
a Fermi National Accelerator Laboratory

FERMILAB-Cord-91/85

Object Oriented Design and Programming
for Experiment Online Applications-

Experiences with a Prototype Application

Gene Oleynik
Fermi National Accelerator Laboratory

P.O. Bar 600
Batavia, Illinois 60510

March 1991

* Presented at Computing and High Energy Physics Conference, KEK, Tsukuha, Japan,
March 10-15, 1991.

4E Operated by Univsrsities Rsssarch Assoclatlon Inc. under contract with the United States Department of Energy

Object Oriented Design and Programming
for Experiment Online Applications -

Experiences with a Prototype Application

Online Support Department
Fermi lab

P.O. Box 500
Batavia, II 60510
Tel : 708-840-3921

Sponsored by DOE contract No. DE-AC02-76CH03000

The increase in the variety of computer platforms incorporated into
online data acquisition systems at Fermi lab compels consideration of
how to best design and implement applications to be maintainable,
reusable and portable. To this end we have evaluated the
applicability of Object Oriented Design techniques, and Object
Oriented Programming languages for online applications. We report on
this evaluation.

We are designing a specific application which provides a framework for
experimenters to access and display their raw data on UNIX
workstations that form part of their distributed online data
acquisition systems. We have chosen to implement this using the C++
OOP Iangauge. We report on our experiences in object oriented design
and I essons learned which we wi I I apply to future software
development.

1 INTRODUCTION: WHAT ARE GOALS OF SOFTWARE DESIGN?

We are responsible for providing online and data acquisition software
systems for experiments. In pursuit of this, we have always been
committed to the formal practice of and adherence to software
engineering methodologies in design and implementation. Additionally,
in the current environment of rapidly evolving marketplace of high
performance processors, experimenters will insist on using the best
and newest platform and embedded systems available. We are committed
to enhancing our ability to provide platform independent, portable
software systems.

Clearly! the goals of software design methodologies are simply higher
productivity and better quality software. For the design and
implementation of our PAN-DA [l] software system we appl ied
traditional techniques of understanding the requirements of the
problem domain through structured analysis (SA) and structured design
(SD) [2]. We can note that PAN-DA now comprises over 50 independent
software packages.

Page 2

The borderline between design and analysis is often fuzzy. However,
how a software system is split up into programs and subroutines, and
the exact mechanics of how information 1s passed between them are
clearly design issues, not analysis issues.

.Thus we have always followed the analysis phase by a formal, well
defined, design phase, in some cases using formal structured design
tools. These techniques and the traditional programming languages

(2.9.) Fortran, C) they support do not address issues of reusability
and extensibility. Once identified, each piece of software designed
with structured techniques is built up from scratch and is typically
not able to take advantage of other packages, resulting in repetition
of effort.

2 AN EXAMPLE OF “REUSABILITY” IN STRUCTURE DESIGN

Figure 1 is a structure chart of part of the PAN-DA system which
provides a simple connection oriented protocol for control of front
end embedded processors [3]. It specifies over 40 procedures and is
complex since it specifies several concurrent threads of execution.
It is worth noting that this “model” of the software implementation
was revised 45 times and completed in six weeks. A working
implementation was in use only two weeks afterwards.

Figure 1. PAN-DA Component Structure Chart

The topology of this diagram reflects good structured design
technique. The upper half is tree-like, where modules are functionaly
decomposed into component pieces. The broad middle is the heart of
the design and is very specific to the problem domain. The topology
of the lower part is a network and reflects that the components of the
lower half are used by many mid-level components. These modules are
reused within the problem domain.

SD methodology dictates that design of these lower leafs is done as a
result of stepping down the problem domain from the top to the bottom.
The definition of the lower modules is thus constrained to be specific
to the particular problem domain being addressed. It becomes unlikely
that many of these procedures can be used outside of the immediate
project. The methodology just does not encourage this kind of
reusability.

3 WHY WE ARE LOOKING TO USE OBJECT ORIENTED PROGRAMMING

An analysis of virtually all the subroutine and “functional” libraries
of both VAXonline [4] and PAN-DA reveal certain commonalities. Sets
of related procedures have internal data structures assoc i ated with
them that are “hidden” from the user by making only a handle to the
structure visible to the user interface. We have been associating a
set of operations with a well defined set of attributes. But we have

Page 3

had no help from the programming language and environment, Object
Oriented Programming languages clearly hold out promise of relieving
us of severe burdens of programming, debugging and maintenance of this
type of software.

Our initial design specifications result in software with a cohesive
Internal structure and with loose coupling and dependencies between
modules. However, we have found through bitter experience that when
new, of ten unanticipated features are added, the cohesiveness begins
to be lost and the coupling grows tighter. The result is software
that IS a victim of its own success and is ultimately more difficult
to support.

A recent example of this sort in our experience is the tape logger
program for VAXonl ine [5] It started out as a wel I designed and
engineered piece of software for logging events to 9 track drives.
Support for logging to Exabytes was then added in, soon followed by
support for writing multiple fixed length files per drive to enable
staging the tapes in 9 track chunks to the Fermilab Amdahls. The
result of these changes - changes that were performed with good
engineering practice - was a diffusion of the original crispness of
the design boundaries. Changes to the software now have unforseen
side effects, so that the software is unstable with respect to
changes.

