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In a significant improvement over homogeneous mini-superspace models, it is shown
that the classical nonlinear evolution of inhomogeneous scalar fields and the metric is
tractable when the wavelength of the fluctuations is larger than the Hubble radius.
Neglecting second order spatial gradients, one can solve the energy constraint as well as
the evolution equations by invoking a transformation to new canonical variables. The
Hamilton-Jacobi equation is separable and complete solutions are given for gravita-
tional radiation and multiple scalar fields interacting through an exponential potential.
Although the time parameter is arbitrary, the natural choice is the determinant of the
3-metric. The momentum constraint may be simply expressed in terms of the new
canonical variables, and several classes of solutions are given. The long wavelength
analysis is essential for a proper formulation of stochastic inflation which enables one
to imnodel non-Gaussian primordial fluctuations for structure formation.
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I. INTRODUCTION

Currently, the most conservative theory for the generation of initial fluctuations
for structure formation in the Universe is the inflation model. The Universe began with
a large value of the cosmological constant which produced an inflating phase. Classical
inhomogeneities were damped leaving only vacuum quantum fluctuations to serve as
the source of inhomogeneities. The cosmological constant, modelled by a scalar field
potential, then decayed, transforming its energy into radiation. However, observational
evidence! ~® is mounting which suggests that Gaussian primordial luctuations with a
scale-invariant spectrum as predicted by the simplest inflation models may, in fact, be
incorrect. The correlation function of clusters and galaxies, pencil beam surveys and
other redshift surveys seem to indicate discrepancies in the form of large scale power.
The view that will be adopted here is that the inflation model is basically correct,
but that previous models were too naive, and should be improved. In particular, it
is interesting to consider whether nonlinearities in the fields may produce significant
non-Gaussian fluctuations.

A disturbing property of inflation models is that scalar field quantum fluctuations
eventually transform themselves to metric fluctuations requiring ultimately a theory of
quantum gravity. In the standard approach to calculations in inflation models, one
splits the fields into a homogeneous classical part, and quantum inhomogeneities are
treated in linear theory.®” These models are self-consistent and difficulties only arise
when one considers nonlinearities. Since nonlinear problems are notoriously difficult to
solve, I will split all fields into two parts, long and short wavelengths as compared to
the Hubble radius during the inflation epoch. By extending previous work,® I will show
that the nonlinear classical evolution of long wavelength gravitational and scalar fields
is tractable. The initial conditions for the long wavelength problem are generated by
short wavelength quantum fluctuations which expand beyond the Hubble radius. Since
quantum gravity corrections are typically small, one can simply assume that the long
wavelength gua.ntum fluctuations have become classical in a process called stochastic
inflation.?~!

When the wavelength of a mode exceeds the Hubble radius, it is an excellent
approximation to neglect second order spatial gradients in the scalar field equations and
Einstein's equations. The evolution equations and the energy constraint are identical to
homogeneous and flat cosmological models. The only new ingredient is the momentum
constraint which patches together different spatial points to make one Universe. An
investigation of nonlinearity at short wavelengths is much more difficult, and will be
considered in future work. Although nonlinear long wavelength evolution does not alter
substantially the standard inflation predictions for a single scalar field,!? non-Gaussian
fluctuations can arise in our observable Universe through multiple interacting fields.
One of the purposes of this paper is to develop the machinery describing such models.

In a previous paper by Salopek and Bond,® hereafter referred to as SB1, the
long wavelength equations were solved making two simplifying assumptions. The shift
function and the traceless part of the gravitational momenta were taken to be zero.
Hence, the evolution of gravitational radiation was neglected. In this case, one could
solve the momentum constraint. The Hubble parameter which describes the rate of
expansion of the Universe is only a function of the scalar fields,

H(t,z) = H(¢;(t, z)). (1.1)



For example, the Hubble parameter does not depend explicitly on the time parameter,
¢. The momenta of the scalar fields are then given by partial differentiation of the

Hubble function, .
. ¢;(t, =) m} 8H

_ 1.2

Nt z) dx 8¢;’ (12)

where N(t,z) is the lapse function. The energy constraint, then becomes the separated
Hamilton-Jacobi equation. For a single scalar field, it is useful to choose ¢ as time
because one could then generalize the variable { that was first introduced in linear
theory by Bardeen, Steinhardt and Turner.!! For multiple fields, the determinant of
the 3-metric is the most useful. It is clear then that if one wishes to discuss the
role of time in general relativity or even quantum cosmology, one should introduce
inhomogeneities, because time is the observation surface that one views a 4-geometry.
For example, homogeneous mini-superspace models are insufficient to address the choice

of time hypersurface.

The full classical long wavelength problem will be solved using Hamilton-Jacobi
theory. The 3-metric 7;;{t,2) = 71/3(¢,z)hi;(t,2) will be expressed in terms of the
conformal 3-metric h;; with unit determinant. The terminology, gravitational radiation,
will then refer to the conformal 3-metric without assuming any linear perturbation
analysis.

In Sec. II, the equations for the long wavelength gravitational and scalar fields are
enunciated. One neglects all second order spatial gradients in the action, or equivalently,
in the equations of motion and the energy constraint. The resulting equations may be
solved if one invokes a canonical transformation to new variables where the Hamiltonian
density is identically zero. Since the Hamiltonian generates time evolution through
Poisson brackets, the new coordinates are constants in time. The Hamilton-Jacobi
equation is separable. Consequently, the determinant of the 3-metric is the natural time
parameter. The only equation which remains is the momentum constraint, which may
be conveniently written in terms of the new variables. The canonical transformation
has disentangled the energy and momentum constraints.

In Sec. I, I consider solutions where the dynamic effects of gravitational radia-
tion are not important. This situation was also investigated in SB1, but their approach
cannot be applied directly to gravitational radiation. The more powerful method of
canonical transformations is required. Exact complete solutions are obtained for m
massless scalar fields evolving under a cosmological constant. This example is solved
in detail because it will guide the solution for gravitational radiation. Exact com-
plete solutions are obtained for multiple scalar fields interacting though an exponential
potential. The momentum constraint may be integrated exactly, and the results are
compared with earlier work.

Sec. IV actually treats the evolution of gravitational radiation. The 6-dimensional
separated Hamilton-Jacobi equation which governs the canonical transformation may
be solved explicitly if only a cosmological constant is present. This simple case illus-
trates the solution to the more general situation where scalar fields are also present.
The 6 gravitational degrees of freedom may essentially be reduced to a single massless
scalar field. Complete canonical transformations are given for the case of gravitational
radiation interacting with a scalar field which has an exponential potential: Sec. V
contains a summary of results as well as conclusions.



II. HAMILTON-JACOBI THEORY FOR LONG WAVELENGTH
INHOMOGENEOUS UNIVERSES

. The action principle for the gravitational field and n scalar fields is,?*

7= [dte/ TG [ B - jo"0utndutn - V(W) ]
= /d*:N,/-?{ ;"—6’;.[“)}2 + KiK' — K3
+ 1 [(de — Nigw?IN? = din’ ] - Vigw) ). (2.1)
The basic variables are the scalar fields, ¢k, the lapse and shift functions, N and N°¥,
and the 3-metric, v;;. The extrinsic curvature 3-tensor K;; is a generalization of the
Hubble parameter that appears in isotropic cosmologies:
goo = —N?* + 4" N;N;, gos = gio = Niy  9i5 = 7ijs (2.2a)
, 87‘,

K = (N + Ny ) /(2N). (2.2b)

It proves more useful to consider a Hamiltonian formulation. One defines the momenta
densities, 7®, [x7]*7 for scalar and gravitational fields, respectively,

" = A~ NY), [ = 22 Al - ), (23)
and the corresponding action is
T= / 2 (x §y + [F ]33 ~ NH ~ NH;) (2.4)
where the energy density, H, and the momentum density, H; are given by,
0=H= ;_:;;7_1,, (7jz.‘m[1f1']"j["'7]kl - %(f"):) * ;‘7_1”1“"2 + 712V (¢x)2.50)

ml 1. .
{ "15_:-71“(312) ¥ 51”’7"%,,—45&,5; }, (neglected terms)

0=H; = =2(yule"*) |, + (" Fyms + 7% s 5 (2.5b)
here x¥ = [x7]i7+,; is the trace of [#7])%, The long wavelength equation are obtained
by dropping all second order spatial gradients. In (2.5a), the terms in braces which
include the 3-curvature, 3R, and the scalar field spatial derivatives, v g, i®x ;/2, are
neglected.

