4 be 4s and consider one superhorizon-sized 
fluctuation mode: 

&TART(~) = 40 + Q(r) = &I + “‘/&~” 

Here 84, is the amplitude of the superhorizon-sized fluctuation, l = Ikj-‘/&ART = 
epH;* is the physical size I of the fluctuation at the start of inflation, which is greater 

than NT’, and r are comoving coordinates. Since we have normalized the cosmic-scale 

factor so that its value today is unity, the present length scale of this fluctuation, L E (k(-’ , 

is related to the present horizon scale by: L = ePH,’ where as before P = p + N - ~Vmin. 
Provided that the scalar field 4 is minimally coupled (vanishing coupling to the scalar 
curvature 77,) and any potential term for 4 is unimportant (V” < Hf)-both are true for 

the examples of interest-the evolution of the scalar-field fluctuation while the scale L is 
outside the horizon (I2/RH < 1) 1s extremely simple: 6tjk =const.6 
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While we have chosen a particularly simple and specific form for the pre-inflationary 

fluctuation, any superhorizon-sized, pre-inflationary fluctuation in the o can be expanded 
in a Fourier integral involving-only modes that are superhorizon-sized: by writing 60 = 

6temik.‘/(2x)s we have made it convenient to do so. 

III. Curvature Perturbations 

Inflaton jIuctuations 

To begin, consider the case where the scalar field 4 is the field responsible for inflation. 

For example, in the chaotic inflation model’ the inflaton is a very weakly coupled scalar 
field with scalar potential L’(d) = X4” (X < 1). Th e number of e-foldings of inflation 

is N = *(&/mp1)* - l/2> and for 4s * 4mp1, N m 50. As is well appreciated fluctua- 

tions in the inflaton field eventually lead to curvature fluctuations.’ On length scales that 
are subhorizon sized at the onset of inflation fluctuations in 4 arise as de Sitter (zero- 

point) quantum fluctuations, and their amplitude as they cross outside the horizon is 

A4 c k3/‘jb4kl/d% = H1/2r. These quantum fluctuations lead to curvature fluctua- 

tions that cross back inside the horizon in the post-inflationary Universe with amplitude 

(Ap/~)non E k3’*16kI/@ z 10m5 (X/10-‘5)‘/2, where Sp(r)/p = Jbke-‘““&k/(2~)~. 

The value (AP/P)HOR N lo-’ is both consistent with the isotropy of the CMBR and 
suitable for structure formation9 

The amplitudes of fluctuations that are superhorizon sized at the beginning of inflation 

have nothing to do with de Sitter quantum fluctuations; rather, they reflect the initial 

configuration of the 4 field-and thereby the pre-inflationary state of the Universe. We 

can estimate the horizon-crossing amplitude of the density perturbation produced by such 
a fluctuation on the scale L by a simple scaling argument: Since (6P/P)Hon x A4, 

(F)HoR, L - (gg-) 10-s * U(3O)yy 
where subscript “HOR, L” refers to the epoch when the scale L crosses back inside the 

horizon. Provided the Universe remains matter dominated until that epoch, THOR, L 5 

2.7 K (HOI/L)’ and iHOR, L m 10” yr (L/Hc’)3. [If the initial fluctuation in I$ is of order 

unity-that is 6cjk/(h)3 N &-the resulting curvature perturbations enter the horizon 

with amplitudes greater than unity and cannot be treated as small perturbations.) 

CMBR WhOtTOpy: The Sacha- Wolfe effect 

Superhorizon-sized fluctuations, like their subhorizon-sized counterparts, can affect the 

isotropy of the CMBR.” To calculate the amplitude of the temperature anisotropies that 

arise we use the formalism developed by Sachs and Wolfe. ii The relative deviation of the 

CMBR temperature seen in the direction fr by an observer today at position r = 0 is 

6T(r = 0; A) 
T 
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where “R” denotes the reception event at our spatial position (r = 0). “E“ denotes the 

emission event (last scattering)-scale factor RE z (1 + zo~o)-’ z 10-s and spatial 

position r~ = (1 - &)x (X = 2H~‘n)-and Sp(r)/p = (2r)-ssl;(t)exp(-ik r)l,,,, 

is evaluated at our position (by integrating over wavenumber k this expression can be 
generalized to any density field). 

The quantity 6p/p is not gauge invariant and here is to be computed in synchronous 
gauge. During the matter-dominated epoch 6p/p 0: R(t). Since R*H* m R-‘. the quantity 
(R2H*/k2)(Sp/p) is time-independent. -Moreover, if we define the horizon-crossing epoch 

(RL -. H-r) to be precisely when k/HR = 1, this time-independent quantity is just equal 

to the value of (6p/p) at horizon crossing, (6p/p)~0~, a fact which will prove useful since 
(Sp/p)~o~ is the quantity most easily specified in inflation models. (For reference, for the 

modes whose amplitude is determined by de Sitter quantum fluctuations. (ap/p)noR z 
k3/‘16&&a N 2Hj/i 2: con&“) 

Before going on, we wish to remind the reader of three assumptions underlying the 

analysis of Sachs and Wolfe:” (i) flat Universe; (ii) matter domination at the epoch of de- 
coupling and after; and (iii) pure curvature-mode perturbations. Given that our interest is 

inflationary cosmology, assumption (i) is quite appropriate. Since we may wish to consider 

a Universe that at present is not matter dominated, we may wish to relax assumption (ii). 
And of course, we do plan to discuss isocurxature perturbations, so we will certainly relax 

assumption (iii). 

