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I. Introduction 

For all the time and frustration that high energy physicists expend interacting with 
computers, it is surprising that more attention is not paid to the critical role computers 
play in the science. With large, expensive colliding beam experiments now dependent 
on complex programs working at startup, questions of reliability -- the trustworthiness 
of software -- need to be addressed. This issue is most acute in triggers, used to select 
data to record -- and data to discard -- in the real time environment of an experiment. 
High level triggers are built on codes that now exceed 2 million source lines -- and for 
the first time experiments are truly dependent on them. This dependency will increase 
at the accelerators planned for the new millennium (SSC and LHC), where cost and 
other pressures will reduce tolerance for first run problems, and the high luminosities 
will make this on-line data selection essential. A sense of this incipient crisis motivated 
the unusual juxtaposition of topics in these lectures. 

II. What’s the Big Deal About Software? 

Computers are fundamentally different from other technology used by society in two 
basic ways: the degree of system complexity and the level of human involvement. 
Measured in terms of the numbers and dynamics of their internal states, computers are 
systems of extreme complexity. This complexity carries some of the apparent 
opaqueness and unpredictability that is characteristic of the human personality. The 
sometime resemblance to human capabilities is what research in artificial intelligence 
(AI) tries to exploit. Computer technology is the highest of high tech. Yet, unlike other 
technology, it is extremely difficult to quantify. What do you mean by complexity when 
you don’t know all the system states? What do you mean by reliability when you don’t 
know all (and, probably, not even most) of the failure modes? 

Also unique is the degree of intimate human involvement with computer systems. 
The human component is obvious and essential for specification, programming, 
definition of input, interpretation of output, and attempts to confound the system. 
Humans are involved in some of these activities in other enterprises, such as the 
development of experiment detectors, bridges, and vehicles, but never with anywhere 



near the intensity required for computers. What is different is that computers aid the 
intellectual rather than mechanical functions of humans. These are attempts to replace 
our most complex and “human” capabilities. Their specification and design require a 
deep and most intrusive self-analysis of what we are trying to accomplish. The intensive 
human involvement is a profound and often neglected aspect of the computer problem. 

Computer systems must be considered as part of the overall system in which they are 
embedded, not as one “of a collection of components” or as “appliqu6”.1 In particular, it 
is essential that they be understood as human-computer systems. When something goes 
wrong, it is a failure in “integrating a complex, highly contingent world of analog 
variations with both human subjectivity and discrete-state machines.“* 

Computer hardware is subject in many, but not all, ways to the standard techniques of 
reliability engineering.3 Redundancy has been exploited to produce extremely reliable 
duplex processor machines for situations requiring high availability, such as banking, 
airline reservations, and telephone switching. Telephone switch downtime, planned 
and unplanned, is less than two minutes per year in practice.4 The requirement on the 
development, sponsored by the Federal Aviation Administration, of an automated 
flight-control system, including its emergency mode, is for less than three seconds down 
time per year. Most important, it is possible to measure hardware reliability in terms of 
mean time to failure (MTTF) and to predict MTTF from measurements on components 
for a system in which the overall complexity is kept under control. This process is what 
allows one to design for improved reliability with redundancy, component selection, 
and reduction of component count. 

In computer software the situation is entirely different. Hardware performance and 
reliability have improved in the last 25 years by factors like a million and a thousand, 
respectively. There has been barely an order of magnitude improvement in any 
performance or reliability aspect of software - despite extensive research directed at 
what is ominously referred to as The Software Problem. Why is this the case? We use 
computers because they handle massive amounts of data that they can manipulate with 
data-dependent paths through complex logic. Convoluting the data states with program 
paths leads to a huge number of internal and final states. No human being can specify 
all the states for any but the most restricted applications. No human programmer can 
conceptualize all the states. No human tester can test all the states. 

Why can’t we test software until it can be certified bug-free? Because, as E. W. 
Dijkstra said, “Testing can show the presence of bugs, never their absence.“5 At the 
beginning of his book on software testing, Glenford Myers provides a simple homework 
assignment for his readers.6 The idea is to point out how difficult it is to test fully 
software written to even the simplest of specifications. The spec: read 3 integer values 
which are the lengths of a triangle’s sides; print a message stating whether the triangle is scalene, 
isosceles, or equilateral. What test cases would you define for a program written to this 
spec? Experience with real bugs for this example suggest that the test cases must satisfy 
at least 14 issues. (Did you check the case (O,O,O)?) A group of highly experienced 
programmers averaged only 7.8 out of 14. This problem is so simple that formal logic 
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methods could easily be used to prove the program carries out its specified task. The 
code required is a few tens of source lines. For large problems involving several million 
source lines of code (megaSLOCs), formal methods are impossible, and even highly 
experienced programmers would be able to define tests that would catch only the tiniest 
fraction of possible bugs. 

Everything said here about software applies to firmware. Firmware involves data, 
program instructions, or logic that is fixed in the memory or the wiring layer of an 
integrated circuit. The name firmware applies to read-only memory (ROM), 
programmable logic arrays (PLAs), gate arrays, and a large variety of other devices 
complex enough to contain extensive information. Generally, this information is 
prepared in a variant software language. What goes into one chip may consist of 
thousands of lines of code. The problem of firmware may be even more insidious than 
the problem of conventional software. Firmware and hierarchical design languages 
(HDLs) are so intensively used in designing digital systems like computers that 
increasingly one sees hardware systems whose functionality traces almost entirely to 
software programs burned into silicon. 

Redundancy works for computer hardware and for non computer systems; why not 
use it for software? The problem is what do you make redundant? Running two 
identical copies of software (on reliable hardware) will give the same result, right or 
wrong. The failures in software are those of the humans in this aspect of the human- 
computer system. So what about redundant human programmers? The idea is referred 
to as n-version software development.7 Several independent and isolated teams build 
software to the same specifications. The results are compared. If the number of versions, 
n, is greater than 2, there can be a vote. The software can even be run in separate 
computers. Multiple-version software and multiple, isolated, independent testers are 
used in critical situations to improve reliability, despite the extra expense. One of the 
five computers on each of the space shuttles runs a second version of the software. (In 
fact, a delay in the first shuttle launch was caused by a veto from this computer. The 
veto resulted from a synchronization bug that had 1 chance in 60 of occurring.) 