The languages themselves promote tight coupling and diffuse cohesion

(e.g., FORTRAN with its common blocks, and C with its global
variables). Part of the problem is ingrained in procedural I anguages
since data must be explicitly passed between procedures, or stored in
global structures. This provides procedures with inappropriate access
to such data.

4 STARTING DOWN THE OBJECT ORIENTED ROAD

It was thus natural for us to be enthusiastic about the promise of
Object Oriented Design (OOD), Object Oriented Programming languages

(OW , and methodologies. We followed the progress of Paul Kunz [6],
from SLAC, and his tutorials, read the literature [7], and scanned the
network news groups [f3] for developments in our problem domain.

The Object Oriented paradigm addresses reusability from the top-down
by building from high levels of abstraction to more concrete levels.
The identification and design of the Classes as independent entities
which tightly couple specific data (attributes) and actions (methods),
with well defined and minimal global interface, promote reusability
outside the scope of the problem domain.

OOP languages provide formal support for encapsulation and data hiding
and promote crisp boundaries for abstractions. Inheritance from
higher levels of abstraction (through addition of sub-classes), and
the abstraction of data typing and support for overloading (multiple
definitions of a single operator) provide a powerful mechanism for
extensibility. This is achieved without disturbing the internal

Page 4

program structure and without impacting the interface to the existing
users of the program functions.

We undertook a first evaluation of available OOPS. Sever= I
constraints governed our choices. They range from the necessity of
having to link to existing FORTRAN and C libraries (such as Hbook, and
our event distribution packages) to an awareness that we must support
a wide range of experiment clients at a minimal dollar cost to them.
Our initial evaluation of Eiffel [9] showed that it had problems
interfacing to FORTRAN and generated some poor compiled code. We have
not yet received the newest version to evaluate. We are required to
provide cross platform support for Unix applications that we develop
since our- clients have a variety of Unix workstations (SGi, Sun,
Decstations and IBM/Rios). This ruled out the use of Objective C.
Given the industry support for C++, we are using it as the language of
implemention of our first Object Oriented application project.
However we intend to allocate resources to enable reimplementation of
the project in Eiffel when the new version of the compiler arrives.

We have also investigated the availability of online tools for the OOD
process. We have found, so far, that the industry is not quite up to
speed. Our product search has found almost no cost effective OOD
products that are deliverable now. Cadre [lo] and IDE [ll] promise
delivery of tools in the next six months, we may try a standalone Mac
based design product [12] W e will continue to expend effort in this
area. We have found that the availability of online tools is
essential to ensure successful committment to software engineering
methodologies.

5 GOALS AND DEFINITION OF THE PILOT PROJECT, “COMMISSIONER”

We chose as our protoype pilot project in the Object Oriented paradigm
an application to allow online monitoring of event data under Unix.
We chose this for various reasons. We were dissatisfied with the
modularity and extensibility of our previous implementation of such an
application for VAXonline. A recent project for a large collider
experiment (DO) showed the physicists’ desire for an easy to use tool
to manipulate pieces of events for simple statistics and online
monitoring which could be linked with existing experiment online code

Cl31 Such an application integrated with our existing data
acquisition systems, does not yet exist. The application requires
definition of a source of event data, extracting and handling of user
specified pieces of the events, defining and filling histograms for
display, and output of events, histograms and plots.

It requires an interactive user interface to drive the application and
also the ability to easily incorporate previously developed experiment
analysis code. As a prototype, we are not aiming for something as
complete or fully functional as Reason or PAW [14]; but we are
developing the beginnings of a framework for the handling of online
event streams in an extendible and experiment configurable fashion.

Page 5

Our choice of pilot project was also guided by some conservatism.
Object Oriented Programming Languages have the danger of generating
code that may have more run time overhead than when the program design
IS done for traditional programming languages. We did not risk a
project with severe real time execution constraints a* our first
venture Into this new technique.

6 EXPERIENCES WITH OOD

We can only agree with all the learned journals that warn that unless
One spends the resources up-front to come up to speed on the new
problem domain view, the going is tough. We have insisted that anyone
who participates in the design has to have read Bertrand Meyer,Eooch
and C++[7]. We sent individuals to classes. In spite of this, we
have spent many hours coming to consensus on terminology and
viewpoint, and understanding how to design and construct the classes
and their interrelationships. It reminds us, indeed, of when we first
embarked on SASD. Cerebral comprehension is not sufficient and people
have to get a gut feeling for the concepts.

The literature and ODD course notes stress that one must attack any
design from several different perspectives. Classes are initially
identified from the top-down (e.g., event, histogram, plot). They are
then refined and understood from the bottom up (e.g., events from
camac, events from tcp/ip, single dimension histograms, additive

Plots! etc.). The design is further modified and enhanced through
thinking from the OOD point of view (e.g., treating “lists of
histograms” as a single entity to be handled in a precisely analogous
way to a single histogram).