The two terms in Eq. (3) that contribute to the CMBR anisotropy have simple phys- 

ical interpretations: (1) Owing to the gradient operator, the first term leads to a dipole 

anisotropy about the direction k; this dipole anisotropy arises due to the relative pe- 

culiar motion between the observer and the last-scattering surface. Peculiar velocities 

come about because of the inhomogeneous distribution of matter, and in the linear regime 

the Fourier expansion of the peculiar velocity field’is related to that of the density field, 
6vk = -&(RH/k)&. Thus we see that the first term corresponds to a Doppler shift caused 
by the velocity of the observer relative to the last-scattering surface. (2) Viewed from a 

Newtonian perspective, the second term in the Sachs-Wolfe formula corresponds to the 
gravitational-potential difference between the last scattering surface and the observer.‘3 

Subhorizon-sized modes 

While here we are not interested in subhorizon-sized modes, as a warm-up let us review 

quickly the CMBR anisotropies that arise due to these modes. Since the dipole anisotropy 
cannot be distinguished from the effect of our own peculiar motion, some of which arises 

due to large-scale modes that are still in the linear regime and most of which arises due 
to small-scale modes that are already nonlinear, it is useful to separate out the dipole 

anisotropy when discussing subhorizon-sized modes. Considering only the second term in 
Eq. (3) it follows that the relative temperature fluctuation seen in the direction ti by an 
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observer at position r is 

6T(r; ti) 

T 
=--i& / (!?$f) 6ke-lk.x-ik.rd3ki 

where here we have expanded the density field in a Fourier integral, sp(r.t)/p = 
s d3kS~(t)e-‘k”/(2~)3. Note that the time-independent quantity R2H26k(t)/k2 is equal 
to its value at horizon crossing, so that the contributions of the various subhorizon-sized 

modes to the CMBR temperature fluctuation are of order (+/p)noR. For a realistic 
model of inflation (&/p)noR * 0(10w5). and so temperature fluctuations of a similar 
amplitude are predicted. 

If we expand 6T/T in spherical harmonics, 

ST( r; ii) 
T E c Qh(rNd~L 

lm 

and calculate the ensemble average of larm12 over all observation positions r we obtain the 
standard result, 

{Iarm/*) = 1 (s) I~~12jr(k~)2& 
where I = 1x1 = 2H;‘, k = Jkl, and jr is the spherical Bessel function of order 1. This 
expression is valid for I 2 2, and the Y I,,, are the usual spherical harmonics, normalized 

such that s Yrm YdbdCl = 6&,,,. 

Superhorizon-sized modes 

Now let us move on to the effects of the pre-inflationary superhorizon-sized modes. The 

present wavelengths of these modes are larger than the Hubble radius, L = e”H;l >> H;‘; 
or put another way k/HoRo = kH,’ = e-’ < 1. Because of this, the density perturbation 
seen within our present horizon takes the appearance of a linear density gradient in the 
direction k. One might expect this density gradient to lead to a peculiar velocity for all 

the matter within our horizon volume: The Universe is “tilted” (in a gravitational sense), 
so everything should slide from one side to the other! 

A “tilted Universe “? 

Such a “tilting of the Universe” could provide an interesting and unconventional expla- 

nation for the peculiar-velocity field in our neighborhood: The peculiar velocity measure- 

ments for the local volume (50h-’ M~c)~ made by the Seven Samurai and others I4 are 
consistent with a uniform bulk flow-relative to the CMBR-of about 700 kms-’ toward 

Hydra-Centaurus with a smaller, incoherent “noise” component, of about 200 krn~-r.‘~‘~s 

In the tilted Universe interpretation the uniform flow would arise because of the linear 

density gradient associated with the superhorizon-sized mode, while the lesser noise com- 
ponent would be due to small-scale density inhomogeneities. (Of course, these observations 
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are also consistent with more conventional explanations such as the existence of a Great 

Attractor,” or even just the gravitational effects of the inhomogeneous distribution of 

galaxies within our local neighborhood.‘s) 
The peculiar velocity that arises due to the “tilting of the Universe” corresponds to 

the first term in Eq. (3): 

F=$-> (:)H,R,,~ (‘3) 

Since this peculiar velocity is uniform across our Hubble volume the question arises as to 
how one might infer its existence-or if indeed it has physical meaning. Since the CMBR is 
used to define the local frame of rest, a dipole temperature anisotropy, of amplitude given 
by Eq. (6), would be the physical manifestation. (In the previous case, where we were 

dealing with subhorizon-scale peculiar velocities, peculiar motions can be measured relative 

to other, nearby galaxies.) By use of the Sachs-Wolfe result, Eq. (3), we can compute 6T/T 
and look for a dipole (I = 1) term. For superhorizon-sized modes k. x is small, and we 

can expand the exp(-ik x) factor in (6p/p): exp(-ik .x) = 1 - ik x - (k x)~/Z! +. . . 
In evaluating Eq. (3) the lowest-order term cancels (as expected); however, the order 

kx term in the expansion of the second term cancels exactly the gradient term (first 
term). The dipole anisotropy associated with the tilting of the Universe is not observable 
because it is cancelled by a corresponding dipole anisotropy from the potential term (at 
order kx). Said another way, in spite of the existence of the density gradient associated 

with the superhorizon-sized curvature perturbation, the spatial hypersurfaces defined by 
the isotropy of the CMBR coincide with those defined by the isotropy of the expansion, 