Without question, this technique improves reliability, but much less than one would 
expect from reliability theory for systems other than software. In hardware, if the 
probability of failure of one component is p, the probability that a system of n 
independent (parallel) components will fail is p n. If p is small, even n= 2 will result in 
very high reliability. However, the redundant components in software are human 
programmers or testers, and they are not independent. Human errors are correlated by 
culture (humans read the same textbooks and learn the same algorithms) and by 
genetics (the thought processes in different brains may differ, but not all that much). n- 
version techniques are not a panacea that will eliminate software errors. As an aside, 
they can be useful in controlling hostile infiltration of software development groups, an 
issue hopefully not relevant in high energy physics, but nonetheless instructive. If there 
are n, independent, geographically isolated teams developing the same software, the 
probability of infiltrating all of them successfully does go as pn 
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Measuring software reliability is also a serious problem. Normally, to get a measure 
of MlTF, one averages the failure rate in a large sample. But the concept of multiple 
“samples” of software has no meaning. IBM has developed techniques that get around 
this problem for certain software products. Their answer is to measure a large sample of 
different usage. IBM measures the rate at which errors are found during an extensive 
debugging process involving release of the software to an ever-increasing circle of 
users. This technique is very effective for the errors of concern to IBM, which is 
“interested in failure-free execution intervals, rather than . . . [an] estimate [of] errors 
remaining” IBM finds that 33% of errors are found after 5,000 user-years of being 
exercised (which IBM defines as 5,000-year MTTF) and therefore can be caught in a 
short time. The goal of these measurements is to determine a product-release date.8 

What is special about the IBM experience is that it deals with compilers, linkers, 
operating systems, and other products that have a huge and diverse circulation. Users 
exercise all aspects of the software and quickly find the problems that most other users 
will find; these are the problems that matter to IBM’s overall reputation. In other 
situations, the concern extends to the sum total of all the uncommon errors, those that 
could, for example, result in the crash of an airplane -- or a fatal systematic error in an 
experiment’s trigger system. In fact, so-called fly-by-wire software can at best be 
measured with present techniques to have a MTIF of 103-J years. This compares to the 
normal standard for commercial aircraft components in the neighborhood of 106 years. 

III. Is HEP Software Different? 

What is special about experiment software compared to the IBM experience is the 
small number of users from a specialized, highly computer literate community who are 
generally quick to learn the capabilities of software and accustomed to a short time 
frame when responding to problems. The small number of highly similar, very 
sophisticated usages of a program in high energy physics tends to test the farthest 
corners of program space at some point in a product lifetime, but generally not early in 
the product life as in the IBM case. Software projects are interconnected communal 
efforts with many individual perspectives, software styles, and methodologies, and 
with varying receptivity to discipline. Multiple institution management results in 
limited management controls over the communal project. Furthermore, in a surprising 
similarity to military software, critical testing of HEP software and its use are essentially 
simultaneous. The actual use determines the true requirements. Implementation must 
respond to changes in understanding on the battlefield of experiment data runs. 
Repeated use of the software takes place in an environment where users, technical 
concerns, and understanding of goals are steadily changing. Requirements must, 
therefore, evolve, and iterative development of software is natural, appropriate, and 
inevitable. 

Computing is essential to HEP experiments at four key stages: triggers, data 
acquisition, reconstruction, and analysis. Detectors consist of often huge assemblies of 
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electronic detectors that signal the presence and time of passage of ionizing particles. In 
many cases detector pulse height or area also indicate the amount of charge left by a 
track. The detector analog information is quickly converted to digital form. There is 
generally too much data to record, and experiment triggers are used to select events of 
interest for off-line analysis. The process of assembling and calibrating raw data from 
different parts of the detector and recording it on permanent storage media is known as 
data acquisition. The data is normally assembled into “events” that correspond to a single 
primary particle interaction. The raw digitizer data must be transformed into physics 
variables (momentum, mass, and originating vertex of each particle). The pattern 
recognition and regression procedures are known as data reconstruction. The resulting 
data summary tapes (DSTs) contain, in principle, all that was measured about the 
physics variables of detected particles in typically billions of interactions. The DSTs are 
subjected to data analysis by physicist written software that searches and measures new 
physics using simple statistical visualization displays and sophisticated fits. 

IV. Multiple Levels of Triggering 

The triggering of high energy physics experiments proceeds in a succession of steps 
that each reduce the data that must be recorded. One can identify four typical levels of 
triggers in the more complex large hadron collider experiments. Figure 1 shows the 
present conceptual data flow and triggers plans of the Solenoid Detector Collaboration 
(SDC) in preparation for the first SSC experiment. This structure is also seen on a 
simplified scale in smaller experiments and those dealing with lower data rates at 
electron machines. 

At Level 0, fast analog electronics are typically designed to identify anything that 
implies an interaction has occurred. This may be an OR of many detector element 
signals or an indication that there was a beam crossing or a tagged beam particle. This 
trigger takes tens of nanoseconds and is used to gate front end electronics whose 
incoming signals had been cable-delayed to cover the decision time. It also starts the 
Level 1 trigger. 

Level 1 triggers use the earliest available subdetector data. This data may be still in 
analog form, or it may have been digitized by a fast analog to digital converter (FADC), 
or a mixture of both. The trigger might require, for example, a significant amount of Et 
or a u track. This is intended to reduce the rate into the Level 2 trigger. In fact, Level 1 
triggers are often integrated as the first step of a Level 2 trigger. These are very special 
purpose processors, often implemented in ECL, and generally programmed by 
changing parameters in a DRAM or firmware. Their time scale is about 1 - 2 usec. 

The Level 2 trigger occurs on a time scale of 20 - 50 usec. It decides whether to permit 
a full digitization and readout of all detector signals, a time-consuming and dedicated 
activity that, if triggered too often, will increase the dead time of the experiment. This 
trigger level uses as much subdetector data as is available from FADCs and builds on 
Level 1 information. It often includes calorimeter cluster finding and some track 
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finding. Typically a processor which can be (wire or micro) programmed is used here. 
In the past, DSP and bit slice technology, as well as data driven processors, were 
commonly applied. These are generally not high level language programmable devices. 
The sophisticated techniques required for programming them limits access to a very 
small group of skilled people, effectively hiding and protecting the details from most of 
the members of a large experiment collaboration. Collaborations commonly interact 
through a trigger language or table that permits making complicated trigger choices 
without having to meddle with the detailed software. 

At Level 3 all data has been digitized and is available, making possible triggering on 
a global reconstruction of data. This trigger permits recording on tape and takes 100s or 
1000s of msec per event to decide. Parallel farms assembled from now generally off the 
shelf RISC workstation technology computers, and programmed with MSLOCs of 
FORTRAN, are used in an environment that is compatible with the off-line computing of 
the experiment. Most of the software may be almost indistinguishable from off-line. In 
fact, successful large program Level 3 triggers to date have depended on off-line 
reconstruction codes that had been thoroughly seasoned by use on a previous run‘s 
data. 

