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ABSTRACT

We present new rules for computing one-loop gluon amplitudes in gauge the-
ories. As an explicit example which illustrates their efficiency in comparison with
conventional techniques, we present the details of the computation of one helicity
amplitude for the one-loop gg — gg process.

1. Introduction

Hadron collider experiments over the coming decades, whether at the Tevatron,
the SSC, or the LHC, promise the best means of understanding the main particle
physics puzzles of our times, the forces underlying electroweak symmetry-breaking and
generation of light fermion hierarchies and mixing angles. But in order to uncover new
physics at these machines, one must have a thorough understanding of known physics,
and this in turn will require computations in perturbative QCD to much higher order
than have yet been carried out.

The traditional method of Feynman diagrams becomes increasingly difficult as the
number of vertices and legs increases. Even for the one-loop four-point amplitude there
are six Feynman diagram topologies for a total of twenty-seven pure gluon diagrams
and twelve ghost diagrams. Since each non-abelian vertex is composed of six terms
there would be on the order of 10* terms at the starting point of conventional Feynman
diagram computation, making this computation difficult. Since gluons dominate at
supercollider energies, the most important contributions are thus also the most difficult
to compute. ‘

In a recent paper we have outlined the use of a technology derived from four-
dimensional heterotic strings! as an efficient technical tool for evaluating the pure glue
contributions to the one-loop QCD amplitudes. Using this string-based technology, we
have provided the first computation of the one-loop corrections to the gg — gg doubly-
polarized cross-sections.? The sum over all helicities also provides the first complete
check of the pure glue contributions to the unpolarized cross-section, first calculated

* Presented by Z.B. at Pascos '91, Northeastern University, March 25.30, 1991.
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by Ellis and Sexton.?

Because there is only a single string diagram at each loop order, the amplitude is
organized into a compact expression which would be quite non-trivial to reproduce in
a Feynman diagram language. One practical advantage of the string-based formalism
is that the loop momentum is already integrated out, bypassing all algebra associated
with the non-abelian gauge vertex as well as allowing for immediate simplifications
when using the spinor helicity basis. The string also organizes the amplitude into
smaller gauge invariant partial amplitudes, eliminating most of the large cancellations
typical of Feynman diagram computations.

In these proceedings, we discuss a set of simplified rules for the one-loop n-gluon
amplitude. The use of these rules requires no knowledge of string theory although their
derivation!*® does rely on the technology of four-dimensional heterotic strings.®:"8
(The string models of interest here are not space-time supersymmetric, and their field
theory limits are directly applicable to calculations in QCD.)

Since the amplitudes are infrared divergent we have developed string versions of
ordinary dimensional regularizations, based on the work of Brink, Green and Schwarz.?
Our discussion here will include dimensional regularization.

As a particular application we present the details of the computation of the
A(17,2%,3%,47) helicitly amplitude. This amplitude is particularly simple to eval-
uate because no infrared or ultraviolet divergences are encountered. Our string-based
method reduces the thirty-nine Feynman diagrams into two non-vanishing ¢3-type di-
agrams.

2. Spinor Helicity Basis

With four gluons there are 43 formally independent multilinear combinations of
the polarization vectors with momenta (after making use of momentum conservation).
They are not all independent in an amplitude, however, because they are related by the
constraint of gauge invariance. The spinor helicity method!® is an efficient technique
for extracting the essential gauge-invariant content of an amplitude expressed in terms
of polarization vectors and momenta. We will use the spinor helicity basis of Xu, Zhang
and Chang.

In this, method the polarization vectors are written in terms of spinor quantities,

et (prq) = (LT lp™) Ao 29

b(pq) =t €, (pq) = S (1)

V2(g—ipt) V2(ptig~)

where p is the (on-shell) momentum of the gluon, ¢ an arbitrary reference momentum
such that ¢> = 0 and p - ¢ # 0 and the |pt) are Weyl spinors. As usual, we will
abbreviate (ki |kF) = (12) and (k] |k;) = [12]. The spinor product is not merely an
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abstract object, but can be calculated numerically using the following pair of formulze,

(ky ko) = /(b = k) (K + k) exp(i atan(k} /4)) — (1 2)

_ R R ey (2)
_1/ki+kf(k1+zkl)—(1<—>2)

[kl k‘g] = sign(kik';) ((k‘g k1>)* .