The resultlng system is mathematically self consistent because the Poisson brack-
ets of the various constraints return the constraints:

{H(=), H(=")} =0, (2.6a)



(H(e), Ha(a)} = ~H(z") -8z — 2, (2.66)

[H(2), M@V} = Hyl) gtz — &) 4 Hile )5y (e = ). (260)

If one neglects the scalar fields, this system is equivalent to the large gravitational
coupling G = m3? — oo limit considered by many researchers.!®~1® (However, in
inflation models, scalar fields are essential to model primordial inhomogeneities for
structure formation.) Several authors works have attempted to formulate a quantum
limit, where unfortunately the momentum constraint was usually ignored (Pilati,'®
Teitelboim,'” SB1). In SB1, the classical system was solved, including the momentum
constraint, if the evolution of gravitational radiation was neglected. This special case is
the most relevant for stochastic inflation and will be considered from a different point
of view in Sec. III. In this paper, the classical system, including gravitational radiation
will be solved completely in several situations.

Unlike the case for pure general relativity, the first Poisson bracket vanishes be-
cause the Hamiltonian density is a function of ultra local values of the fields; i.e. it does
not depend on spatial gradients. If the shift function vanishes, then Eq.(2.6a) implies
that the energy constraint is preserved in evolution,

%(:') = {H("), / P=N(2)H(z)} = 0.

Since this true independent of the the momentum constraint, it is therefore possible to
solve the energy constraint and the evolution equations in isolation. Analogously, the
second Poisson bracket states that the momentum constraint is preserved in evolution
only if the Hamiltonian vanishes.

By taking variations of the action (2.4) with respect to the canonical variables,

one finds the evolution equations to be: (1) the definitions of the scalar and gravitational
field momenta,

(¢ — Nigpi) /N = 77 3n%s, (2.7a)
. 16 _
(%45 — Nijj = Nj) /N = —17 12 2[x7]3; — 777 ), (2.70)
mp
and (2) the evolution equations for the momenta:

129V

(1i'¢n _ (N‘-,rm)ﬁ_) N ==l (2.7¢)
) , _ |
( [;rt ]: _ (N"‘[ar‘f];).m+me[1r7];?‘ - N.?[""T]:n) /N =
e {::—2 ([f"]'"‘[fr’]zm - %vr"’) + %w"**?}- (2.7d)

The constraints (2.5a,b) follow from the variation of the lapse and shift functions.



In SB1, it was assumed that the traceless part of the gravitational momentum
density vanished so that [x7]¥/ = 777/ /3, In this case, the momentum constraint (2.5b)
reduces dramatically,

g(‘r"”’f’),e = 77 P s (2.8)

In fact, it can be solved exactly, implying that 4~1/2x7 is not an independent variable,
but rather is an arbitrary function of ¢; and possibly time, whereas y~1/2x% is given
by partial derivatives of that arbitrary function:

3m3
8w

_r_nzl 8H(¢‘H t)-

T (2.9a)

yWix = - R H(gi,t), 7 =

Physically, H(¢x,t) is the Hubble parameter
a i
H = (2 1n(y7) - NE)/(3N)

which measures the rate of change of the log of the scale factor, In(a) = In(7)/6.
One can show using that the evolution equation for #7 that there is no explicit time
dependence in the Hubble parameter, # = H(¢x). (Of course, since ¢ depends on
time, H depends implicitly on time.) Substituting these expressions for the momenta
into energy constraint (2.5a) leads to a separated Hamilton-Jacobi equation,

8
3mi,

2
H? = -11%% (gg)z + V{(#x), (No Evolution in Gravitational Radiation), (2.96)
ke
Hence, in SB1, one first integrated the momentum constraint, and then solved the
energy constraint as well as the evolution equations. Unfortunately, by assuming the
traceless part of the gravitational momentum tensor vanishes, there is no evolution
in the gravitational radiation. When one relaxes this assumption, one finds that the
momentum constraint may not be salved using the simple method that led to (2.9a).
However, the basic ingredient, a Hamilton-Jacobi-like equation has mysteriously ap-
peared, although we have not explicitly employed a canonical transformation. In fact, I
will use canonical transformations to incorporate the effects of gravitational radiation.

Before one proceeds further, a simple analogy proves instructive. If one considers
the set of all points in Euclidean 3-space a unit distance from the origin, 2? +y? +2* =1,
then there are only 2 degrees of freedom and it is convenient to introduce spherical
coordinates, # and ¢, with z = sinf cos¢, y = sinfsing, z = cosf, so that the constraint
is satisfied. In the same way, the energy constraint (2.5a} is telling us that one should
choose new canonical variables so that the Hamiltonian vanishes strongly. Since the
Hamiltonian generates time evolution through the Poisson bracket relations, the new
canonical variables are constant in time, although they may be spatially dependent.
The only equation that remains to be solved is the momentum constraint which can be

- conveniently expressed as a function of the new variables (Sec. IV).

As the initial step, I review the theory of canonical transformations for gravity,'®
which is quite similar to the classical treatment.'? One defines new fields, denoted by a

tilde, ¢i(t, z), x4 (t,2), %i;(t, 2), [77]*(¢, =), so that Hamilton’s equations are preserved.



This implies that the new action has the same form as the original except that it may
have a total time derivative added to it:

I= /d‘:(w**ék + [x"95;; - NH - N‘ﬂ,-) + /dts, (2.10)

where S is a three-functional which depends on @, ¢k, 7:; and ¥:;. It will be assumed
that S does not depend explicitly on time. In this sense, the theory of canonical
transformations for gravitational fields differs from standard theory.

Applying the chain rule,

. . . 65 55 ;v 085 oo 85 ;oo
S:/dz[6¢k(:)¢k(t,z)+55‘:(:)%(% )+5Tij(3)7"(t’ )+6'?i1'(2)7”(t,()]’ )
2.11

and comparing (2.10) with (2.11), one derives the canonical transformation linking the
various variables,

Hz) = (=), Hi(z)=Talz), (2.12)
P = 95 (prii w88 o) = - 35w _ %S
=@ "V T hmm T T gE Fale)

The new variables will be chosen so that the new Hamiltonian density vanishes func-
tionally, ﬂ(qﬁk(a:),vre"(z),ﬁr;j(z), [x%]%(2)) = 0, (in the language of Dirac,?Y it vanishes
strongly), leading to the Hamilton-Jacobi equation,

mi, 8vii(2) 6v(z)

O () e ule)) = 0 (213)

[vilz)ralz) - %7‘-,-(3:)7,‘,(::)]

+

It will be assumed that the momentum constraint vanishes weakly but not strongly;}l
i.e. it constrains the new canonical variables, but its Poisson bracket with other
fields will not in general vanish. A redundancy theorem advanced by Moncrief and
Teitelboim?! claimed that if S satisfied the energy constraint, it automatically satis-
fied the momentum constraint. This theorem cannot be applied for long wavelength
fields because the Poisson bracket (2.6a) vanished, whereas in pure Einstein gravity it
returned the momentum constraint.®

Since H = 0, the new fields are in fact constants in time if the shift func-
tion vanishes. For example, the time evolution of ¢,(z) is generated by the Pois-
son bracket relation with the new Hamiltonian, ¢,(z) = {#w(z), Hom}, where Hom =

J #z(NH(z) + N*Hi(z)) vanishes. (See Sec. IIL.A for the case where the shift does
not vanish).