The perceived availability of so much “free” computing results in Level 3 processing 
often being applied to data formatting and event building. This is the only real 
difference from off-line reconstruction and is a sign of a new trust in these systems by 
collaborations. Previously, specialized event builder processors were used to assemble 
data from across the detector that corresponded to a single interaction event, and then 
to pass it to the Level 3 trigger. The DO experiment at Fermilab established a new 
direction by sending subdetector data on multiple data cables directly to dual port 
memories in their highest level trigger. A switch approach like this will also be used at 
the Collider Detector at Fermilab (CDF) and the SDC. CDF is using a commercial 
network switch (Ultranet), further demonstrating the trend to off the shelf hardware at 
the highest levels of data acquisition and trigger systems. Although DO is planning to 
attach co-processors (Level 2-like special processors) to its commercially available 
microcomputers as accelerators, collaborations have clearly moved toward commercial 
systems that have a setting as similar as possible to the off-line. 

There remains one big difference with the off-line, and this is the matter of 
trustworthiness in a context where data is being discarded without means of recovery. 
This is a critical subject to which we will return after a brief digression on the place of 
special purpose hardware in the on-line HEP scheme of things. 

V. Special Purpose Hardware 

Triggers have traditionally been seen as an opportunity for advanced and creative 
application of special purpose computers. Bit slice, data driven, systolic, associative 
string, and digital signal processors are all technologies that have been applied, or at 
least evangelized as appropriate. 9 None are off-line compatible. They all require large 
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amounts of microcode, hardwired programming or other talent intensive effort. 
Ostensibly they have been used because of speed and timing requirements. Perhaps, 
they have also been a way to hide critical processes from prying hands behind a wall of 
esoteric technology. Even at Level 2, it is now possible to use high level programmable 
processors efficiently in a data gathering architecture. An example is the transputer 
trigger/DAQ system being used for ZEUS at HERA in Germany. Future switch based 
parallel processor standards such as the Scalable Coherent Interface (SCI, IEEE 1596) 
will make it straightforward to use commercial high performance, high level language 
programmable processors such as RISC in these applications. 

So why use special purpose processors? Are they faster than RISC? A special purpose 
processor clocking at 50 MHz with one instruction per clock is not significantly more 
efficient than a streamlined RISC processor executing one instruction per 50 MHz clock. 
The component economics of digital processor architectures, esoteric or not, are 
basically the same: the number of transistors required for an instruction operating on a 
unit of data is almost a constant of nature. The speedup potential of incompatible 
special processors no longer seem compelling. Their use as subroutine coprocessors 
now seems even less compelling since here Amdahl’s law applies: if f is the fraction of 
time spent in code to be run in the coprocessor, the speedup for an infinitely fast 

1 
coprocessor is only s = - l-f If f is as high as .75, .s< 4. In a trigger, events are 

discarded as you go so one can focus the speedup on early stages, but as we just noted, 
there isn’t much, if any, speedup available from special hardware. 

The exception to this poor speedup prognosis for special purpose technology is when 
one can train the electronics in advance and look up answers in real time. Neural 
networks and memory look-ups (MLUs) are two approaches that permit this. Neural 
networks are analog networks with weights that are allowed to relax to a state 
corresponding to an answer that depends on an input data pattern. They are trained by 
setting weights in advance by feedback (in the HEP context) with real or Monte Carlo 
data. Their strength is pattern recognition and they are being applied to triggers and 
reconstruction where it is desired to identify B physics events or separate gluon from 
quark jets. MLUs are large memory tables which are trained by loading results 
(computed in large FORTRAN programs) for all inputs (addresses). To look up an 
answer, one addresses the memory with the input variable and the table delivers the 
stored computed function of the variable as output. MLUs are particularly appropriate 
for quickly computing complicated functions. 

Neural networks were covered extensively by other lecturers at this summer school. 
For MLUs the speedup potential is (almost) unlimited since in principle you can 
compute forever to load them up. Memory technologies have improved so much since 
the introduction of MLUs 10 that their practicality has crossed a new usefulness 
threshold at 32 bits. A single bit MLU function (to trigger or not to trigger) of a 32 bit 
variable in 100 nsec is now possible for about $35,000 with 135 SIMMS fitting on a 
Fastbus sized board. By mid decade this should be down to $2000, allowing a full 32 bit 
function of a 32 bit variable for $65,000 on 8 VME cards. Loading these big MLUs from a 
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disk image will take about a minute per output bit at 10 MBytes/set. 16 Gbytes of disk 
will be required for the full 32 bit function. The practical maximum time that one can 
imagine for computing such a disk image is a 100 processor farm for a day. Assuming 
mid-decade processors, and an unoptimized loop, the corresponding speedup is at least 
2 x 104. So maybe MLUs have a future again. Since FORTRAN programs can be used to 
program them, MLUs are unique among special purpose systems in that they can be 
programmed in an environment compatible with off-line software. 

VI. Trustworthiness and High Energy Physics Software 

The trustworthiness of something, to paraphrase the excellent definition by David 
Parnas, is our evaluation of the probability that it will not cause something terrible to 
happen. What factors encourage high energy physicists, under the difficult 
circumstances of their experiments, to trust software dependent systems? How are 
subjective perceptions of trustworthiness developed? We will approach this business 
like question in a business school manner, by looking at some case studies, in the 
context of triggers at Fermilab’s collider experiments, and drawing a set of conclusions, 
somewhat tongue-in-cheek and with no intent to offend. 

In the past, although many experiments boasted high level triggers, few depended on 
them. The upcoming collider run represents the first time that major hadron collider 
experiments consider Level 3 farms to be a necessity. At the anticipated luminosities 
CDF needs a full factor of 10 reduction in its Level 3 compared to -2 last run, and DO is 
counting on a factor of 200. So, our first possible conclusion: Dependence breeds 
confidence? 

CDF’s Level 3 was used in several previous runs. I1 After serious difficulties in 
porting 2 MSLOCs of rather unstructured off-line code to the inadequate environment 
of the first generation of Advanced Computer Program (ACP) MC68020 based farms, 
the system ultimately worked and was trusted to a -2x cut. Once it stabilized, the Level 
3 hardware and software worked well enough so that it made only a small contribution 
to the experiment’s logged down time in the 1989 run. “This may explain the 
experiment’s trust now,” a physicist responsible in this area said. “Everyone is asking to 
put more into Level 3.” For the 1992 run, the off-line software is now mature and 
trusted off-line modules will be used in the trigger. The new Level 3 trigger will be 
based on a SGI Powerserver RISC farm, which has a development environment that will 
also be used for off-line Unix reconstruction farm processing. So a second possible 
conclusion: Familiarity breeds confidence? 