Quadmpole anisotropy: The Grishchuk-Zel’dovich effect 

The lowest-order, nonvanishing temperature anisotropy is O[(k x)‘] and quadrupole 

in form: 
wr; fi) = 

T -i$;)’ ($) (2) e-ik.p + “(k4,H:). (7a) 

Expanding 6T/T in spherical harmonics, we find 

Q”(r) = f$ ($) (2) yzrn(l;); (76) 

aoo(r) = $ ($) (gg) Yod~,; 
where we have used the addition theorem for spherical harmonics to express (k fi)s in 

terms of Ys, and Yes. Recall that k26k(t)/RZHZ . IS independent of time and is equal to 

the (~~)HoR. This means that the lowest-order temperature anisotropy is O(k’/Hi) - 
U[(H~‘/L)‘] times the horizon-crossing amplitude of the density perturbation. By way 

of contrast, the temperature anisotropy that arises due to a subhorizon-sized mode is 

order the horizon crossing amplitude, cf. Eq. (4). Superhorizon-sized curvature modes 



can indeed affect the isotropy of the CMBR, but their effect is suppressed by a factor of 
U[(k/Ho)‘]. This was first pointed out by Grishchuk and Zel’dovich.” 

The lowest-order, nonvanishing temperature anisotropy has both a monopole compo- 

nent and a quadrupole component. The origin of the monopole component is simple to 
understand: Because the density wave is superhorizon-sized, unless our Hubble volume 

happens by chance to be located near the node of the density wave, there will be a net 

overdensity or underdensity “locally.” 
Taking the ensemble average over all observation positions r, 

(IQo12) = 2 / ($) 16kI$oRk2dk (8a) 

where we have integrated over d3Lz and assumed that JSk/s is independent of k to simplify 
these expressions. 

Since we do not have the means of carrying out the ensemble average, the monopole 
term cannot be distinguished from a small shift in the CMBR temperature in our Hubble 

volume, relative to its value averaged over a larger volume. On the other hand, the 

quadrupole anisotropy is observable, and current limits to the quadrupole anisotropy can 

be used to constrain the amplitude of superhorizon-sized fluctuations. The current upper 

limit to the qusdrupole anisotropy,” /asmJ 5 3 x 10e5, constrains the horizon-crossing 

amplitude of superhorizon-sized modes 

HOR. L 

and allows us to infer that the Universe is homogeneous (&p/p5 1) out to scales as large 
as 200 times the present Hubble scale. 

Inflation and 00 # 1 

The sensitivity of the CMBR to superhorizon-sized scales provides the basis of a strong 

argument that inflation cannot accommodate L!e # 1, and thus that 0s = 1.0 is a very 

robust inflationary prediction. ‘a Achieving Rs # 1 today requires N 5 N,,,;“, cf. Eqs. 
(1) and the Appendix. This fact implies that scales that were just outside the Hubble 
radius at the onset of inflation are today just larger the Hubble radius (P 5 p); as a 

result, if .Qe # 1, the CMBR is very sensitive to the pre-inflationary state of the Universe. 
Perturbations on scales that were superhorizon-sized at the beginning of inflation have 

“every right” to be of significant size. However, if we require fir, # 1 we can conclude that 

such perturbations must have been quite small: (Ap/p) 5 3 x 10e5eZP-( Ap/p) 5 3 x lo-’ 

on the present-horizon scale and (Ap/p) 5 1 on the scale L - 2OOHr’. Since N 5 N,i,, 
the scale L m 200Hc’ was at least a factor of 200 larger than the horizon at the onset of 
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inflation. Thus in order to have flo comparable to-but not equal to-one, two conditions 
must be satisfied: (1) the amount of inflation-quantijied by S-must be precisely equal 
to a number that is slightly less than lVmi,; and (2) the inflationary patch in which we 
happen to find our3elves must have have been very smooth on SC&J much larger than the 
Hobble radius (2 20ClH;‘j at the onset of inflation. While meeting these conditions is 

not logically impossible, it seems very contrary to the spirit of inflation. Finally, we note 
that our argument is kinematic in nature, and thus does not depend upon the details of 
inflation. 

Probing the pre-inf&ztionary Universe 

We can also use isotropy of the CXfBR to constrain the amplitudes of pre-inflationary 
fluctuations in the inflaton field: 

s,/(Br)3 
5 lo-’ 

( > 

H(yy 

40 L 
w lo-‘eZp. 

Recall that P is related to the number of e-foldings of inflation above that required to solve 

the horizon problem and the size of pre-inflationary fluctuation: P = p + N - AVmi,, where 

I = ePH;i It then follows that pre-inflationary modes characterized by p 5 8-(N - N,,,l,) 

must have had amplitudes that were less than order unity. 
Because of the cancellation that takes places between the gradient term in Eq. (3) and 

the potential term in Eq. (3) for superhorizon-sized curvature fluctuations, the “tilting 

of the Universe” is not observable. However, this cancellation depends crucially on the 
relationship between the first and second terms in Eq. (3), which in turn depends upon 

the three aforementioned assumptions made by Sachs and Wolfe.” In the next Section we 
show that this cancellation does not occur for isocurvature fluctuations. In this case the 

“tilting of the Universe” is an observable effect! 