Of course, the great.simplification that arises for long wavelength universes is that
there is no causal contact between different spatial points. Each spatial point evolves



as an independent homogéneous universe. Mathematically, it is possible to write the
generating functional S as a sum over all independent points. One attempts the ansatz,

S = —T—i /d"’zﬁﬂ(m(z),hij(’:);&k(z)’ﬁu(”))’ (2.14a)

where hy; = ¥71/3v;; and hy; = 7-1/3%;; are conformal 3-metrics, each having unit
determinant. The function, H, which will be referred to as the Hubble function, has
no explicit sp_atia._l dependence except through the fields themselves and the additional

parameters, ¢, hi;:
H = H($x, hiji dx: hij)-
Applying the result that

oH o -1/3 aH if
85 =7 [3h,',' 3 Ohp K ]

one finds that the Hubble function satisfies,

8H 8H 1, OH.:, mbh 8H,1 8
9 B~ 3 Mi3hy;) | T Tom (5 T

8 'y
H? = Ei[hj,,h,,- 21’V(qs;,,), (2.145)

Im

which will be referred to as the separated Hamilton-Jacobi equation (SHIJE). The deriva-
tives appearing in (2.14b} are determined by assuming that all the h;; are independent;
only after differentiation does one set det(h;;) = 1. The momenta are given by func-
tional derivatives of Hamilton’s principal functional S: :

E”]"” = %:’iﬁ [%H’r"" +9712 (ggj - %—g%huh‘j)], (2.14c)
[ =2 1 2L o), (2.144)
xh = — %ﬁ%, (2.14€)
xH =—’;‘£’; —,ng'. (2.14f)

It is useful to note that the trace of the gravitational momentum tensor is proportional
to the Hubble parameter,

2
3m?

o VIH. (2.15)

Y = gyl = -

The SHIE contains no reference to spatial variables nor to the time coordinate;
it is actually solved in fleld space where ¢ and h;; are the intrinsic variables. By
assuming that the Hubble function depends on 7;; only through the combination, hi; =
-t 3+:;, one has effectively decomposed the gravitational momentum tensor into a
trace contribution (the first term on the right hand side of {2.14c)) and a traceless
part which describes evolving gravitational radiation. Similarly, by assuming that the

8



H depends on #;; only through fz.-_,', one finds that the new gravitational momentum
tensor is traceless, [r1]%h;; = 0.

The determinant of the 3-metric does not enter in (2.14b); this gravitational
degree of freedom has been separated from the others using the ansatz (2.14a). For this
reason, v is the natural time variable for classical long wavelength fields. For example,
one may invert the canonical transformation (2.14¢-f) to obtain ¢; and k;; as a function
of v and the new canonical variables, which are constants if the shift vanishes; hence v
is the obvious time choice. However, when one includes quantum diffusion from short
wavelength fluctuations, then T = In{H~'/%) is more useful.!®

In summary, eqs. (2.14) and the momentum constraint (2.5b) are the fundamental
equations of this paper. The evolution equations (2.7) will be of secondary importance.

The goal then is find solutions of (2.14b) which depend on arbitrary parameters, ¢,
and ¥;;, which are the new canonical variables. The momentum constraint will then be
solved in the last step, as illustrated explicitly in Sec. III and Sec. IV.

III. LONG WAVELENGTH SCALAR FIELD SOLUTIONS
NEGLECTING EVOLUTION OF GRAVITATIONAL RADIATION

If one neglects the evolution of gravitational radiation, then one can solve® the
long wavelength problem of scalar fields interacting through a potential by finding solu-
tions, H = H(¢y) of the separated Hamilton-Jacobi equation (2.9b). The momentum
constraint is automatically satisfied. Unfortunately, this technique does not apply to
the case where the Hubble function depends on the conformal 3-metric h;;. This is the
situation where the evolution of gravitational radiation is important. In this section, I
will examine the problem of solving n scalar fields without gravitational radiation from
a different vantage point: one looks for n—parameter solutions of the SHIE equation.
These solutions will be called complete because they generate a canonical transforma-
tion which describes the general evolution of n scalar fields. This method is sufficiently
powerful to encompass gravitational radiation as will be shown in Sec. IV.

In Sec. A, the general theory of scalar fields interacting with an arbitrary potential
is developed. In Sec. B, examples of complete solutions of the SHJE are given for m
massless scalar fields. In general, it is shown how the m massless fields may be reduced
to a single massless degree of freedom. In Sec. C, it is shown, how all the solutions
of the SHIE for a given potential may be obtained from a complete solution. In Sec.
D and Sec. E, a complete solution is given for two scalar fields, one massless and the
other interacting through an exponential potential.

A. General Theory of Scalar Fields with an Arbitrary Potential

If the Hubble function does not depend on the conformal 3-metric, A;;, then the
SHJE for n scalar fields and gravity simplifies to eq.(2.9b}, which was applied extensively
in SB1. The gravitational momentum tensor is then proportional to the 3-metric,

[+ = m_'zP H i
wY = g VY H A



It will now be assumed that the Hubble function depends on n independent parameters,
¢kak =100, -
H = H(pu dv). (3.1)

Such solutions are typically not unique. According to (2.14), the new parameters will
be interpreted as new canonical variables, whose conjugate momenta, 7% are given
by (2.14f). After substitution of eq.(2.14e), one finds that the momentum constraint
(2.5b) reduces to,
2
(z) = TP L2
H,(.’E) = dr Y ( R a¢k ¢k,1)'

In contrast to SB1, I will not assume that any of the new variables are homogeneous.
Expanding the spatial gradient of the Hubble parameter,

oH 8H
Hi=—0¢r:i+ —
T Ok P B¢r

one finds that the momentum constraint may be written simply in terms of the new
variables,

br,i» (3.2)

0 = Hi(z) = 7% fr,i- (3.3)

The new Hamiltonian then contains only a contribution from the momentum constraint,
ﬂam = /d:!l:Niﬂ'&" &k,i- (3.4)

The time derivative of the new variables are then given by Poisson brackets with the
new Hamiltonian:

$p— Nigpi=0, %% ~ (N*'fr%) =90. (3.5)

i

Thus in general, the new canonical variables are not constants in time. However, eq.(3.5)
states that they are indeed constants along trajectories normal to the time hypersurface.
For example, if the spatial coordinates are chosen so that the shift function vanishes,
then it is true that ¢y(z) and ##*(z) are constants for a fixed spatial coordinate. Thus,
it is not necessary to assume that the shift vanishes, although it simplifies the analysis.
From now on in this section, N* will be set to zero.

The momentum constraint (3.3) may be integrated by dividing out by one of the
new momentum variables, say *%1, giving

] n eds
$ri=-3 " us (3.6)

F
k=21r !

whose solution implies that ¢, is an arbitrary function of the remaining fields, b, k=
2,0y

‘51 = f(é?a &3, ---;&n), with 61: = &k(f), k= 2,.,n. (37‘1)
As a result, one must identify,
i 1 of b1 = b
7 ¥ = ——— k=2,..,n, where 7 =x%(z). (3.75)
Oy
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7% and bk, k=2,...,n are spatially dependent.