At DO the equivalent of what we have defined as a Level 3 trigger is known as “level 
2”. It is a farm of DEC microVAX computers which corresponds to the dominant 
computer flavor used by this collaboration for its on and off-line activities. DO is 
pushing very hard to catch up with CDF in this coming run and cannot afford an 
“engineering run”. Therefore, they do not have the luxury of mature, run-tested off-line 
software to apply to their trigger. A set of special filter programs is being developed. 
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There is a push by those responsible to establish a “Filter Certification Board” in order 
to convince the collaboration that the high-level trigger is ready. This board would 
formally review the independent physics testing of triggers already in place. This is to 
preempt any temptation to use the level 3 only loosely since some might argue that a 
Top discovery could most safely be obtained in that way. Computer upgrades and the 
coprocessors are arriving late enough in order to make a few collaborators nervous, 
though in fact there should be an adequate 6 months to stabilize this hardware. So, two 
more possible conclusions from this case study: Time pressure breeds confidence? Hardware 
reliability influences trust in software? 

CDF’s Level 1 - 2 triggers are another interesting case.l* They are highly trusted by 
the collaboration and have been for some time. The parameters for gain calibration are 
entered via digital tables and DACs. The collaboration incorporates its trigger decisions 
in a “trigger language” which is very readable and is, in principle, validatable by careful 
checking. Key functions are structured into pcoded routines called by the trigger 
language. The hardwire and microcoding is the restricted domain of a few experts, 
which automatically puts it under tight change control and results in its being highly 
structured, well defined, and testable. Our possible conclusion here: Esoferia limits 
access (to experts) and forces structure and project discipline far more than in open high level 
programming environments? 

In some ways DO low level triggers (referred to as level 0 and 1113 are similar, but 
because of the intrinsic simplicity of their liquid argon detector which directly measures 
charge, calibration is easier. Charge is injected to calibrate amplifiers and the gain, and 
trigonometry, is hardwired into fixed resistors which are selected and installed subject 
to standard, careful, quality assurance. There is some flexibility for corrections and 
other purposes in PROMS which are, of course, programmable. The use of firmware is 
very effective change control. “Burn ‘em and forget ‘em,” was the philosophy 
expressed. Just as at CDF the low level trigger functions are the responsibility of a small 
skilled group. The collaboration’s trigger choices, overseen by a Trigger Board, are 
incorporated in “COOR” a coordinating on line process. So our last two possible 
conclusions: Geometric and calibration parameters are subject to routine QA? Reduced 
complexity increases trustworthiness? 

I chose to use the two Fermilab collider experiments as study subjects for obvious 
reasons of convenience in gathering specifics. However, it should be clear that the 
“possible conclusions” we identified in these case studies about how HEP 
experimenters establish trustworthiness would be the same with CERN experiments as 
examples, or experiments from any other HEP laboratory. The way in which we 
establish trustworthiness in our experiments is subjective and depends on an intensive 
and careful study of the consistency of data. Compared to what goes on outside HEP, 
this bottom line approach actually looks pretty good. The question we turn to now is 
whether it is good enough. 
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VII. A Crisis in HEP Software? How Do You Measure Complexity? 

Some of us who inhabit the no-man’s land between high energy physics and 
computer science, reacting probably more on aesthetic grounds than anything else to 
the state of HEP computing, have made hysterical sounding statements about a “crisis 
in HEP software”. Is there a crisis? 

Yes: Our detectors and collaborations are getting bigger and more complex. 

No: We are doing sort of OK, intuitively structuring our problems. And it ain’t broke now, so 
let’s not risk fixing it. 

I think I agree that things are not all that bad right now, but to understand what 
might change for the next generation of experiments, we need to understand a few 
things about complexity and about how we manage the software in HEP which deals 
with this complexity. 

The first question is how do you measure complexity? The computer software 
industry makes a big effort to measure complexity. Accurate cost estimation is a critical 
factor in the profit equation, and it depends on an early understanding of complexity in 
a project. If you estimate a job wrong and underbid, it can be very costly. Extensive 
complexity estimating methodologies exist, 14 based on approaches like Function Point 
Analysis.r5 Such techniques look in great detail at the specifications for a job, accounting 
for what has to be done, module by module, and making reference to extensive 
experience-based tables -- almost like an actuary defining risk for insurance purposes. 
The methodologies and the experience are aimed at large software projects under tight 
management control. No work has been done on understanding how to estimate costs 
in large research-oriented software projects. A study in this direction would seem to be 
motivated by the number of pending big scientific projects, anointed and unanointed 
“grand-challenges”, that depend on major software efforts. 

In the absence of appropriate complexity-estimating techniques, we can take a 
physicists style look at big-picture quantities: the number of detector types requiring 
separate software efforts (we really should count “regions” -- CDF has -100) and the 
number of collaborators (individuals/institutions). The detector channel count does not 
add to software complexity although it, of course, does affect production computing 
resource requirements. Here are estimates for three US hadron collider experiments: 

CDF 
DO 
SDC 

detector collaborating 

types individuals institutions 

15 332 28 
9 307 31 
9+ -7oo+ -go+ 
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This suggests that detector complexity is not qualitatively changing. If all that matters 
is detector complexity, software may not get much worse at SSC/LHC.ls (However, a 
detailed scrutiny of the impact of individual subdetector complexity on software has 
not been done here -- nor has it been done by collaborations, and it is not being done for 
SDC. This level of complexity may be the straw that breaks the camel’s back. A 
comparison of the CDF startup experience with DO will be instructive, since it has been 
argued that DO is a less complex more homogeneous detector.) 

A part of the problem is known to scale with the number of software workers. The 
individual institution (university) group size seems to stay constant. Software team 
sizes are unlikely to change because of small group psychology issues. By a Parkinson’s 
law kind of argument, we can expect that the resulting increase in number of software 
teams will result in more different things being done (more physics, more triggers, etc.) 
Each team will continue to interact with about the same number of teams so the total 
interaction complexity would seem to scale linearly with the number of people. That in 
itself is not a troublesome conclusion. However, Stu Loken at LBL points out that there 
will be an increase in the number of groups interacting with key core groups -- those 
with the biggest responsibilities. The complexity of key subsystems, like trigger 
supervisors and production managers, will be increased and their reliability may be 
impacted. 