Indeed, it is often advantageous in QCD calculations to calculate the amplitude numer-
ically using complex computer arithmetic, and only then to square the answer, rather
than squaring analytically and evaluating that formula numerically.

The advantages of the spinor helicity method become manifest with a judicious
choice of reference momenta.!! In particular for the amplitude A(1~,2%,3%, 4), we
choose reference momenta (ky, k1, k1, k1) for the legs (1,2,3,4) respectively, leading to
the simplifications

6,"6]'-——'-0, k4'€]=k1'62=k1'63=k1'54=0
ky- ey =—ky €1, ky-co=—ky-ea, (3)
k4-€3=——k2'€3 k‘3'€4=—-k2'64.

For practical calculations, it is simplest to use either a four-dimensional helicity
scheme or the 't Hooft-Veltman dimensional regularization scheme in which all observed
particles remain in four-dimensions, but the conventional scheme, where all states are
continued to 4 — € dimensions, can also be used with the spinor helicity basis by intro-
ducing e-helicities.!? :

3. General Structure of the Amplitude

In analogy to the color decomposition of the amplitude at tree level,!® there is also
a color decomposition of loop amplitudes.* In particular, the SU(N) four-point gluon
amplitude can be written in the following form,

AR Zgt SN T T T T4 D) 4, 1 (0(1), 0(2), o(3), 0(4))
7€S4/Z,

+ Y T(Tee 0 T ) Te(T T ) Ay q(0(1), 0(2); 0(3), 0(4)) -
cE€S,/Z3
(4)
The notation ‘Sy/Z,’ denotes the set of all permutations Sy of four objects, omitting the
purely cyclic transformations (1 — 2,2 — 3,3 — 4,4 — 1), etc. The notation ‘Sy/Z3’
refers again to the set of permutations of four objects but with permutations considered

equivalent (and only one representative picked) if they exchange labels within a single
trace or exchange the two traces: Sy/Z3 = {(1234),(1324),(1423)}.
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In general, the one-loop amplitude consists of a sum over all inequivalent one and
two trace terms, with the single-trace terms carrying an explicit factor of the number
of colors. Three and higher trace terms do not appear in the one-loop amplitude, and
the partial amplitudes A, ; are independent of the specific SU(N) gauge group.

These partial amplitudes satisfy the U(1) decoupling equation*

Ap(1,2,3,4) = Y Asa(0(1),0(2),0(3),0(4)) . (5)
0€S4[Z4

The idea is to evaluate each independent partial amplitude for a fixed order of
its arguments, but for all desired helicity configurations. Since the partial amplitudes
are not themselves Bose symmetric (the Bose symmetry appears only in the sums over
permutations), the pattern of helicities is important. Thus Ag;(21,1%,37,4%) can
be determined from A4.;(17,2%,3%,4%) by cyclic permutation and renaming of argu-
ments, whereas A4.1(17,27,3%,4%) and A4;1(17,2%,37,4%) are independent partial
amplitudes.

To evaluate the partial amplitudes, one starts with the kinematic terms!-?

K({ki,ei}) = /ﬁdxi/ (ﬁdeis df;s )ﬁexp(ki - ijB(wz-j))
1 i=1

1<

. 1 e _ :
X Hexp{§ !: - 9,’39j3k,‘ . kj GF(:IJ,']‘) + 229,‘39]'4]6,' . Ej GF(.T,']') — 229,‘30,’4](:]' £y GB(:BI'J')
i#]