For a single scalar field, the integral of the momentum constraint simplifies. ¢
can be taken to be spatially homogeneous whereas x% = ﬁ'&(z) can have an arbitrary
spatial dependence. In this case, uniform Hubble surfaces are the same as uniform ¢
(comoving) surfaces. The constant parameter ¢ first introduced by Bardeen, Steinhardt
and Turner!* in linear perturbation theory to describe metric fluctuations in inflation
models is defined to be the variation of In,/¥ on a uniform H slice,®

(=) = In[A(H, =)/(yF(H, 20)] = In[x?(z)/x*(z0)], (Single Scalar Field) (3.8)

(However, note that this quantity is three times their original definition: { = 3(psr.)
Here, zo is some fixed fiducial point. Eq.(3.8) follows from the definition of the new
canonical momentum (2.14f). It is important to note that  is constant in time even
if the Universe is not inflating because the present formalism is valid whenever the
wavelength of the fluctuations is larger than the Hubble radius. (An example of a non-
inflating universe is given in Sec.D.2). For multiple fields, { as defined above is not
constant for all times. However, if one field dominates at late times, then asymptoti-
cally ¢ approaches a constant. For multiple fields, one should in general characterize
the system using the constants @x(z), 7#(z) which are constrained by (3.7). They
characterize both adiabatic and isothermal fluctuations.

In summary, eqs.(3.7a,b) represent a general solution of the momentum con-
straint: the spatial dependence of x*' and @y, k = 2,7 is arbitrary whereas the remain-

der of the scalar field variables, ¢, and 1r'$", k = 2,...,n, are constrained in terms of the
arbitrary function, f. Using the canonical transformation (2.14e,f), one can determine

the evolution of ¢x(t,z) and x#*(t,z) as a function of -y and the constants dr(z) and
x4 (z) (assuming the shift vanishes). v then becomes the natural time parameter.

B. Complete Solutions of the SHIJE for Massless Fields with a
Cosmological Constant

The separated Hamilton-Jacobi equation of 7n massless scalar fields evolving un-
der the influence of a cosmological constant (neglecting gravitational radiation) is easily
solved and provides one with a simple class of canonical transformations. This example
also illuminates the more general situation where gravitational radiation also evolves.

1. Solving the SHJE for Massless Fields

Neglecting gravitational radiation, 3H/8h;; = 0, the SHIE describing m massless
scalar fields evolving through a constant potential, V(¢x) = V5 is

2 _ mh ., 8H 87V,

2
= . 3.9
127 k=1(3¢") 3mi (3.9)
For a single scalar field, the equation may be rearranged,
d
dp = —=F il (3.10)

T ViznJHI-H!
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and it is easily integrated:
H($,$) = Hocosh[v12r(¢ — §)/mp| where Hj = 8V, /(3m3). (3.11a)

The solution is a function of an arbitrary parameter ¢. The relationship between (¢, %)
and the new canonical variables ($, 7?) are given through egs.(2.14e,f), leading to

¢ = ¢ Josinb™ [\/ZE»,-m,,&/(Hom,,)], 7 =n (3.116)

For a fixed spatial coordinate, the new variables are constants, and eq. (3.11b) describes

how the scalar field evolves in time which can be taken to be y*/%. ¢ is the final value
of the scalar field as v — oo.

According to Sec. A, the momentum constraint can be satisfied if ¢ is homo-

geneous while #® has an arbitrary spatial dependence. It is certainly unusual that at
late times, ¢ assumes a uniform value. This is a peculiar feature of assuming only a
single massless scalar field. In this case, the momentum constraint is actually a singular
equation. Another possible solution of (3.3) is 7% = 0 and ¢ = ¢(z) having an arbitrary
spatial dependence but no time evolution. This solution cannot be obtained smoothly
from the other class of solutions if one employs a single scalar field. When one includes
other fields, then the spatial dependence of ¢; at late times is certainly allowed (eq.

(3.7)).

Form s-ca.lar fields, one may easily guess a solution which depends on m arbitrary
parameters, ¢x. One simply takes the solution of the one dimensional problem and

replaces ¢ — ¢ by [T m,($x — $&)?]*/? which will be denoted by |6 — £|
H(¢k, $1) = Ho cosh[v12x|¢ ~ ¢|/mp]. (3.12a)
The validity of the solution may be justified by explicit substitution in the SHIE.

The solution is a direct consequence of the rotationally symmetric form of the SHIE
equation. The old variables are related to the new ones through,

&s z .
o mp T oo op (X a3y d : ¢ @
P = ¢p — —— sinh™" |4/ — w®|/(mpHy)|, with =% =%, (3.12b
k= P Jion = [\/ 37 |w®|/(mp Hy)) ( )
This equation describes the evolution of ¢x(2, z) and #%*(¢, z) in time at 2 fixed spatial
coordinate. Surfaces of constant H are concentric circles about the point ¢ as shown in

Fig. 1. The physical trajectories are straight lines which are orthogonal to the circles.

In order to verify (3.12b), one begins with the canonical transformation (2.14e,f).
Because of the symmetry between ¢, and ¢y, the canonical transformation eq.(2.14e,{)
implies that x® = #w%+, and that

&u-ﬂ?’_’_ 1/2%__ _i_ /2 -_7-' s _._-.‘
T g Y 3 Homp 7' /* sinh[V12rlg — ¢l /ma] (¢ - ge)/1¢ (3¢1.)
.13

12



one squares both sides and then sums over the index k, giving
(x¥] = 4/ o= Homp 7/ sinh [VIZeI§ - §I/ms], (3.14)

where ]w’;| denotes (3, w‘i"z)‘/’. Dividing eq.(3.13) by (3.12), one finds that x® and
¢ share the same direction,

A C )

|x9| 16 - ¢l
Solving for ¢ and then applying (3.14) leads to the stated relationship between the
new and old variables, (3.12b).

In this instance, it was trivial to guess the solution (3.12a) of the SHIE for
multiple fields given the one dimensional solution (3.11a). However, it will prove useful
to develop more systematic methods which will guide our analysis through non-trivial
problems. ‘

2. Integration of SHIE through Evolution Equations

Consider a solution of the SHIE equation which describes trajectories emanat-

ing from a single point in field space, ¢, = Pr. Given some initial direction for the
momentum of the scalar field II**, one may integrate the equations of motion,

w2 -3 g = () [ 4 ) (3.15a)
%& PRV (3.155)

gr_ - _i:_;.,llz,rv (3.15¢)

"";’ —o. (3.15d)

to find H as some function of time. Note that =7 is actually negative for an expanding
Universe. The SHIE will then be integrated through the method of characteristics.
Each point ¢ in the vicinity of ¢ will have a trajectory passing through it, and one
associates with it the value of the Hubble parameter that a trajectory has when it
passes through that point, H = H (6) To determine the trajectory, one notes that the
solution of eq.(3.15d) is trivial implying that

x% = ghe (3.16)

where 7%+ are constant parameters. In order to integrate the remaining equations, one
must decide on a choice of time parameter, and the natural choice is 4 itself because
the Hubble parameter is a function of it, eq. (3.15a). In this case, eq.(3.15¢) which
defines the momentum of 7 becomes the definition of the lapse function,

N = -—1";??1—7—‘/’/1:* (3.17)
167 ' )
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Equation (3.15b),

mp /3 o d(y /1)
270 [3(e#) T+ W)

may then be integrated giving ¢ as a function of 7, eq.(3.12b). I now wish to determine
the Hubble parameter at point ¢, given that the trajectory started at ¢x. This amounts

to finding an expression for v along a fixed trajectory. Subtracting &4, from both sides of
(3.12b), squaring and summing both sides, one rederives (3.14) which when substituted
into (3.15a) leads immediately to H = H(¢x), eq.(3.12a).

de = ~(

1/2

3. Reduction of the Number of Degrees of Freedom

From the solutions of Sec. 1 and 2, one sees that m scalar fields essentially act as
a single scalar field. This holds more generally even if there are additional scalar fields,
¢k, k = m + 1, m + n which interact through some potential, V = V(dmtLs s Pmin)-
One may reduce the m massless degrees of freedom to single one by considering solutions
for the Hubble function of the form

H= H(u, ¢m+1, reey ¢m+ﬂ.)s where u = [Z(¢k - &k)z]lﬁ' (3.18&)
k=1 :

The reduced SHIE then depends on one massless field, u, a.nd the n additional fields,

2 8H ™ 8H.i, 87
HY = BTy il E V(bmrtsBrmin)e 3.186
121‘.[( Ju +k§+1(a¢k) ]+ 31’!’1.1? (‘;b +1» ¢ + ) ( )

One need only find a solution of (3.18b) depending on n independent parameters to
define a complete solution of the original SHIE because (3.18a) already depends on m

parameters, d;l, ey $m, through u. Such a reduction of the number of variables may be
effected whenever there is a symmetry in the system. In this case, the massless scalar
fields are rotationally symmetric (as well as translationally symmetric, although this
would suggest a different class of solutions; see, for example, Sec. E).