It is worth noting that we are using X Windows and Motif as the basis
for the user interface for our future online application developments.
This, it turns out, meshes extremely well with migration towards the
Object Oriented methodology. Experience we are gaining designing and
coding applications using these interfaces is helping us grow in our
understanding in the overall OOD and OOP arena.

7 COMMISSIONER CLASS ARCHITECTURE

We include here the top level Commissioner Class Architecture. It
illustrates the class relationships needed for the project, Figure 2
shows functional classes in Commissioner. Commissioner accepts
buffers of data (events) from a source, analyzes the data and fills
histograms. The experimenter can display events and plot histograms
during the analysis. concurrency is achieved by separating the
control interface from the event analysis process, or Factory.

Figure 2. Commissioner Functional Classes

Page 6

The ControlInterface uses ScreenTools and an Editor to create a
Factory. Each Factory contains commands to get events from a source,
analyze and histogram. The ControlInterface uses the Syntax Checker
before the Factory is started. A Configuration DataBase exists for
each Factory and contains parameters required by the Source! files of
experimenters code to be included, and timeouts. After it IS started,
the Factory communicates with the ControlInterface. The experimenter
can request Events via the EventHoldingArea.

Figure 3 is a sketch of the inheritance diagram for event sources in
Comissioner. It illustrates how class abstraction can be used to
promote extensibility. By selecting out the commonality of what a
source IS, a well defined framework is provided for adding new
sources. The configuration “mixin” class is used to provide a common
method for sources to define configurable parameters that can be set
from a menu (or optionally from a file). The data classes, together
with polymorphism (essentially treating all types of data classes as a
generic data class), allow the configuration parameters to be treated
in a data type independent fashion.

Figure 3. Source Class Inheritance Diagram

We are using HBOOK and HPLOT packages in our first implementation.
Our C+I interface around these FORTRAN packages enables replacement of
them with other packages at a later date.

8 CONCLUSIONS

We are well on the way to a practical OOP implementation of an
application for online use, with a goal of having something for
experimenters to use in the next 4 months. Al ready in the design
process we can look ahead to how to re-use the software we are coding
ir~l extended applications. For example, we are committed to providing
a “small-DA” for test stand applications in the next year. The object
oriented design and implementation of Commisssioner is resulting in an
easi ly extensible model. New front-end event acquisition sources can
be added under the source classes and new data logging functionality
as extensions to sinks. Providing for multiple threads of events,
partitions, and their analysis are treated as part of the same design.

We are up to speed and testing the true applicability of this new
paradigm in the online and data acquisition environment.

9 REFERENCES

[l] PAN-DA, An integrated Distributed Data Acquisition System - D.
Berg et al, P185.
[2] Structured Analysis and System Specification, Tom Demarco.

Page 7

[3] TRMBD, B. Mackinnon et al, PN 400, Internal Fermi lab Document
[4] Vaxonline, V. White, et al, “The VAXONLINE Software System at
Fermi lab” IEEE Transactions on Nuclear Science, Vol.NS-34, No.4,
August 1987
[5] OUTPUT Component of VAXONLINE Software, Don Petravick, et al,
Internal Fermi lab document
[6] The Reason Project, R. Kunz et al, AIP Conference Proceedings
209, P290, CHEP 90, AIP Conference Proceedings 209, CHEP 1990.
[7] 8. Meyer - Object-Oriented Software Construction ,Booch - Object
llriented Design with Applications, Ellis and Stroustrup - The
annotated C++ manual, B. Eckel, Using C++,S. Shlaer, S. Mel lor -
Object Urientd Systems Analysis.
[O] genera I I C++ and Eiffel news groups
[9] TM, Interactive Software Engineering Inc, Goleta, Ca 93117
[lo] Teamwork TM, Cadre Technologies Inc, RI 02903.
[ll] Software Through Pictures, IDE, San Francisco.
[12] MacAnalyst, Macdesigner, Excel Software, IA 50158
[13] Aldis Users Guide, W. Bliss et al, PN437, Internal Fermilab
document.
[14] PAW - Physics Analysis Workstation, R. Brun et al. Cern

kl
2

$i? . _
&Z
2 m”
20

Im

:z
al-

i / ,:’ ,:’ A
Jg$ q,yJ ,,,,; /,,.... ha-J

.I q il ---..-.- I t f i; 5 *, 4 1 i i \ \ “, ‘., ‘,,, w/e: fl 1) 1 ‘..,__.. i -..., ‘......._ ‘L. 0 ifi i = -._._

Commissioner Class Architecture

yx:r
Event

I ~- I

ControlInterface

/

as a parameter

/

@- E&kmentation
Public Interface uses another Class
via global or creates another Class

czaA& . HAS-A

Class contains another Class
declaration

x ,dnfig
7 - ^^.. -i.,i..

;ource class

public:
create
configure mixin
init
get
destroy

protected:
cleanup
state
config table

Event class

buffer
event types
etc.

zonfiguration menu mixin class
I

static conflgured menUfile
methods for parsing, handling files,

configuration table description

Conf lgure
Source/Event

keyword description value
.
.

(9DUTCBin
(from>
(usecurrent)