+ 0is8j4ei - €; Gp(zij) + 0i30i40;30,4¢; - €5 éB(Eij)]}
(6)

which contains just the right-mover (superstring) part of the heterotic string amplitude.
(The string tension has been omitted, or equivalently all momenta have absorbed the
square root of the string tension, since it drops out in the gauge-theory limit.) The 0; ,,
are Grassmann parameters; 8;4 simply ensures that the amplitude is multi-linear in the
€; as it should be. In string theory the functions Gr and Gp are Green functions on
the torus, but for our purposes these may be thought of as functions which keep track
of Feynman parameters. The notation Gp(z;;) means 9;, Gp(z;j), while the notation
éB(mij) means 83'.GB(3:,-J-). The arguments of the Green functions z;; = z; — z; are

related to ordinary Feynman parameters by z; = 3.7 _, yn. (The z; are also trivially
related to the imaginary parts of the usual closed string parameters.) The functions
Gp and GF are odd functions of their arguments, while G is an even function of its
argument. Note that this formula expresses the (string) partial amplitudes directly in
terms of dot products of the ezternal momenta and polarization vectors; no off-shell
momenta or polarization vectors appear anywhere.

One can therefore use the spinor-helicity basis immediately; to do so, pick a set
of reference momenta for the gluons, and substitute the appropriate expressions for
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the dot products. One then performs the Grassmann parameter integrals. Next, one
removes all G gs from the amplitude via integration by parts. The rules for performing
these integrations by parts are straightforward. One simply continues to mtegrate by
parts (ignoring surface terms) until all the Gp have been eliminated; this is always
possible as was shown in appendix II of reference *. As a simple example of the
integration-by-parts process, consider the term in the four-point amplitude

éB(II:lz)GB(IE%)GB(JJM)

_[kl - kG p(z12) + k1 - ksGp(zas) + ki - k'4GB(-Tl4)] G 5(212)G B(z23)G B(234)

(7)

where we have integrated by parts with respect to z;. The additional Green functions

in the brackets have been brought down from the exp(k; - k;Gp(z;;)) factor in the
kinematic contributions (6).

There is a simple check on the integration by parts algebra: the kinematic factor
must vanish identically under the substitution G g(z) — —G g(x). This property follows
from the world sheet supersymmetry of the string.!41°

After all integration by parts we can simply drop the exponentiated Green func-
tions from the kinematic contributions (6) since the rules below will include their con-
tributions. The exponentiated Green functions in fact lead to a standard Feynman
denominator, while the remaining kinematic pieces will yield a numerator polynomial
in the Feynman parameters.

4. New One-Loop Rules

The new rules organize the various contributions to the n-gluon amplitude into
#3-type diagrams. At first sight, this may seem puzzling because non-abelian gauge
theories contain a four-point contact interaction. However, with our rules the contact
interaction arises from a cancellation of momentum invariants in the numerator against
poles. Our rules directly give the amplitude in terms of a Feynman parameter integral,
but with the loop momentum integrated out. Here we present the rules for partial am-
plitudes associated with a single trace; the double trace terms [which are not needed in
the computation of the four-point amplitude because of their symmetries and the tree-
level decoupling equation] will be presented elswhere.® We now give the diagrammatic
rules for A,.1(1,2,---n) which is the coeflicient of the color trace Tr(T* T2 --.T%),
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Figure 1. The kinds of ¢3 diagrams associ- Figure 2. Labelling the trees attached to the
ated with the one-loop four-point amplitude. loop: the clockwise ordering of the tree legs

follows the ordering in the color trace associ-
ated with the partial amplitude.

General Diagrammatic Rules for Single Trace Partial Amplitudes:

1) Draw all n-point ¢* diagrams in a planar fashion. (Exclude tadpole diagrams.) For
example, the types of ¢* diagrams associated with the four-point partial amplitude
A4.4(1,2,3,4) are given in figure 1.

2) External legs are labeled clockwise in the order in which they appear in the trace
corresponding to the partial amplitude. In the trees attached to the loop, one works
inwards, labeling each inner line attached to the vertex with the last label (that is, most
clockwise) of the labels on the outer branches attached to that vertex, as depicted in
figure 2. The line attaching the tree to the loop is then labeled by the last tree leg.
The contributions for a given diagram topology are given by summing over all labeled
diagrams which satisfy these conditions. For example, the set of all allowed labeled
diagrams of the type in figure 1b is given in figure 3.