Massless degrees of freedom may become important in an-epoch after inflation
if they develop a potential at some lower energy scale. These fluctuations are called
isothermal fluctuations. However, at late times during the inflation epoch, when all
decaying modes are no longer important, the evolution is trivial. All the massless fields
have an arbitrary spatial dependence which is constant in time. The field that drives
inflation has a non-trivial potential. After the decaying modes have died, it evolves
independently of the massless degrees of freedom and may be treated as a single scalar
field.

C. General Solutions and Green's Function Solutions
of the Separated Hamilton-Jacobi Equation

An n-parameter solution of the SHIE for n scalar fields is complete in the sense
that it characterizes all possible solutions to the equations of motion. For example,
it will be shown how almost all solutions of the nonlinear SHIE may be derived from
such a solution. This section is more abstract than the others and should perhaps be

14



skipped over on first reading. It is nonetheless important because it links the analysis
of this paper with that of SB1.

Given a solution, eq (3.1) of the SHJE equation which depends on n constant
parameters, é1, | = 1,...,n, one may obtain another solution by allowing the é1 to
depend on ¢ in a very specla.l way. The ¢, will be chosen to minimize (or maximize)
the Hubble function, H (gbk,qh), holding ¢ fixed, provided that ¢ is constrained to

lie on some fixed su:fa.ce, g(¢1) = 0. Hence for small arbitrary variations dé; of the
parameters, one requires that

dH = (‘;_g)qbd&, =0. (3.19)

The resulting Hubble function H (g, $i(¢x)) is also a solution of the SHIE because its
partial derivative with respect to ¢y,

oH

ga)aﬁ(

8H, 8¢ _,OH

bE)ﬁ&I = (35)s (3.20)

F.] -
g, 2 (# #(8)) = (

reduces to the standard partial derivative holding ¢, fixed by virtue of (3.19).

The extrema procedure is a powerful method of generating solutions of the SHJE.
It will be illustrated using the complete solution for m massless scalar fields, eq.(3. 123)

I wish to find a solution of the SHIE (3.9a} which has the value Hy at the point "
and which has trajectories emanating from ¢ in all possible directions. In analogy to
the terminology of linear differential equations, such a solution will be referred to as

the Green’s function, and will be denoted by H(¢|¢, Hy). The parameters ¢ appearing
in the complete solution (3.12a) will therefore be constrained such that the Hubble

parameter has the value Hy at point . Thus, 4 must lie along a sphere centered about
Jv‘ with radius,

P2 19~ ¢l = ook ™! (Hy/Ho). (3.21)

The Hubble parameter H(¢|¢, Hy) at point & is just the minimum (or maximum) va.lue

of {3.12a) given that gf) is restricted by (3 21). Since in this particular case, H (¢, q&) is

a function only of the distance between c;b and qS, it is clear geometrically that ¢ must

be collinear with qb and 1,1;, and the point giving the minimum (maximum) value of the
Hubble parameter is (see Fig. 2}

$=9 (¢~ )16~ 4. (3.22)
The value of the Hubble parameter is then

H(314, Hy) = H($,§($)) = Hucoshu/ln—f%l& — | F cosh™ (Hy/Ho)|-  (3-23)

which may be shown explicitly to be a solution of the SHIE satisfying H(¢= 1/:;!1,5, Hy) =I
Hy.
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The Green’s function solution allows one to solve the initial value problem for
the corresponding SHIE. Given that the Hubble parameter is constant, H = H', on
some 1 — 1 dimensional surface, g(¢) = 0, what is the solution of the SHIE equation
in the vicinity of this surface? At the point &, the required Hubble parameter is the
minimum (or maximum) value of of the Green’s furiction H(g|¢, Hy = H '} where one
considers all variations of the parameters ¥ which lie on the surface g(¢) = 0. The
resulting solution of the SHIE satisfies the initial data, but it need not be unique, as
the extrema problem may have several solutions.

The extrema method of obtaining solutions to the SHIE is not an obvious result,
and one may wonder how it was motivated. In fact, the momentum constraint (ne-
glecting gravitational radiation) suggested such a property. Using (3.3}, one may write

the momentum constraint as (2£)dé, = 0, which is just (3.19). The interpretation is
B¢y

clear: assuming that ¢y, is fixed, H is minimized respect to variations of @y which are
consistent with some constraint on ¢, say (3.7a).

In SB1, it was shown that if one neglected gravitational radiation, then the Hubble
parameter was only a function of the scalar fields, ¥ = H (¢-;) There was no explicit time
or spatial dependence. However, the solution (3.1} of the SHIE depends on parameters
¢ = ¢w(z) which are allowed to have spatial dependence through the integration of the
momentum constraint (3.7b). How does one reconcile the two approaches? First one
must realize that the function of two arguments H (¢, ) that appears in (2.14a) and
(3.1) actually generates a canonical transformation which solves the long wavelength
problem. In Sec. II of SB1, the Hubble parameter actually referred to H(t,z) =
—8x/(3m3,)y~1/2x7 expressed as a function time and space. In general, these two
functions are different (for example, they require different input arguments), but only
after one solves for the evolution equations as well as the constraints are the two the
same. For example, one may use the canonical transformation (2.14f) to write the
integral of the momentum constraint (3.7a,b) as

oM OH _ of . i o o
3‘5“/3&"‘— atf)j, ith ¢1 = fd2,¢3,--,$n)- (3.24a)

Consequently, one may solve for ; = ;(q;) in terms of ¢, and then substitute the result
into (3.1) to find a solution of the Hubble parameter which depends only on the scalar
fields,

H = H(§) = H($ H8)- (3.245)

In fact the resulting Hubble function is just that given by minimizing (3.1) where d is

allowed to vary on the surface given by (3.7a), 0 = g(@) = ~é1 + F( D2y B35 s én). To
see this, it is useful to introduce a Lagrange multiplier, A and then minimize

T

H(¢,$) - Ag(4).
Variations in ¢ holding ¢ fixed imply that

éH _ , 8H _,46f
8¢ By LN

1

, k=2,.,m
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Combining these two equations by eliminating the Lagrange multiplier leads directly
to eq.(3.24a). Thus after one solves the evolution equations, the Hubble function (3.1)
and that used in Sec. II of SB1, eq.(3.24b), are identical.

This section has shown how to derive solutions of the SHIE. From a complete solu-
tion, one constructs the Green's function, H(¢|y, Hy) describing the solution with tra-
jectories of all pessible directions emanating from the point ¥ with H(§ = ¢, Hy) =
H,. The Green's function then allows one to solve the initial value problem, where the
Hubble parameter is constant on some initial n — 1 dimensional surface. In this way,
one can obtain all solutions of the SHJE from an n-parameter solution. In addition,
one may use the extrema method to show that the technique of solution applied in SB1
is actually consistent with this paper.

D. Scalar Field Interacting via Exponential Potentials

The evolution of a single scalar field will be considered when the Universe under-
goes a phase transition from an inflation epach to a typical Friedman-Robertson- Walker
era where the scale factor varies as a(t) = 41/8 « tP, p < 1. The transition will be
modelled by patching together two exponential potentials.