Before we go on to consider isocurvature perturbations, let us mention a scenario 

where the tilting of the Universe is observable even for curvature perturbations. If the 

energy density of the Universe is today dominated by a component other nonrelativistic 
matter, e.g., a cosmological constant or relativistic particles produced by the recent decay 

of a massive relic, then 6,(t) has not simply increased as R(t) since decoupling and the 
cancellation that renders the tilting of the Universe unobservable does not take place. 

A dipole anisotropy will result, even for curvature perturbations. Its amplitude will be 

proportional to (1 - &n), where RNR is the fractional contribution of nonrelativistic 

particles to the critical density today. 

Having the bulk of the present energy density in relativistic particles or a cosmological 

constant has been advocated by some to reconcile the flat Universe predicted by inflation 

with dynamical determinations of f20 that indicate Q,I N 0.1 - 0.3.*i The energy density 
contributed by a “smooth” component of mass density would not show up in dynamical 

determinations of f&,, and thus in these scenarios: &JR w 0.1 - 0.3 and 0~ (or Q,,) m 
0.7 - 0.9. For a relic cosmological constant, linear density perturbations cease growing at a 
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red shift of about 1 + z~ m (n,i - 1)‘13, while for relativistic particles they cease growing 

at the decay epoch, ZD * 2 - 5. 

IV. Isocurvature Fluctuations 

Isocurvature azion perturbations 

Isocurvature perturbations arise in inflationary models due to fluctuations in fields 
other than the inflaton, fields whose contribution to the energy density is subdominant. 

Unlike fluctuations in the inflaton field, fluctuations in these fields do not lead to significant 
perturbations in the energy density. A very simple and relevant example is provided by 

axions. We will begin by reviewing the cosmological production of axions and the origin 
of isocurvature axion perturbations. In the discussion that follows 4 will refer to the axion 

(angular) degree of freedom. The field that breaks PQ symmetry is a complex scalar field 

a’ that acquires a nonzero vacuum expectation value: (Z) = f. exp(id)/&, the axion tield 
4 corresponds to the phase degree of freedom; see Refs. 22. 

The primary cosmological production mechanism for axions is the misalignment of 
the axion field with the minimum of its potential. ” The potential for the axion field, 

which arises due to instanton effects, is “flat” (i.e., vanishes) at high temperatures because 

instanton effects are suppressed for temperatures T > 1 GeV. At the epoch of Peccei- 
Quinn symmetry breaking (T m f. w 1013 GeV), when the initial value of the axion field 

is set, dynamics do not dictate the value of 4, and so 4 takes on a random value which- 

in general-is misaligned with the minimum of the potential. When the potential does 

develop, the axion field “discovers” that it is misaligned with the minimum of its potential 
and begins to pscillate about the minimum. These oscillations correspond to nonrelativistic 

axions, with number density proportional to the square of the initial misalignment angle. 

Because the number density of axions is ultimately proportional to the misalignment 

angle squared, fluctuations in the initial misalignment of the axion field lead to fluctuations 

in the local &on-number density 
6% 264 

-=z 
(10) 

n. 

where $0 denotes the average value of the misalignment angle within our inflationary 
patch. Since the energy density contained in the axion field during inflation is negligible 

these fluctuations do not lead to significant curvature (“true energy-density”) fluctuations; 
thus they are referred to as “isocurvature” fluctuations. 

While isocurvature fluctuations are superhorizon sized they are characterized by 6p = 0 

(in synchronous gauge). The reason is simple: Causality precludes transporting energy on 
scales larger than the horizon. Isocurvature perturbations correspond to spatial variations 

in the equation of state; in the present example, the fraction of the total energy density in 

axions varies from place to place. When an isocurvature perturbation becomes subhorizon 

sized, the initial perturbation in the equation of state develops into a density perturbation 
of similar size. 
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Compensating” perturbations in the energy density of radiation must develop in order 

to maintain 6p = 0 in the face 6~~ # 0. (For simplicit,y we will assume a two-component 

Universe-axiom and radiation-and neglect the minor role of played by baryons.) r\t 

early times when pa < PR these fluctuations are very small (explaining why isocurva- 

ture perturbations used to be referred to as “isothermal” perturbations). As the Universe 

evolves, the ratio of s&on-energy density to radiation-energy density increases, pa/pR IX R, 
and the “compensating” fluctuations in the radiation-energy density become significant. 
The compensating fluctuations in the radiation lead to fluctuations in the radiation tem- 

perature beyond those that develop due to the metric perturbations which arise [and are 
described by Eq. (3)]. 