VIII. A Crisis in HEP Software? How is HEP Software Managed? 

The other question we need to address in evaluating the extent of any future software 
crisis is how, in fact, is HEP software managed? First of all there is an intuitive 
structuring of activities. Subdetector modularity is carried into software, with hardware 
developers often doing “their own” software. The physics modularity is carried into 
software. Physics topics groups generally are responsible for overseeing topical 
modules of trigger and analysis software. Also as we have seen, the most critical 
triggers are typically handled in hardware and microcode which forces structuring and 
information hiding in an apparently natural and painless way -- at a considerable cost in 
talent. 

Skeleton packages are developed by core groups and are used both for on-line trigger 
software and for off-line reconstruction and analysis. Physicist programs are plugged 
into these skeletons which provide data banks, manage batch production or trigger, 
sequence software subsystems, and move data from and back to tape. We will discuss 
later the software engineering concepts of information hiding and objects. Information 
hiding, which could go a long way toward improving productivity in these situations, 
does not appear to be applied significantly yet. The struggle to develop and maintain 
these packages is painful and difficulties in converting from one platform to another are 
symptomatic of problems that information hiding cures. 

Master librarians have the role on experiments of approving inclusion of software for 
production and triggers. Some are assisted by review boards. The system works well if 
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the individual is strong and has the charisma and/or authority to impose some 
discipline. It is hard to identify such qualities in advance. 

Perhaps the most distinguishing feature of the HEP style in software is that the 
fundamental approach to testing is through physics results. The requirement is: get the 
physics right. Most physicists do not know the meaning of “requirement” in the context 
of software or projects, and there is no other requirements document. The only accepted 
critical test of software is to look at results with real data: to see if trigger rates are 
reasonable, if event distributions are reasonable, and if anything at all looks fishy. 
Before there is real data, similar kind of testing is effectively done with Monte Carlo and 
cosmic ray data. However there is no systematic software testing, as that is commonly 
understood, at the component, subsystem, or system level. Furthermore, the testing 
tends to be schizophrenic self-testing. Independent testing by separate testers is rare. 
Independent testing from requirements documents does not exist. That concept is 
foreign to HEP. 

Finally and rather unfortunately, the impact of detector complexity on software is still 
not a design consideration for the next generation detectors. The operative mind set, 
“Software has always been free. Why should we pay for it now?” was expressed at a 
senior level on one experiment. The real question is: is it free? And if it were cheaper, 
could physicists do more physics? 

IX. A Crisis in HEP Software? What Has Changed. 

If we look to the future, one can only anticipate that pressures will increase for large 
detectors to work reliably on their first time up. The history at LEP and CDF was 
similar: the biggest problems were in the systems with highest complexity, data 
acquisition, triggers, and on-line software. All of the experiments had sufficient off-line 
software so they were able to address “straightforward” analysis fW, Z) quickly (using 
an “express line” analysis at CDF) and get key first run results out. More complex areas 
(like B physics at CDF) were deferred to later. None of these experiments depended on 
high level triggers in their early running. CDF will be dependent on Level 3 this coming 
run, but now they have the confidence allowed by relatively stable and mature off-line 
software. At DO, as we have noted, it appears that the high level trigger may be 
considered critical in the first run. The DO experience will be important in projecting 
toward SSC/LHC. SDC will likely depend on a high level trigger in their first run. It is 
not clear whether there will be available a straightforward analysis opportunity (like W 
and Z) for the first run that will promise definite results. The cost levels are high, and so 
will be the resulting visibility from the public, congress, and government oversight. 
Results will be expected quickly and one cannot anticipate much tolerance for first-run 
problems. 

To summarize the present situation with HEP software, it is clear that how we deal 
with software is, at the least, unaesthetic to cognoscenti, and that the issues are difficult 
to identify and verbalize. Although the complexity of whole detectors is increasing only 
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moderately, the impact of subdetector complexity (the region count as Bob Kephart puts 
it) on software is not yet a strongly recognized hardware design consideration. 
Collaboration sociological complexity will increase somewhat, but the impact will be 
felt most by critical core software groups. Collaboration trust is based on indirect 
criteria. Approaches to software quality/trustworthiness management are currently 
based on very talent intensive activities which weigh hard on physicists, particularly 
those who might otherwise be applying their talents to more physics productivity. 
None of this is really new. 

What has changed qualitatively, it appears, is the dependence on high level triggers. 
Unlike the off-line, when a trigger fails you cannot rerun data tapes into it. Data, time, 
and money have been lost. With the new budget scale of experiments, equipment, and 
operations approaching a billion dollars, we cannot afford first-run failures. The field of 
high energy physics will be more dependent on a few experiments. The expectations are 
too high and the experiments too critical to the survival of the science. All this will be 
amplified by the increased level of governmental oversight which expects more 
professional management. It is hard to believe, looking at the record in the defense 
sector, that this oversight will not, sometime soon, be extended to software, which will 
correctly be seen as critical to the success of the taxpayers’ huge investment. These are 
all changes that require a new scale of trust in software. This is exactly in the spirit of 
Parnas’ definition of trustworthiness: we have to reduce the probability for software 
inducing something terrible to happen. 

X. Traditional Approaches to Engineering the “Software Problem” 

The “software problem” perhaps may be understood best in terms of software’s not 
being amenable to the usual kinds of quantitative-design disciplines practiced by 
engineers dealing with other technologies. The problem persists in spite of being 
recognized and attacked. Since as early as 1960, software engineering’7 has addressed 
the issues of reliability in human programming of computers. In 1972 Frederick Brooks 
wrote the classic book on this subject based on his experience managing IBM’s OS/360 
development’s It is amazing how little has been added by others in the years since. 

Traditionally, efforts have focused on means of organizing programs and making 
them understandable and readable. During the 1960s IBM provided free-flow charting 
templates to programmers. It is still considered undisciplined to fail to use such tools 
(or modern equivalents) to prepare a diagram of the logic flow of a program prior to 
starting on it. The flow chart should show what happens to data, from when it is input 
to when it is written out, including conditional actions and branches in the program that 
depend on the immediate state of the data. 