In Sec. D.1, the evolution of a scalar field under an exponential potential will be
quickly reviewed. In Sec. D.2, one will apply this result to model a phase transition.

1. Review of a Scalar Field with an Exponential Potential

The SHIE of a single scalar field interacting with an exponential potential,

V(9) = Voexp(-y/ “‘—p-"—qi), (3.25)

mp

can be solved exactly.® Here the constant p describes the flatness of the potential. In
the limit that p — oo, the slow-roll approximation, Hsg(¢) = (87V()/(3m%))!/? is
an exact solution. A one parameter solution which is valid for all positive p was given
in SB1:

8rVy 172
Imj} )

H($,¢,p) = ( exp(— 4—: 11-%) cosh(u). (3.26a)

where u is a function of ¢, ¢ and p defined through,
mp 1 1
vizn1-1/(3p)"  3p

Once again, the canonical transformation is given by differentiation with respect to ¢
and ¢,

In |cosh(u) — /3psinh(w)|]. (3.266)

$=¢- [u+

ir ¢ ; m

¢ _ 1/2 _ ; ¢ _ @ /2
7% =42 ex -— —}sinh(z), P =7® — — H.
Vov p(—+/ » m?) (u) e

As u approaches tanh~'(1/,/3p), the Hubble function approaches the attractor solution,

8rVy 1/2 B il_‘?_ri
M%(1—1/(3p)) ex( p mp
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This solution which is valid for p > 1/3 describes the power-law evolution of the Uni-
verse, a(t) o tP, where the time parameter corresponds to a choice of unit lapse function
in the metric (2.2a) (synchronous gauge).

The parameter u has physical significance as it measures the deviation of ¢ from
the attractor solution momentum density:

u = sinh ™ [(2Vp) /%4 'Ifzexp(\/z—;?i) gl (3.27a)

mp

For u < tanh~!(1/4/3p), the momentum of the field is below that of the attractor, while
the opposite is true for u > tanh~'(1/,/3p). Using (3.26a), one obtains the following
expression for the new canonical variables (§, %),

T _ ip 1 1 u) — . u
¢p=0¢+ J1i2r 1 - 1/(3p) [u + /3p In |cosh(u) \/53111]1( )” (3.27b)
x® = =®[1 - ﬁ_p—sm] (3.27¢)

The solution (3.26) of the SHJE is the prototype for numerous others.

2. Phase Transition in the Universe

A phase transition in the Universe may be modelled by considering a single scalar
field interacting through the potential,

V6 =Vl [ £, g
- 167 ¢
= Voexp(- 1 mp) for ¢ > 0, (3.28)

composed by joining two exponentials with p_ > 1 for ¢ < 0 and p; < 1for ¢ < 0. For
negative values of ¢, the Universe inflates, a(t) o tP-, whereas for positive values it
evolves with a different power-law index, a(t) o t?+ which imitates a matter dominated
(p+ = 2/3) or a radiation dominated (p; = 1/2) Universe. A solution of the SHIJE

which depends on single parameter ¢_ is just

Hoi(¢,$-) = H(py¢_,p-), for g <0,
= H(¢, $+($—)vp+)a for ¢ > 0, (3.29)

where the function H was given in eq.(3.26). &,(é.) is a function of @_ which is
parametrically given in terms of ug,

=¢. - =P L U 1 cosh(ug) — sinh{ug)i|; a
0= ¢~ 2Ly [t + g Inleosh(uo) - +/3psinh(uo)l];  (3.300)
1

[uo + = In |cosh{uo) — 4/3pssinh(ug)|].  (3.308)

V3py
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Thus given ¢_, one solves for u.;(q“s,) and then substitutes in (3.30b) to find by =
é+(8-)-

This solution is found by joining continucusly across ¢ = 0 the solutions, H{#, PR |
and H(#, d4,p4), for two exponential potentials. Since these solutions are parametrized
by u in (3.26), it proves convenient to assume that the same parameter describes both
solutions, and that it is continuous at the junction ¢ = 0 where u = up. Continuity of
the Hubble parameter at ¢ = 0 then leads to relation between ¢_ and é,, eq.(3.30).

In Fig. 3, the Hubble parameter Hpg(gb,&_) is plotted for the phase transition
between p = 2 and p = 1/2. For ¢ < 0, the scalar field evolution was given by the
attractor solution, §_ = —oo. After ¢ = 0, the Hubble parameter quickly decays to the
new attractor solution. The derivative of the Hubble parameter, (8 H/8¢), is continuous
at ¢ = 0.

It should be emphasized that 7#-(z) = m?P/(41r)(3HP¢/3q3_) is constant in time;
there are no jumps at ¢ = 0. This is a general feature for Hamilton-Jacobi theory. In
particular, for a single scalar field, one should note that if the fluctuations are initially
Gaussian, then they remain Gaussian in evolution independent of the choice of potential
V(¢). The treatment of a phase transition presented here has proven to be relatively
simple. Analogous analyses using linear perturbation theory???3 are actually more
complicated because one must make a gauge choice. -

E. Multiple Scalar Fields with Linear In V()

If the logarithm of the potential for multiple scalar fields is linear, In V(¢s) =
Y., axPw, where the a; are constants, one can derive a complete solution of the SHIE.
For n scalar fields, the canonical transformation (2.14e,f) yields 2n constants of inte-
gration. By considering the asymptotic behaviour of the fields after all decaying modes
have died away, one obtains a nonlinear generalization for { for multiple scalar fields
that characterizes the adiabatic initial conditions for structure formation.

For simplicity, I will consider only two scalar fields interacting through the po-
tential,

V(é1,¢2) = Voexp(- 1%'-:5;’; . (3.31)

Of course, by rotating the fields (¢, ¢1), one can obtain the general form for linear
In V(#y, ¢2) but the expression (3.31) clearly identifies the inflaton, ¢;, and the massless
scalar field, ¢;. The resulting SHIE is,

ma  OH aH 2 8x ¥ 167 ¢
1T T+ W ey (/2T 22,

_ 2
= Tor [(a¢1) +(a¢3 3md, O F » mp (3.32)

One of the reasons for considering a massless scalar field is that one may reduce
the classical gravitational degrees of freedom to a single massless scalar field (Sec. IV).
The analytic solution presented here may also be used to construct models with non-
Gaussian fluctuations for structure formation.?

1. 'Complete Solution of the SHIE
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A complete solution the SHIE (3.32) which depends on two constant parameters,
b and m is:

H(¢1,¢2:b,m) = (%)1/3 m(za(;)p(T?J:)sp exp(_‘/—g%)cosh(u) (3.33a)

where u is a function of b, m, ¢, and ¢; which is defined implicitly through,

V12x(p2 — m¢y — b)/mp = —3;/??1

[u\/r;’(ap —1) + 3p + In|cosh(u) — sinh(u)y/m2(3p - 1) + 3p|]. (3.33d)

X

For m = 0, this solution reduces to the single scalar field result, eq. (3.26). The
Hamilton-Jacobi map for p = 3 is shown in Fig. 4, where the solid lines are surfaces of
constant Hubble parameter and the broken lines are the trajectories. The trajectories
start at the lower right hand corner and move to the top of the figure. Initially, the
kinetic energy of the fields is much larger than the potential energy, and the fields evolve
like two massless fields. The slope of the trajectory for large ¢, is —1/m. In Fig. 4,
m = 1 is plotted. Because the Universe is expanding, the velocities are damped, and
the massless scalar field ¢, reaches a constant value while ¢; moves to larger values
as the potential drags it downward. The surfaces of constant Hubble parameter are
orthogonal to the trajectories. '

The solution {3.33) may be verified by straightforward differentiation, but the
derivation proves instructive. The first step is to remove the explicit ¢; dependence in
the SHIE by defining a new dependent parameter, h( ¢y, ¢2):

H{¢1, 1) = (Sw_Vo)),/: exp(— %ﬁ) h(b1, $2)- (3.34a)