Once the Universe becomes axion dominated, isocurvature axion fluctuations lead to 
compensating temperature fluctuations of amplitude 

67(k) = -&, (11) 

for scales that are superhorizon sized (k/HR < 1). Here ST(~) = (6T/T)k and 6.~(k) z 

(6n./n,)k = 26ok/&. Equation (11) quantifies the crucial difference between isocurvature 
and curvature perturbations: For isocurvature fluctuations there is an extra perturbation to 

CMBR temperature. We refer the reader interested in a complete treatment of isocurvature 
perturbations to Efstathiou and Bond.s3 

Our discussion of fluctuations in the axion misalignment angle parallels that of the 
inflaton field, beginning with a brief review of scales that were subhorizon sized at the 
start of inflation, and then going on to the scales of interest, those that were superhorizon 

sized. On the subhorizon-sized scales the axion-field fluctuations are those associated 

with de Sitter space quantum (zero-point) fluctuations, and A@/&, 2 HI/rfa, where 

fa is the scale of Peccei-Quinn symmetry breaking. When these perturbations cross the 

horizon in the post-inflation, matter-dominated epoch they lead to density perturbations 

of amplitude (A~/~)non 2: k3/‘16~(k)l/m m HI/f, that are independent of scale (like 
their curvature perturbation counterparts). Isocurvature axion fluctuations on scales that 

were smaller than H;’ at the onset of inflation are treated in detail in Refs. 23 and 24. 

Our interest is in isocurvature perturbations on scales that were larger than H;' at 
the onset of inflation; fluctuations in the axion field on these scales are unaffected by 

inflation and reflect initial configuration of the axion field. We describe the superhorizon- 

sized fluctuation in the axion misalignment as we did in the inflaton case, considering one 
superhorizon-sized fluctuation about the mean; cf. Eq. (2). The temperature anisotropy 

seen by observers today arises due to two effects: (1) The metric fluctuations associated 

with the density perturbation that develops from the initial isocurvature perturbation. 

The resulting temperature fluctuation due to this effect is described by Eq. (3). As we 

saw in the previous Section the dipole component vanishes. The lowest-order effect is 

quadrupole and proportional to (k/Ho)*6~. (2) The intrinsic fluctuations in the radiation 

field that arise to compensate the axion-energy density fluctuation, cf. Eq. (11). 
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Compensating temperature fEuctuation3 lead to a tilted Universe 

The important new twist is the additional temperature fluctuation associated with the 
compensating perturbations in‘ the radiation: ST(~) = -6~(k)/3. They lead to a dipole 
anisotropy in the CMBR temperature that is uniform across our present Hubble volume 

and is of U(k/He): 
6T( 0; n) = -2(ic. ti) k 6&/(2n)3 

T 3 H, 00 
(12Q) 

This dipole anisotropy is intrinsic to the CMBR, and any observer within our Hubble 

volume in the rest frame of the expansion will conclude that he is moving with respect to 

the CMBR rest frame in the -k direction with a speed of order 

6u H,-’ JdJ(2~)3 -N- 
c L 4% 

(12b) 

Stated another way, when viewed from the CMBR rest frame, the Universe appears to be 

“tilted.” The existence of an isocurvature fluctuation breaks the connection between the 
peculiar-motion term and potential term that led to the cancellation of the dipole term 

for curvature fluctuations. Because of the compensating temperature fluctuations that 

develop, the rest frames defined by the isotropy of the expansion and the isotropy of the 

CMBR do not coincide. (It is simple to show that the peculiar velocity that arises due to 
the linear gradient in local axion number is subdominant.) 

A superhorizon-sized isocurvature axion perturbation could tilt the Universe enough 

to explain the uniform bulk motion of about 700kms-’ w 2 x 10W3c that galaxies in our 
local neighborhood have with respect to the CMBR provided 

b+k/(2X)3 

$0 
- 2 x 10-a ep. 

If we suppose that the fluctuation in the misalignment angle os is of order unity, then 

N - -hT,i, must be less than 6 - p to satisfy this requirement. On the other hand, if the 

average value of the initial misalignment angle $0 happened to small in our inflationary 

patch, as it could well be,25 the left-hand side of Eq. (13) could be large-perhaps as 

large as 104. In this case P = p + N - iV,i” would be large, and N - Nmi, could be as 

big as 15 - p. Thus it is possible that a superhorizon-sized isocurvature axion fluctuation 
could have observable consequences even if inflation lasted e)(lO) e-foldings longer than the 
minimum needed to solve the horizon/flatness problems. It should also be clear that the 

tilted Universe scenario requires that the superhorizon-sized mode be superhorizon sized 

at the beginning of inflation also: If it were not, then its amplitude would be the same as 

those modes that are subhorizon sized today, and are constrained by the isotropy of the 
CMBR to have amplitudes of 0(10-s) or smaller. 

As in the case of curvature fluctuations a quadrupole anisotropy of O(k*/H~) also 
arises. The quadrupole anisotropy will be smaller than the dipole anisotropy by a factor 
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of O(k/H,,). Thus, the quadrupole anisotropy associated with the tilting of the Universe 

needed to explain the local bulk motion is O(2 x 10-seFP). which would be consistent 

with the current limits to the quadrupole anisotropy provided that P 2 5. 