4 3
1 4
2 1
3 2 2 !
@ )
1 5 2 3
3 4 4
3
4 1
© @
Figure 3. All allowed labellings of figure 1(b). Figure 4. A diagram with two independent

trees attached to the loop.



3) Each diagram consists of loop and tree contributions which are analyzed separately.
Independent trees can be treated independently. An example of this situation is de-
picted in figure 4 where legs 1,2 and 3,4, 5 are part of two independent trees.

4) The tree contributions 7 yield the usual ¢* poles (with external legs truncated) in
the momentum invariants multiplied by a factor of either 0,1 or —1 depending on the
Green function structure as specified by the tree rules below.

5) The loop yields a parametric integral

. (47r)€/2 /1 /»z.‘NL -1 [z.‘a /1;2

- (N — 2) | dz; dziy - | dz; ;
¢ (167?) (N = 2+¢/2) 0 i 0 iy -2 0 e 0 o
PL('TI', €y ki’ E)

N,
(El(Lm kip - ki Tii, (1 4+ 245,,)

X

)NL —2+4€/2

(8)
where N is the number of legs attached to the loop and the i,, are ordered labels
for the legs attached to the loop as depicted in figure 5. In this expression zy, = 1.
The ki, are the momenta of the lines attached to the loop. Py, is a polynomial in the
polarization vectors, momenta, and integration parameters, specified by the loop rules
below. Were Py, = 1 this integral would be precisely the loop for a massless ¢3 field
theory in 4 — ¢ dimensions. Note that the polynomials Py for diagrams with different
orderings are not necessarily trivially related (because of the possibility of adding total
derivative terms to the string integrand). The z; are simply related to conventional
Feynman parameters as mentioned previously.

The partial amplitude associated with a given trace structure is then obtained
by putting the above pieces together for a given ¢* diagram and summing over all
diagrams

0" Ana = ((=V2gp " N T L. (9)

diagrams

The overall normalization takes into account our choice of conventions Tr(T*T?) = §°°.

Figure 5. Ordered labelled legs attached di- Figure 6. An example of a tree attached to

rectly to the loop. The labels are inherited the loop, with the contributing Green func-
from the last label on the tree if the leg is tions labelled.

attached to a tree.



Kinematic Factor Tree Rules:

1) In order for there to be a non-vanishing tree contribution it must be possible to
associate to every vertex in a tree ezactly one G B or Gr whose argument is a difference
of z;, ;, with one label from each branch entering into the vertex from an outermore
part of the diagram. If more than one, or no Green function can be associated with a
tree vertex there is no contribution. The Green functions which can be matched with
the vertices are removed from the term under consideration, while in the remaining
factors all indices which appear in the tree are replaced with the last label (following
the clockwise ordering) of the tree.

2) Each Green function which has been associated with a vertex yields either a plus
sign or minus sign. As we go clockwise around the labeled tree, depicted in figure 2, if ¢,
appears before i, a GB(:c,m ,,) or Gp(x,,,m) contributes a plus sign while a GB(J:,,,m)
or Gr(zi, i ) contributes a minus sign.

As a simple example of the tree rules consider the ¢® diagram depicted in fig-
ure 6. In order to get a tree contribution for the configuration depicted in figure 6 we
must have a G(r12) and either one of G(z13) or G(z33) where G is either a G or a
Gr. In particular, for the partial amplitude associated with the color trace structure
Tr(T*T**T*T*+T*%), the tree contribution for the combination of Green functions

GB(212)GB(213)GB(214)G%(225) is

1 1
T = . 10
2ky - ko 2(ky - ko +ky - ks + k2 - k3) (10)

The Green functions which remain for the loop rules are G B(%34)G%(z25). The overall
sign in the tree contribution is plus because the two Green functions Gg(zy2) and
G B(z13) each give a minus sign.