In the 1970s a number of different methodologies evolved and were promulgated. 
These formed frameworks intended to define paths toward analyzing requirements and 
then writing programs that are well structured and, thereby, more readable and 
understandable, less error-prone, and easier to test and debug. Now often generically 
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lumped under the terminology structured analysis, structured design (SASD), these 
methodologies are much used. In the 1980s they have been incorporated into computer- 
workstation software as computer-aided software engineering (CASE) tools. CASE 
systems are now marketed by over a hundred, mostly start-up, companies. The crusade 
for more structure in software has left its impact on programming languages with 
“structured” constructs like do while and if then. Programmers have been steered 
strongly away from from using conditional and absolute go to . . . branches, which, 
according to the dogma, represent the evil that results in much unstructured, 
disorganized code. SASD and CASE tools have been valuable and have improved 
productivity, especially for complex programs, but they have not proven to be a 
panacea as some had hoped. The fact is not surprising if viewed in the historical 
context. One experienced software engineer comments that SASD and CASE are “just 
glorified flow charting, no different from the 60s.” 

CASE tools have been used on high energy physics experiments with some limited 
success. These have included SASD tools as well as a HEP developed entity relation 
system called ADAM0 which takes data entities from the screen down into the data 
structures of the code. The problem has been with the lack of a complete integrated 
CASE package. Paolo Palazzi, the developer of ADAMO, commented ‘I... most toolkits 
abandon you after design. ADAM0 stays with you . . . but supports only one kind of 
abstraction...” For real acceptance in the research community, these tools must become 
more complete and manifestly productivity enhancing. 

Another traditional feature of research focus for software engineers has been in the 
area of large project management. Projects are divided up into phases of requirement, 
specification, design, coding, and testing, very much as in other fields of technology.19 
Diverse measurements support the common belief that the cost of errors increases by 
something like an order of magnitude for each project phase that passes before they are 
corrected.20 Extensive project-management methodologies are in place at IBM, AT&T, 
and other major software and computer-system developers. These insure that there is a 
careful review and documentation at each phase in an attempt to catch problems early. 
Design and specification changes are carefully tracked and controlled because of their 
possible impact on other parts of a system. When the emphasis is on the quality of 
reviews, rather than on paperwork and bureaucracy, such project management is very 
effective, perhaps the most effective means to ensure production of reliable software 
that does what is wanted. 

The Department of Defense has recognized the importance of such project 
management. It promulgates software standards like DOD 2167A which defines a 
rigorous and complex sequence of reviews and documents for DOD software 
contractors.21 DOD 2167A requirements are so pervasive in the area of defense software 
that companies with CASE tools for the aerospace sector advertise “automatic 2167A 
document generation.” Contractors staff offices just to produce the requisite 2167A 
paperwork. A defense contractor executive with extensive project experience put it this 
way: “Contractors set up two teams, designers and book writers, to meet the 
requirements [of 2167Al. It is coincidental if the results of the two teams are the 
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same.“22 Military officers (like physicists) do not pay enough attention to the very 
difficult requirements phase, and give-and-take between those defining requirements 
and those specifying and designing a system is rarely adequate. 

Although 2167A allows changes, it is normally used in one pass from requirements 
through design. The process is very difficult and results in requirements that bear little 
resemblance to reality. Requirements are typically 5 to 10 pages long per thousand lines 
of code, though there are many cases well outside this range in both directions. They are 
generally neither read nor reviewed properly, certainly not when the code “is over a 
million lines in scope”. The project can’t be stopped if, at any stage of the review 
sequence, it proves unsatisfactory. The executive continued: “Economic forces say 
proceed. So pretty soon you are reviewing something different. The books are 
irrelevant. You eventually have to go through a very painful merge because of the final 
tests.” The result is a bottom up, rather than an intended top down design. The 2167A 
“process fosters problems by being too detailed.” The result is that irrelevant issues get 
in the way of understanding what the project really needs to be able to accomplish. 

XI. Modern Approaches to Software Engineering 

CASE tools and the way in which DOD 2167A or other rigorous review 
methodologies are conventionally applied represent the traditional approach to 
software engineering. More than this is clearly needed. Recognition has grown widely 
in the last decade of two concepts that are key to further improvement in software 
reliability: evolution of requirements and software reuse. A realistic and complete 
understanding of requirements is central to the goal of software that is reliable, 
effective, timely, and economically affordable. Big, complex projects are just too 
difficult to define completely from the beginning. In the research situation, successful 
evolution of requirements can be accomplished by keeping documents of requirements 
short at first with general descriptions of what is desired. As a design proceeds, the 
client and designers must work together on evolving and customizing requirements. 
Such a process requires a commitment of time and competent personnel to a continuing 
requirements process. Nothing is more important for obtaining software that has a 
chance of being truly trustworthy during a run. 

The difficulty is focusing the attention of clients, scientific or otherwise, on the 
requirements process. This problem is exacerbated by frequent rotation of personnel. 
Those with the initiative to start a project are often not around to see it through to 
completion and thus to influence a consistent evolution of requirements. Nonetheless, 
clients are rightly most concerned about their interaction with the computer system. 
This point of interaction is the human interface, where users input requests and receive 
output as display screens or paper reports. The technique of rapid prototyping is proving 
very effective in allowing quick turnaround of ideas in the development of human 
interfaces. Special or general-purpose computers are set up so that displays are easily 
changed. No consideration about performance or computer cycles is expended during 
prototyping. 

15 



The process of rapid prototyping involves clients deeply in the decision-making 
process for requirements. A quick creative process to determine what a system will be 
like, using (often glitzy) color displays, seems to attract and hold clients’ attention at 
this critical phase much better than the traditional exchange of arcane documents. This 
fun approach to requirements focuses on displays and screens, exactly where one 
should focus to get started on a proper evolutionary top-down design. Unfortunately, 
the benefits of rapid prototyping and extensive end user involvement, are less 
applicable in some areas, such as in the guts of reconstruction and trigger decision 
programs, where there is little need for interfaces to humans during operation. 