Isocurvature baryon-number fluctuations 

If the baryon asymmetry of the Universe is produced in such a way that its value is 

proportional to the value of some scalar field, then isocurvature baryon-number fluctuations 
can arise in a similar way as isocurvature axion perturbations do.*e Such occurs in an 
unconventional model of baryogenesis in which the baryon asymmetry is proportional to 
the “ilion” field,5 and the analysis above can be applied directly. In this case o is the 
ilion field and the local baryon asymmetry that evolves is proportional to the initial value 

of 4. When baryons and antibaryons annihilate, the local baryon-number density will 

be proportional to the local baryon asymmetry-and hence the initial value of the ilion 

field-thus 
6nB 64 -=- 
nB do’ 

and the discussion above for isocurvature axion fluctuations carries over. 

Testing for a “tilted Universe ” 

How can we test for a “tilted Universe?” If the explanation for the bulk of the dipole 

anisotropy of the CMBR is due to an intrinsic CMBR dipole-rather than a kinematic 
dipole-then we are indeed in the cosmic rest frame (as defined by the expansion). (Of 

course, we do expect that a portion of the local peculiar motions are due to the inhomo- 

geneous distribution of matter nearby; for the moment we will assume that this portion is 

small and will neglect it.) We can infer that the CMBR dipole is intrinsic by measuring 

the anisotropy of another background radiation whose origin traces t,o objects at suffi- 

ciently high red shift that their distribution is isotropic and homogeneous in the cosmic 

rest frame. As an example consider the cosmic x-ray background, whose origin is believed 

to be discrete sources at high red shift (QSO ‘s, .4GN’s, hot gas, starburst galaxies, massive 
x-ray binaries, and the like); if the the Universe is tilted, the x-ray background should be 

isotropic in our local rest frame-rather than in the frame defined by the CMBR. It is 

possible that ROSAT (Roentgensatellit) will have sufficient sensitivity to determine the 

anisotropy of the x-ray background radiation and will settle this issue in the near future. 

If the dipole anisotropy of the CMBR is kinematic, which is the conventional expla- 

nation, it arises because the observer is moving with respect to the cosmic rest frame and 

therefore measures a direction-dependent temperature: 

vc7 
T(C) = To (1 _ “, A) =To{1+vcosB+v2(-0.5+cos~8)+...}; (14) 

where v is the observer’s velocity and cos 0 = fi. +. It is simple to see that a kinematic 

quadrupole of O(v’), which is aligned with the dipole must arise; in the terms of spherical 
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harmonics (oriented about v): 

A-2 47r 4 q. = -----L, 
3 ’ 

a,0 = --II; 
/- 

K z 
3 azo = 3 S” J 

If the CMBR dipole anisotropy is intrinsic, there will also be a quadrupole anisotropy, which 

is 0(H,‘/L) smaller than the dipole anisotropy; however, its relationship to the dipole 

cannot be specified beyond this. Whether or not experiments can both achieve sufficient 
sensitivity and separate a kinematic quadrupole from other contributions remains to be 

seen. Conversely, if the Universe is tilted and H[‘/L is greater than u .- 10-s, one might 

be able to “detect” the existence of a quadrupole anisotropy associated with the tilting 

of the Universe. For example, if the quadrupole anisotropy is found to be larger than is 
expected on the basis of the CMBR anisotropies detected on smaller angular scales, one 
could infer the presence of a superhorizon-sized fluctuation. Of course we must remind the 

reader that no CMBR anisotropy beyond that of the dipole has yet been detected! 

Finally, if the bulk of our apparent peculiar velocity is due to an intrinsic dipole-and 

not motion with respect to the cosmic rest frame--then there is no reason for the velocity 

vector computed from the local distribution of matter 

vp(r,l) = -2 
I 

Sp( r’, t)( r - r’)d3r’ 
/r - r’J3p ’ 

to be aligned with the direction of the CMBR dipole. Present work indicates that the two 
vectors differ by an angle of e)(lO”).‘s Other tests of a tilted Universe are discussed in 

Ref. 16. 

Finally, we can use the measured peculiar motion in our neighborhood to limit 

superhorizon-sized isocurvature fluctuations, be they associated with axions, baryons, or 

whatever. 

V. Concluding Remarks 

If inflation lasted only O(10) e-foldings longer than required to solve the hori- 
zon/flatness problems, pre-inflationary fluctuations on superhorizon scales can have ob- 

servable consequences today. Curvature perturbations on these scales, whose origin might 
trace to fluctuations in the inflaton field or simply reflect the primeval inhomogeneity in 

the Universe, lead to a quadrupole anisotropy of U[(k/Hs)s] times their horizon-crossing 
amplitude. This quadrupole anisotropy arises in addition to the usual CMBR anisotropies 

predicted by inflation, and its existence could be inferred if the measured quadrupole 

anisotropy were larger than that expected on the basis of anisotropies found on smaller 

scales. As previously emphasized, *’ the sensitivity of the CMBR to superhorizon-sized 

fluctuations provides a very compelling argument against 0s # 1 in an inflationary Uni- 
verse. 
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Isocurvature fluctuations in asions or baryons (or other particles) can lead to both a 

quadrupole anisotropy of 0( ii/Hi) and a dipole anisotropy that is intrinsic to the C\lBR 
and is of O(/c/Ho). If the bulk of the C>IBR dipole is inrrinsic-rather than kinematic- 

then viewed from the rest frame defined by the isotropy of the C>lBR the Cnirerse appears 

to be tilted; i.e., all the matter in the Universe will be found to be streaming at about 
XOkms-’ in the dire&on of the CMBR dipole (in our neighborhood, toward Hydra- 