As another example, for the same color trace and ¢ diagram the combination
of Green functions GB(III]z)GF(IB]g)GB(Izg,)G (z25) vanishes because Gp(z13) and
GB(.'Ezg) can both be associated to the same vertex.

Since all tree indices in Green functions which remain after the Green functions
which are associated with the tree vertices have been removed are to be set equal to the
last tree label, cancellation can arise between different terms. This type of cancellation
occurs in the sample calculation below.

Kinematic Factor Loop Rules:
It is first useful to introduce the concept of a ‘cycle’ of Gr’s which is a group of
G rs which can be written in the form

Gr(2ii)GF(Tiria) .- GF(Tipey i JGF(Tiniy ) - (11)
Since G is antisymmetric, replacing any Gr(zij) by —Gp(z;;) still forms a cycle.

The GF in fact always form cycles, but these do not necessarily correspond to the
ordering of the external legs in a diagram. We may now classify the simplification rules

8



according to the cycles of Gps. For a loop where the attached legs are labeled as in
figure 5, the following simplification rules hold:

No Grs: Such terms receive a factor
2R+ N, (12)

where N, is the number of real adjoint scalars (which is of course zero in the standard
model) and the regularization factor R = 1 for the four-dimensional helicity scheme®
and R = (1 — ¢/2) for either the 't Hooft-Veltman!® or conventional scheme, used for
example by Ellis and Sexton.?

Two Gps:
Gr(ziyi, )Gr(Tiye) — —2. (13)

Three or more Gps in a single cycle:

GF(Tiyi )JGP(Tigiy) - Gr(Tiyi, ) — —1 (m > 2) (14)

where the case where the arguments of the G p’s differ by a sign can be trivially related
by the antisymmetry of the Green functions Gp(z;;) = —Gp(z;;).

Any other combinations of G ps will lead to a vanishing result; Ggs which do not
follow the cyclic ordering in figure 5 or are arranged in two or more cycles do not
contribute. Any G gs which multiply the above expressions are simply replaced by the
polynomial

G’B(z,-j) — %(—-Sign(.l‘ij) + 21‘0') . (15)

For massless adjoint fermion contributions to the n-gluon amplitude once again
one starts from the kinematic terms (6) and follows the same procedures discussed
above. However, instead of making the replacements (12), (13) and (14) one multiplies
by an overall factor of —4Ny, where N ¢ is the number of Dirac fermions, makes the

G p substitutions (15) and the G substitutions
1.
Gr(zi) — 5 sign(zi;) (16)

without regard to the cyclic ordering.

The case of fundamental fermions requires a simple modification of the color trace
structure. The inclusions of masses for the internal fermions or scalars is straightfor-
ward, but the case of external fermions is more complicated. We will discuss these
issues elsewhere.

5. Sample Calculation

We now apply the rules to a calculation of the pure glue contributions to the
A(~+++) four-gluon helicity amplitude. From a conventional Feynman diagram point
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of view, this computation would be quite non-trivial as there would be a total of thirty-
nine diagrams to evaluate. OQur technique reduces the computation to a total of two non-
vanishing ¢3-like diagrams. Since this particular helicity amplitude contains neither
ultraviolet nor infrared singularities (nor are singularities encountered in intermediate
steps), the parameter integrals are particularly easy to evaluate.

As discussed in the last section, the first step is to insert the spinor helicity sim-
plifications (3) into the kinematic factors (6). After integrating out the Grassmann
parameters the kinematic terms simplify into a single term

st [24)°

K =—4—[1 2] (23) (34) [41] (GB(szl) - GB(CU:H))

X (GB($42)G%~($43) - GB(xsz)G%(ﬂfu) —2GFr(z32)GF(242)G (T 43)

— GB(242)Gh(%43) + GB(232)G(243) — G2 (242)Gp(z43) (17)
+ G4(242)GB(243) — 2GB(1'32)GB(1'42)GB($43) — G%(232)GB(z43)

+ G4(232)G p(w43) — GB($32)G25'($42) + GB($32)G2B(1'42)

+G%(232)G p(742) — ng(xsz)éa(zu)) .