The deep involvement of users in the requirements and design process is so 
important to the ultimate success of a system that creative management methods are 
being applied to encourage such involvement. The problem comes in breaking away 
key client personnel from their ongoing responsibilities, the very responsibilities that 
the new computer system is supposed to assist. In a very successful and interesting 
experiment, DuPont isolated teams of users and software developers for periods of as 
long as six months. Each team was given a basic project definition and a “time box” in 
which it was to complete the new software project. The teams were to be rewarded 
individually and together and celebrated in the house newsletter, if they succeeded 
within the allotted time. All teams in a trial succeeded, and the savings in cost to the 
corporation, compared to estimates based on experience with traditional approaches, 
was extraordinary. On average, the seven initial projects came in at 33 percent of the 
estimates. The key to this strategy was the use of rapid prototyping techniques, 
combined with full-time access by software developers to knowledgeable and 
competent users. The user-clients’ understanding of their own requirements, and the 
realities of implementing them, deepened during the development process. In this way, 
not only were systems completed with great efficiency in the use of personnel, but the 
systems were also more likely to meet the real needs of the organization.23 

Rapid prototyping can be made more efficient by software storming, a short and 
intensive software development effort intended to get a first order approximation of the 
system requirements. According to an individual familiar with this approach, “Practice 
has shown that the issues uncovered in this [“storm”] are the issues which require the 
most attention throughout the prototyping period. ~~24 Prototyping is, in some sense, 
testing in advance. Therefore, just like testing, prototyping is subject to missing out 
where scenarios are not tried. Here one never finds the last requirement, as in testing 
one never finds the last bug.25 Involving end users in the process is not just a matter of 
asking them what they like. All too often they will tend towards preserving their 
existing work environment. Somehow in the requirements process end users must be 
led beyond what is familiar to new approaches that will improve their capabilities. 

A rather vague concept that has received much attention in recent years is the reuse 
of mature (that is, relatively reliable) software. The core idea is obviously correct: to the 
extent you reuse reliable software, your software will be reliable.26 ‘The most radical 
possible solution for constructing software is not to construct it at all.“27 This is exactly 
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how we work with PCs and Mats, we adapt canned software like Excel and Word. 
These are highly tested because of heavy reuse, and that motivates us to be willing to 
adapt our needs to their not entirely ideal capabilities. In HEP, canned software tools 
are used for histogramming (HBOOK, PAW), for farm and parallel computing support 
(CPS, Canopy), and for on-line/data acquisition (PAN-DA). These are all examples of 
large packages that are so well publicized it is hard not to be fully aware of them at 
times when they might be applied. Identifying smaller modules that might be reused is 
a more difficult problem. 

The hype associated with software reuse mostly concerns the automatic cataloging of 
software and what it is meant to do. Automatic cataloging of software is an unrealistic 
promise that has been made by some in the artificial intelligence community. Clearly, if 
it were possible to define for a computer exactly what you wanted, and if there were a 
catalog of what existing software could do, all categorized well, then the problem 
would be solved. You would just click your mouse, and, voila, the software you needed 
would be ready to reuse, in perfectly (and relevantly) documented form. 

The idea behind reusing software is more subtle than the hype indicates. Two 
software-engineering approaches, one dating back to 1970, are important to the 
reusability goal. These are information hiding, a concept suggested by David Parnas in 
several early paperG, and, what can reasonably be considered its descendant, object- 
oriented programming. Parnas’s deceptively simple idea is to have small teams of coders 
work on software modules. These modules communicate only through extremely well- 
defined interfaces. The modules contain deliberately hidden information, one or more 
secrets that define how the module operates. Other modules - and teams - know the 
interface definition but need not and should not know any but their own secrets. The 
secrets may, for example, refer to hardware-specific matters that are in this way isolated 
to single modules. In normal programs a change of hardware can have consequences 
throughout a huge software package. Parnas’s secrets restrict consequences to single 
modules. Since consequences are kept local, information hiding allows easy evolution of 
requirements and change of software. It also is effective in allowing reuse of these very 
well defined and consequence-isolated modules. Information hiding encourages 
compartmentalized, well defined tasks, which are easier to categorize for possible reuse. 
It does nothing to assist in the dream of automatic cataloguing. But at least, if a module 
is remembered, it is likely to be reusable. 

Object-oriented programming has gained notice in recent years, much of it as a result 
of the development of the Smalltalk language by the Xerox Palo Alto Research Center 
(PARC).29 Smalltalk was subsequently discovered by Steve Jobs on a legendary visit to 
Xerox PARC. It was then applied to the famous graphical human interface of Apple’s 
Macintosh computer. Objects consist of data and one or more methods (like program 
procedures) that operates on the data. One communicates with objects by passing 
messages between them telling them what to do. The well-defined message-passing 
interfaces and the consequence-isolated methods of the objects are certainly within the 
spirit of the information hiding philosophy. A class of objects is defined once; it may 
have many objects that are instances of the class (such as the multiple windows on a 
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Macintosh). Classes, with their own specialized traits, may inherit general traits from 
other classes (for example, the traits of a basic window may be inherited and 
augmented by scrolling capabilities). One reuses what is needed and never has to 
describe anything twice. This is true software reuse, building on what has been done 
before. A large object-oriented program is built up - and tested - object by object, in an 
evolutionary way that clearly reduces bugs. The ease of changing objects carries with it 
a disadvantage from a project management perspective, the difficulty of controlling 
change.30 

Evolving requirements implies that software is not finished after its initial “build”. 
This has led to the concept of incremental builds where the ever changing nature of 
software is recognized from the outset. Really, as Brooks noted, programs are grown 
not built. This concept must be very familiar to high energy physicists whose basic 
approach to programming is incremental. Information hiding is exactly what one needs 
to support this (good) habit in an efficient way because it insists on a structure that is 
receptive to unanticipated changes and additions.31 

Information hiding and object oriented programming offer the possibility of a 
painless discipline for HEP software that fits well the incremental build approach 
commonplace in the field. The experience from other areas is that these techniques add 
only small execution inefficiencies while providing significant productivity and 
reliability enhancements. Professionally developed trigger, reconstruction, or analysis 
skeletons, within which physicist written programs could be incorporated, are natural 
opportunities for applying information hiding or objects. The skeleton could reach a 
high level of trustworthiness through some of the traditional and modern disciplined 
approaches we have described. The physicist code would be caged, so to speak, in 
regions of asymptotic freedom where the only required discipline would be at the 
defined interfaces on the boundary. 