Centaurus). This could explain the major part of the peculiar velocity-field observed in 
our local neighborhood,14 which we might add is difficult to explain otherwise.‘s This 

unconventional hypothesis could be tested by measuring the isotropy of other background 
radiations and the alignment of the CMBR dipole with the acceleration vector that arises 

due to the inhomogeneous distribution of matter. If the “tilting of the Universe” is indeed 
the explanation for the bulk of the local peculiar-velocity field. the peculiar velocities 

in our local neighborhood associated with the inhomogeneous distribution of matter are 
significantly smaller than is presently believed (more like 200kms-‘), a fact with many 
consequences. For one thing, models of structure formation (including cold dark matter), 

which are currently in trouble because they cannot account for the large peculiar velocities 

that have been measured. would be in much better shape as they would only have to 

explain the much smaller “noise” component in the peculiar-velocity field. For another, 

determinations of Ro based upon the local distribution of matter anh the peculiar-velocity 
field” and which yield values close to the inflationary prediction of l(!) would have to be 

re-evaluated. 
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Appendix: Kinematics of Inflationary FRW Models 

A simple model 

Here we briefly review the kinematics of the transition to inflationary expansion in an 

FRW model with arbitrary curvature. and energy density comprised of thermal radiation. 

PR = g.~2T”/30, and vacuum energy, PV~C s ~1.f~. The quantity g. (expected to be greater 
than 100 at the temperatures of interest) counts the number of ultrarelativistic degrees of 

freedom, and the entropy density associated with the radiation is s = 2r2g,T3/45. 
With a nonstandard, but useful, choice for the normalization of the cosmic-scale factor, 

the Friedmann equation can be written as 

g.=f+*2 
R2 - 

1 

where the plus sign applies to a positively curved model and the minus sign to a negatively 

curved model, HI E J8xM4/3mpr2 is the Hubble parameter during inflation, and the 

curvature radius of the Universe is 

R = R(t)H;' cur" - 

K&e, the value of cosmic-scale factor is not one today; it achieves a value of order unity 
when the Universe begins to inflate. (More precisely, the Universe begins to inflate when 

the scale factor is of order max{ 1, a’/‘}. 
The first term on the right-hand side of Eq. (Al) corresponds to the energy density in 

radiation, the second to the vacuum energy density, and the third to the curvature. The 
quantity a is a dimensionless parameter with important physical significance: 

a = 6 (3”’ (g)4 SC”,/,“,. 

SC”,, s (““+) s 

It is related to the entropy contained within a sphere whose radius is equal to the curvature 

radius (G SC,,,) and the size of the vacuum energy relative to the Planck energy. When the 

expansion is adiabatic, SC,,, is conserved; its value today is known to be greater than lo’*, 

which provides another way of characterizing the flatness problem: Avoiding recollapse or 

free expansion (R 0: t) until the present epoch would, in the absence of inflation, require 

that S CUrY 2 10s’. The reheating event at the end of inflation grossly violates adiabaticity; 

thus, in an inflationary Universe the present value of S Cury is not indicative of its initial 

value. We assume that prior to (and during) inflation the expansion is adiabatic, and that 
g. =const. (Adiabaticity implies that R3g.T3 =const, or PR o( g* -mR-4,) 

In general a characterizes the relative importance of radiation compared to the curva- 
ture term. Its value determines whether or not a positively curved FRW model recollapses 
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before it can inflate: If a < 0.25 it recollapses before it can begin to inflate: if n > 0.25 

it does not. As a + 0.25, the model approaches an Einstein-Lemaitre model and has a 

long static phase during which R* IT 0.5. (L17th a = 0.25. H = I? = 0 for Rz = 0.5,) 

Since a K S%, p ositively curved models with a < 0.25, correspond to low-entropy mod- 

els in which there is not enough radiation to prevent recollapse before inflation begins. 

To be specific, if we take M E 10” GeV, then a - 10-16S:i:V, and the requirement that 
a 2 O(1) implies than SC,,, _ > U( 10”). All negatively curved models ultimately inflate. 

Scale factor 

The evolution of the scale factor is straightforward to obtain. For the positively curved 

models, 

R(t) = [0.5 + msinh[2Hr(t - to)]]“‘, (‘@I 

to G &inh-L (gm) 
For a >> 0.25, at early times, t 5 H;‘/-, 3 the Universe is radiation dominated and the 

scale factor evolves as R(t) 2 etj4m; at late times, t 2 H;‘/2, the Universe in- 

flates and the scale factor evolves as R(t) ZA alI4 exp(Hrt). If a is very close to 0.25, 

at early times, t 5 H;‘/2, the scale factor evolves as R(t) z m; at intermediate 

times. ]ln(a - 0.5))H7’/2 2 t 2 H;*/2, the scale factor remains roughly constant, . 
R(t) 2 I/&; and at late times, t 2 H;‘(ln(a - 0.25)(/2. the scale factor grows ex- 

ponentially, R(t)’ z dmexp(H,t). 
For negatively curved models and a > 0.25, 

R(t) = [-0.5 + dnsinh[2H,(t + te)]]i’* , (A3) 

to = 2HI Lsinh-’ (d&). 