3m3, mp

which leads to the following equation:

m3 8h .2 8h 47 h |2

This equation is translationally invariant which suggests a complete solution of the
form,

h = h(v), with, v=+V12x(¢; — m¢, — b)/mp, (3.35a)
where b and m are constant parameters, leading to an equation in a single variable, v:
8h.2 Ok h |2
R =m?(— - —= . 3.35
(G 4 (G - )41 (3.35)

Again, I have reduced the effective number of degrees of freedom by taking advantage
of a symmetry. After solving for 8h/dv,

1/2

8h
SR (m?+1)"4% kA 1,

dh ,m*(3p—1)+3p
5o = Jap(m T 1)

3p(m? + 1)
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one can make a change of variables from & to u,

= (3p)(m2 + 1) coshnlu .
" \/(mﬂ(spa D+ a9 o) (3.36)

leading to the integral

VI
3p—1 (3.37)
[2v/m?(3p — 1) + 3p + In|cosh(u) — sinh({u)+/m?(3p ~ 1) + 3p].

v(u) = —

Combining (3.34a), (3.35a), (3.36) and (3.37), one obtains the final expression for the
Hubble parameter, eq.(3.33).

A surface of constant Hubble parameter, H may be plotted, if, given, ¢;, one
solves u through

_ H 4r m?(3p -1} + 3p
u = cosh™! [W exp(\/;qbg /mp) ‘/ o+ 1) |’ (3.38a)

P

and then ¢y is calculated through

mp

V127

b1 = (¢2 —b— 2 o(u))/m (3.385)

where v = v(u) was given in (3.37).

2. Constants of Integration for Cosmology with Linear InV(¢g)

The canonical transformation is obtained found by straightforward although te-
dious differentiation using (2.14e,f) and the results are given in Appendix A, eq.(Al).
. For future applications, it will be useful to invert the transformation to obtain expres-

sions for the new canonical variables b, m, 7%, #™ in terms of the old variables ¢, ¢;,
D1 b3,
w1, r¥;

1 2 2 167 @2 1172
b __ 3 -2 b2 V.
" =7 - — + T -+ 27 oexp(— _— (3.39a)
-\/3p[ ( p mp )] ’
rd
m= - (3.39b6)

It is convenient to introduce auxiliary fields, u, v,

1

v(3p—1)(m? +1)

u = sinh ! — sinh ',

4
v=[2(3p- 1)%] Y /m?(3p— 1) + 3pm~1 4 1/? exp(“—;—%)vr"",
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in which case the remaining new canonical variables are,

pmi 1

“4r (3p-1) _
[uy/m1(3p - 1) + 3p + In |cosh(w) — sinh(u)y/m?(3p— 1) + 3pl].  (3.39¢)

b=¢; — m¢ +

m __ b _ PTn?P m mu .39d
™ = 7"{¢ o (m2(3p—1)+3p+ \/m3(3p—1)+3p)}' (3.39d)

Eqs.(3.39a-d) are the 4 integration constants that completely characterize the evolution
of the two scalar field system with potential (3.31).

The equations for the trajectories in scalar field space, ¢; = ¢2(¢1 ), follow by
eliminating the auxiliary variable u from eqs.(3.39¢,d). Given ¢;, one first defines
u (which now is simply interpreted as some intermediate parameter) and then one

determines ¢;:
4w 7 1
u =g+ 4/ = Vm*(@p—1)+3pm7 (1~ Pimin)y
pmp

mp

¢z =me + b+ \/I_ZEU(H)’ (3.40a)

where once again, v(u) was defined in (3.37) and uo = tanh™'[m*(3p — 1) + 3p] '/,
and

Tm m m

2
pmp
min = = + + . 3.406
# b iz [m’(3p - 1) 4+ 3p \/m2(3p—— 1) + 3pu0] ( )

The late time evolution of the fields determines microwave background fluctua-
tions as well as the initial conditions for structure formation. As ¥ — oo, the decaying
modes are no longer dynamically important. ¢, approaches @imin, €q.(3.40b), and ¢;
evolves according to the attractor solution,?

In(y) = 3V/ARp 2L + £(6,m, 7,7, (3.41)

where f is a constant along the trajectory and hence is a function of the new canonical
variables; its form is written explicitly in Appendix A, eq.(A3). At late times, the
metric fluctuation on a uniform ¢; slice is then given by, { (see SB1),

¢(=) = Ag, In{7) = Af(b(z), m(z), xb(z), *™(z))
= & [1a[s¥] +  lf(r? + 1)(m*(3p - 1) + 3p)]

- “——"\/:m(l - l)( $rmin + b) + VmI(3p— 1) + 31’”‘{}"42'&)

mp 3p
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where

il pmy m e
o \ 3.42b
D1 min gy’ + 4ir [mi(sp ~1)+3p + Vmi(3p—1)+3p uo] ( :

and
1

Vmi(3p—1)+3p
Here it is understood that b, m, #* and #™ are spatially dependent constants, and that
the difference Ay, is taken between z and some arbitrary but fixed fiducial point zo,
€.g.,

1o = tanh™! (3.42¢)

Aglnlx"] = Alnr®| = In|x*(z)| - In|w*(z0)]- (3.43)

Eq.(3.42) is the nonlinear generalization of { to multiple fields interacting via an ex-
ponential potential. It is the quantity of primary interest for structure formation. For
example, in the Cold Dark Matter Model, microwave background anisotropies at angu-
lar scales greater than ~ 1° are proportional to (,!3

AT enp/Terms = {/15. (3.44)

Eq. (3.42) will be play a important role in developing non-Gaussian models for galaxy
formation from nonlinear long wavelength evolution.?*

This example illustrates the power of the Hamilton-Jacobi formalism. Using the
evolution equations (2.7), it would have been very difficult indeed to obtain this exact
general solution. The biggest stumbling block is the choice of time which is readily
resolved using the SHIE. In addition, the SHJE can be solved because one can take
advantage of symmetries (see eq.(3.34b)) that are not apparent in the equations of
motion.

IV. LONG WAVELENGTH SCALAR FIELD SOLUTIONS
INCLUDING GRAVITATIONAL RADIATION

It is shown how the complicated interaction of gravitational degrees of freedom
appearing in the separated Hamilton-Jacobi eq.(2.14b) may be reduced to that of single
massless scalar field. This result is motivated by linear perturbation theory where one
can reduce the gravitational radiation equations to those describing massless fields,?®
independent of the wavelength of the fluctuations (see, for example, Sahni?® who has
given elegant exact solutions). However, the results given here are proven in a nonlinear
context for long wavelength fields. The canonical transformation linking the old and
new gravitational variables is also derived. The momentum constraint may be simply
expressed in terms of the new variables. Explicit complete solutions are given for the
case of a pure cosmological constant as well as for the case of a single scalar field
interacting through an exponential potential.

A.. Canonical Transformation for
Gravitational Degrees of Freedom

In Sec. IILB, it was shown that if the Hamilton-Jacobi equation describes m

massless scalar fields, then these degrees of freedom may essentially be reduced to a
single massless scalar field, even if there are other interacting fields present. Similarly,
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it is now shown that the gravitational radiation degrees of freedom may be reduced to
a single massless scalar field. The momentum constraint may be conveniently written
in terms of the new canonical variables and some solutions are discussed.