Another, very different, approach to increasing trustworthiness is the use of formal 
methods to prove (jargon is verify) that the program does what the specification says.32 
The process of being sure that the specification says what the humans want is known as 
validation. The specification is written in a formal top-level specification language (FTLS) 
which is more “English-like” than conventional languages. After conversion, the result 
is code about ten times longer than the FTLS spec. Formal methods are mathematical 
proofs that the FILS and the computer program are equivalent. Program source code 
and specification languages present the same scale of difficulties in assuring their 
correctness. Formal methods, therefore, are essentially amplifiers by an order of 
magnitude of the size of assuredly correct software segments, from about 1,000 lines to 
about 10,000. Though this may be extended somewhat by a hierarchical application of 
formally proven modules, one soon gets into the problems of measurable software 
reliability discussed in an earlier section. A further problem is that as the size of formal 
mathematical proofs increases they reach a point where confidence in the correctness of 
the proof itself is at issue. 
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Formal methods were applied by the National Security Agency’s National Computer 
Security Center (NCSC) at the highest levels of its standards for “trusted computer 
systems”. Here a Trusted Computing Base is verified with formal methods. Honeywell’s 
Secure Communications Processor (SCOMP) is an experimental system at the Al 
summit of the NCSC classification. Only twenty copies of SCOMP have been installed 
because of its limited scope and poor performance. Despite a limited scope, the formal 
specification for SCOMP requires the equivalent of over twenty dense pages of 
mathematical spec notation. This amount must be somewhere near (some evidence 
suggests it is beyond) the maximum that humans can produce with reasonable 
assurance that it is error-free. Note that even at this Al summit of security, there is no 
requirement to prove that the code implemented is equivalent to the verified design! 
Despite these difficulties, formal methods might have applicability in high energy 
physics trigger software, where one can imagine developing verified trusted trigger 
kernels. These would be treated like the microcoded kernels in use on Level 2 triggers 
and called by a trigger decision language. 

When considering which other modern software technologies might be able to help 
in improving software, one cannot neglect artificial intelligence (AI). Because of an 
excessive level of historical hype and unrealizable promises made in the mid 198Os, AI 
has been somewhat discredited. This may be an overreaction. With moderate 
expectations, one important subfield of AI, expert systems, does have potential 
relevance to high energy physics software. Expert systems are rule-based programs for 
tasks requiring expertise. They tend not to use deductive logic, but rather abductive 
reasoning. The word abduction describes the unnatural process of generating 
explanations, cause from effect. Normal logic proceeds by deducing effect from cause. 
Abduction involves such heuristic techniques as plausible inference and the weighing of 
evidence. Most important, for lack of a broad understanding of the world shaped by 
common sense, expert systems must be limited to narrow and isolated domains.33 

Famous examples of the effective use of expert systems are diagnosis of breakdowns 
of railroad locomotives, and, in the case of Digital Equipment Corporation’s VAX series 
of computers, determination of appropriate customer configurations. Expert systems 
appear to present a significant debugging problem when they get large. This implies 
that an inherent size limit may come into play in the future.34 The process of obtaining 
knowledge from a human expert (on locomotives, for example) and putting it into a 
form that an expert system can refer to goes by the loaded name, knowledge engineering. 

Not surprisingly getting experts to agree, when there is more than one, is a significant 
problem. It is an interesting, perhaps more than semantic, question whether expert 
systems dispense knowledge or doctrine. One can imagine that when the use of medical 
diagnostic systems becomes widespread, any medical doctor who ignores the questions 
and conclusions of the systems will risk malpractice suits. Expert systems are really 
storehouses of doctrine. 

Their creation forces a systematic analysis of information and procedures. They can 
provide a framework to organize and control change in large, complex research 
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projects. This could be applied effectively to HFP data acquisition, control systems, and 
software in contexts like operation, diagnosis, repair, and updates. Diagnosis in the 
absence of an expert (owl shift guidance on Fastbus, for example) is the classic 
application on experiments. One can imagine extending this to software maintenance 
situations such as porting code to new platforms and system releases. An expert system 
could be used for acceptance tests self-administered by physicists before their new code 
is certified for inclusion in production packages. Although expert systems are 
reasonably effective at disbursing expert information and doctrine, loading them with 
the information is not straightforward. An effective means for do-it-yourself knowledge 
engineering would make it possible to broaden the application of expert systems in high 
energy physics - - and many other fields. 

I have intended, in this discussion, to give a flavor of what is unique about “the 
software problem” and why intuition and experience gained from other technology 
areas can be very misleading. The emphasis here has been on describing how the 
problem is being attacked. This is one good way of viewing this rather intangible 
subject and sensing how difficult the struggle to manage software development really 
is. Looked at from another direction, when computer systems are successfully applied, 
as they so often are, this serves to whet the appetite for applying them to more complex 
problems. A prime cause of the software problem is that our ability to imagine ever 
more ambitious systems is not limited. What is limited is our ability to understand and 
express, and then to produce and test, what we imagine, precisely enough to make our 
dreams work properly in reality. 

Most important is to understand the extreme difficulty of making big advances in the 
productivity of writing software or the reliability of the result. There are no simple 
solutions, “no silver bullet” as Brooks titled a recent paper.35 One needs to exercise 
considerable judgment in walking the knife edge between anarchy and the potential for 
sloppy unreliability, on one side, and excessively bureaucratic philosophy constraining 
creativity and changeability on the other. The trustworthiness of HEP software will 
relate directly to the sensible use of techniques and methodologies of modern software 
engineering.36 

XII. Conclusion: Elements of an Advanced Software Engineering R&D Agenda 

Several possible R&D directions in software engineering have suggested themselves 
as the discussion in these lectures developed. They included 

l Complexity estimation methods for large research projects that take into 
account the impact of hardware design and the sociology of research groups. 

l Software project management methodologies for big science research projects 
in undisciplined multi-institution environments. Workable review and 
independent testing methodologies appropriate in these conditions. 

20 



l Integrated CASE tools for big research projects that incorporate project 
management and review and testing requirements. 

l Painless structuring techniques for large scientific projects that apply 
information hiding and/or object oriented software techniques. 

l Tools for easy entry of expert knowledge and doctrine into an expert system. 
Do-it-yourself knowledge engineering. 

l Application of formal methods to create trusted trigger kernels. 

Many of these problems require a study of group dynamics and software 
management in a large project research environment. Most, if not all, such work was 
previously in the context of business, computer industry, and (to a lesser extent) 
military software projects. As has been the case in other technology areas, it is likely 
that the true software engineering needs of HEP, once we look at them closely, will 
push the technology envelope in advance of the needs of the rest of society. These 
problems appear to attract considerable interest from research software engineers and 
organizational behavior social scientists. The result of such work will not be a silver 
bullet for HEP’s -- or anyone else’s -- software problem. And physicists do not recognize 
a software crisis at this point. Nonetheless, even small improvements in scientific 
productivity and the reliability of large project software are likely to be critical to the 
continued success and acceptance of large budget, multi-year scientific efforts. Serious 
consideration must be given to high energy physics driven efforts in advanced software 
engineering research. 
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Figure Caption 

Figure 1. Conceptual data flow and triggers for the Solenoid Detector Collaboration 
@DC) system at the Superconducting Super Collider @SC). 
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