Since our choice of spinor helicity basis has set all &; - ¢; = 0, no Gps appear in
the amplitude and there is no need to integrate by parts. Although this expression
may seem complicated at first sight, one should compare this to the ~10* terms of a
conventional Feynman diagram computation.

Figure 7. The only box diagram with the re-
quired ordering of labelled legs for A4;1(1,2,3,4).

The types of diagrams for the partial amplitude 44,,(17,2%,3%,4%) are given in
figure 1. First consider the only labeled box diagram which is depicted in figure 7.
Since there are no trees sewn onto the loop we may apply the kinematic factor loop
rules directly on equation (17) to obtain the loop polynomial

st [24]? ‘ )
L=y o3 ey T w)es — ) (18)

after a bit of algebra to compress the result. The kinematic variables s = 2k; - k; and
t = 2k, - k4 are the usual Mandelstam variables.
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Including the integral over parameter space, the overall normalization, and the
scalar denominator yields

i1,
§4w23t[12]23(34 41/‘1"”3/ d‘”/ a2

z2(1 — z3)(z3 — T2)°
(sz123 + tzazs + uz 23 + t(21 — 22))?
- [24]?
T 18x2 12](23) (34) [41]

(19)

Since the expression is completely finite we have set the dimensional regularization
parameter € = (.

We now compute the contributions associated with diagrams of the type in figure
1b, as depicted in figure 3. However, all the diagrams vanish except for diagram 3a.
Dlagra.m 3b vanishes because there is no G B(z14) or Gp(14) in the kinematic term
(17). The others vanish because of a trivial cancellation amongst terms in the kinematic
factor (17) after implementing the kinematic factor tree rule that Green functions which
are not associated with any tree vertices have all tree labels replaced by the one on the
last tree leg.

For the non-vanishing diagram 3a, the tree contribution

1 1

T =% =

(20)

where we have obtained a sign of plus from G'p(z21) which is associated with the tree
vertex. The loop polynomial is

st [24]?

PL= 5 @3 34 a1

1’2(1 —Z;;)(.’L‘z *.2'3). (21)

Since the loop scalar denominator is (sz2(z, — £3))™', the complete contribution from
diagram 3a is
i 24P
= e 4I J, d””?’/ dwy (1-23)
I [24)
—4gw? [12](23)(34) 4]

(22)

where we have again set ¢ = 0 because the integral is completely finite.

Finally, we observe that, with our choice of reference momenta, diagrams of the
type in figure 1c also vanish, while diagram 1d never contributes to on-shell amplitudes;
in general with dimensional regularization there is a complete cancellation of the in-
frared and ultraviolet contributions leading to a vanishing result.}”* For this particular
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helicity amplitude there are anyways neither ultraviolet nor infrared divergences so the
last diagram vanishes identically. ,

Combining the results from the two diagrams then leads to the final result for the
amplitude

i (s +1)[24]

- oF g+ 4+ —
Aaa(17,27,37,47) = 25 [12](23) (34)[41] (23)
From the U(1) decoupling equation (5) we also have
- 2
Ags(17,2%,3%, 47y = st24] (24)

872 (s +1)[12](23) (34)[4 1] °

These partial amplitudes can be combined into the complete amplitude using equa-
tion (4).

6. Conclusions

We have presented new rules for evaluating one-loop n-gluon amplitudes including
the contributions of adjoint scalars and fermions and have presented a sample com-
putation. The corresponding computation using Feynman diagrams would involve 39
diagrams with ~10* terms; with the new rules only two simpler #3-like diagrams need
to be evaluated. Although these rules were derived from four-dimensional heterotic
string theory, they can be used in practical calculations without any knowledge of
string theory.

- It should be possible to extend these rules to multi-loop level as well as to the case
of external fermions. We expect that our rules will lead to a deeper understanding of
gauge theories in general and QCD in particular.
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