The cosmic-scale factor has the same behaviour as in the positively-curved models. 
For negatively curved models a can be less than 0.25; in this case 

R(t) = [-0.5 + d=cosh[2Hr(t -t to)]] I”, (A441 

to G 5+sh-’ ($FJ. 
At early times, t 5 &H;‘, the Universe is radiation dominated and R N_ a’l”m; at 

intermediate times, NT’/2 2 Hrt 2 &H;‘/2, the Universe is curvature dominated and 
R *v Hit; and at late times, t 2 H;‘/2, it is vacuum dominated and R N 0,5exp(Hrt). 

The behaviour of the cosmic-scale factor is shown in Fig. Al for models with a = 100, 

a = 0.250001 (k > 0), and a = 0.0001. 
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Omega 

The evolution of CL in all models that inflate is qualitatively the same: As R 4 0 or 

R + CM, R + 1, and R, . 

nr a + R-’ 
a+R”iR2’ 

(.45) 

achieves its extremum for R = a”” (a minimum for k < 0 and a maximum for k > 0): 

n 1 
extremum = 1 F a 

The value of R at the onset of inflation, i.e.. when the cosmic-scale factor begins to grow 

exponentially. is given by: 

1 F 
*, 

a > 0.25: 
fiSTART = 2, a z 0.25. k > 0: 

0.25, a << 0.25. k < 0 

In all cases, the deviation of &TART from unity when inflation begins is at most of U(few). 
The evolution of CL(r) is shown in Fig. A2. 

Particle horizons 

In discussing the amount of inflation required to solve the horizon and flatness problems 

we assumed that the smooth, inflationary patch that we find ourselves in today had an 
initial size of H;‘. For a model that is radiation-dominated model at the onset of inflation 

the distance to the horizon at the beginning of inflation, 

d~(t = ~START N- H;‘/2) E R(t) o’ &, 
s 

is comparable to H;‘. However, if the curvature term is important when the Universe 

begins to inflate, the distance to the horizon at the beginning of inflation can be somewhat 

greater than H;‘. 
The distance to the particle horizon can be written as 

c&(t) = qR(t) 
J 

” 

[0.5 + b:nh u]1/2 
(k > 0): (‘47a) 

-u0 

dH(t) = qR(t) 1: [-o,5 + ;;inhyll,2 

where us = sinh-‘(1/2b), b = dm, 

(k < 0; a > 0.25): (.47b) 

1+2J;I)“2, 
1 - (R/cz’/~)~ 

cos(y = 1 + (R/,$/4)2 ’ 
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and F(cY, r) is the elliptic integral of the first kind, 

J 
cl 

F(cr, r) = 
d$ 0, for a < 1: 

0 [I - r2 sin’ I$]‘/~ - ln[4/-1. for a = 7r/3, r 5 1. 

For k < 0 and a < 0.25. 

d.q(t) = qR(t, 
J 

” du H;l R(t) 
“~ [-0.5 + bcosh u]‘/~ = 2 mFb?r): (Arc) 

where ug = cash-‘(1/2b). b = v’m, 

Only when the curvature term plays an important role. (k > 0 and a E 0.25) and 

(k < 0 and a < 1). does the size of the particle horizon at the beginning of inflation differ 

significantly from H, -‘; it can be logarithmically larger than H;‘: 

&f(kTr\RT) = H;’ 
Ii 

ln(a - 0.25)], k > 0 a 2 0.25 
Inal, k<O a<<l,k<O, 

where in the first case ~START N_ ]ln(a - 0.25)(H;‘/2 and in the second case ts~~n~ N_ 

H;*/2. In these two cases it is kinematically possible for a patch that is larger in size than 

H;’ to have “smoothed itself” by the beginning of inflation; whether or not there are 
dynamical processes that can accomplish this is another matter (for k < 0 the smoothing 

must occur over many e-foldings of the scale factor). 

In order to have R # 1 today as well as consistency with the isotropy of the CMBR 

our inflationary patch must have been 0(200) times larger than H;’ at the beginning of 

inflation. If we are to take advantage of the fact that dH can be larger than HT1 at the 

beginning of inflation to allow for its possible microphysical origin-rather than simply 

postulating that such a smooth patch existed-we must have 

(a - 0.25) 5 exp( -200) (k > 0) or a 5 exp(-200) (k < 0), 

in addition to the usual requirement that the amount of inflation is just right to give 

Q # 1 today! For k < 0 and A4 z 10” GeV, the requirement that a 5 e-*‘s implies that 
s cur” 2 lo-=, which corresponds to a very low-entropy Universe. 
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FIGURE CAPTIONS 

Fio. Al. Evolution of the cosmic-scale factor R(t): (a) for a = 100 and k > 0 ia = 100 and D 
k < 0 is indistinguishable);-(b) for a = 0.250001 and k > 0: and (c) for a = 0.0001 and 

k < 0. 

Fig. AZ. Evolution of R as a function of time for the same three models as in Fig. Al. Top 

curve corresponds to a = 0.250001, middle curve to a = 100. and bottom curve to 

a = 0.0001. 
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