1. Solving the SHJE for Gravitational Radiation

One attempts the following solution to the separated Hamilton-Jacobi eq.(2.14b),

2
H(x, bij; brs hij) = H(r, br,2), where 21 = %%Tr{ In ({A]{A}") ln([A}[R]") }-
(4.1a)
Here, [A] and [k]~! symbolize matrices with components, k;; and hii, respectively,
while Tr refers to a trace. The expression z may be loosely thought of as the distance
in field space between the old conformal 3-metric [k] and the new one (A}, each having
unit determinant. No information is lost in this step. In the ansatz (4.1a), one has
introduced 6 constants of integration through k;; which are sufficient to describe the
dynamics of the gravitational field. The ansatz (4.1a) is analogous to the complete
solution for m massless scalar fields, eq. (3.11a), where one introduced m constants of
integration by utilizing the rotational symmetry of the SHIE. The separated Hamilton-
Jacobi equation reduces to that of a single massless scalar field, z, as well as 1 interacting

scalar fields, . .

2
, _ mp OH aH 87

= () o+ By ]+ s, (416)

Here, one has applied the following expression for the derivative of the Hubble parameter
with respect to hyj,

dH _8H 8z _m)p 8H _,; . - ij
= e = w2 G (i) (420

which is derived in detail in Appendix B. After differentiation, one sets det(k) = 1,
and one concludes that h;;{8H/8h;;) = 0, which simplifies the analysis enormously.

Similarly, one may show that the derivative with respect to f;,-j is given by,

9H _8H 8z

m o ij
By~ B3 by 32 =15 ([hl" In ({A](R]™") [h][h}-l) . (4

321 8z
and that #;;(8H/8k;;) = 0. Since eq.(4.1b) always admits solutions, the ansatz (4.1a)
is justified.

Once again, ¥;; = 1/ 3h;; may be considered as a new canonical variable. Given

a solution, H(dx, dr, 2) of eq.(4.1b) which depends on n parameters, the new variables
are related to the old by differentiation through (2.14c,d)

[x" = <=2 A{-Hy7 + 47 ——], (4.3a)
V3 3h=‘j]
. 2 aH
35 _ Mp ~=1/3 . 4.3
R N (4.3
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[x¥]i1 is traceless. Since the Hubble parameter depends symmetrically upon vi; and ¥ij,
one may show that their respective partial derivatives are related through a reciprocity
relation,

[ (@)1 = @)+ 5720 (44)

2. Momentum Constraint Expressed Using New Variables

For the special case considered in Sec. IILA, it was found that the momentum
constraint admitted a simple expression in terms of the new canonical variables, eq.(3.3).
One can generalize this result to include gravitational radiation. The gravitational
momenta can be decomposed into a trace part and a traceless part {denoted by a bar):

(=) = ?7"’ + (&7 (4.5)

in which case the momentum constraint (2.5b) becomes,

2 ,
~57% = 20 ) ;4 () i + 7 s = 0. (4.6)

The generating functional (2.14a) may be rewritten in terms of the trace of the gravi-
tational momenta,

S = gfd":c 77 ($r(2), his(z); Br(z), hij(=))-

Hence one finds that the new and old canonical variables may be expressed as partial
derivatives of 7,

i 20x%7 ii 2 9n7 28n7 2 0m7
T D e r——— " 17 = = ¢. = e — &i — e
=35 FV =55, T T3 T 3og

and the spatial derivative of #7 may be written as,

w""_ﬂ‘}' +..a:’i.7 ‘+31r7¢ +8_1r1$ .
) a'ﬂm Im,i aﬁlm tm,i 345;. ki 3&& k.t
3 3 - 3 3 ;-
= Sl s = S i+ 57 B - 37 P (4.7)

When (4.7) is substituted into the momentum constraint (4.6), one effectively performs
a Legendre transformation between the new and old variables,

0 =H; = —2({x")9u) ; + (77" Ftm,: + = b (4-8)
In deriving this result, one has also applied the reciprocity relation (4.4), [77)y; =
[* 7 .

It is fortuitous that the momentum constraint (4.8) admits such a simple expres-
sion in terms of the new canonical variables. This would not in general occur if one
chose a solution of the SHIE other than (4.1a) The evolution equations for the new
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metric variables are given by variation of the new variables in the new action written
in (2.10),

I= fd‘z(ra' q";,, + w93 - NH;) (4.9}
P = N _ 5N 1§
rreiin FalN; = 3N~ N 75, = 0, (4.10a)
_é.é[,.‘?]u + [ﬂ.‘r}th'J! + [ﬂ.‘I]JlN,lt _ (N‘[?rﬁ}”)', = . (4.108)

The corresponding equations for the new scalar field variables were already given in
eq.(3.5). Since the trace of [7]*/ vanishes, the evolution of the determinant ¥ is unre-
stricted: in (4.10a), one should actually subtract out the trace. However, one is then
free to choose ¥ arbitrarily and one can just assume for simplicity that it evolution is
determined by the trace of (4.10a).

If the shift vanishes, then the new canonical variables are independent of time
but they are spatially dependent, :

#ij = Fig(z), (77 = [V () (4.11)

they are restricted only by the momentum constraint (4.8). The evolution of the fields
hi; and [x7]¥ may be found by inverting (4.3) in terms of v and the new variables.
Hence, if one finds the complete solution of the separated Hamilton-Jacobi equation,
and then independently obtains a solution of the momentum constraint, then the long
wavelength problem has been completely solved.

Eq.(4.8) may be simplified in two important ways. Since the canonical transfor-
mation (4.1a) depends on the new metric only through h;;, one can explicitly write the
momentum constraint in terms of ft,-,-:

0="H; = -'2("71"3[1'1'15’]"‘1-1:5)'_1i + 7)™ Ay i + w‘;“qbﬁk‘;. (4.12)

Here, it was important to note that {x¥]*/ was traceless. Thus the momentum constraint
only restricts the quantity 41/3{x%]*/ and not the full momentum degrees of freedom.
Secondly, because the theory does not depend on the parametrization of the spatial
coordinates, one may write the momentum constraint in terms of a covariant derivative
with respect to ft;j,

Q= 7‘-[,' = —2('-71”[1!',7]'::)-[5 + ')‘r&“&k.g. (4.13)
This form is perhaps the most useful for general discussions. Unfortunately, the mo-

mentum constraint does not admit an explicit general solution which was the case when
gravitational radiation was neglected, eq.(3.7).

3. Solutions of the New Momentun Censtraint

In order to illustrate the meaning of the new momentum constraint, [ will now
consider a special class of solutions.
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Onme set of solutions arise if the two terms appearing in (4.13) vanish separately:
0= (P, 0= (4.14)

The first equation requires that the new momentumn tensor which is traceless be diver-
genceless as well. The solution of the second equation was given in (3.7) and is well
understood.

More generally, the momentum constraint (4.13) may be solved using the York

prescription.?” One formally decomposes the new gravitational momentum tensor into
a traceless transverse part, [PTT)¥/, and a longitudinal part, [P¥|'

1P ¥ = [PTT]H 4 [P, (4.15}

Here [PTT]# is divergenceless (with respect to A;;) whereas [PL] is derived from a
vector potential, W*;

[PTT];J’_' =0, (4.16a)
[P = wili 4 wili —:—I«V]',}';‘J'. (4.168)
The momentum constraint restricts the longitudinal degrees of freedom,
"Z[PL].%,- + 7% g =0, (4.17)
whereas the traceless transverse part is arbitrary.

B. Gravitational Radiation Evolving under a
Cosmological Constant

The canonical transformation generated by (4.1) and (4.3) was written with little
physical motivation. I will now give a derivation for the case of a cosmological constant,
V{(¢r) = Vo, neglecting scalar fields. In this case, the evolution of the metric may be
found by direct integration of the equations of motion. The Hubble parameter, now
written as a function of the gravitational fields, is the solution of the 6-dimensional
separated Hamilton-Jacobi equation.

To simpiify the derivation, I will assume a vanishing shift function, N* = 0
Eq.(2.7d) implies that the traceless part of the gravitational momentum is constant in
time. One can thus write,

(620 = ¢'5(2) + 577(8,2)6%, (4.18)

where ¢ ;(z) which depends only on spatial coordinates is traceless and symmetric (the
last point will be discusses in more detail later). Substituting into the energy constraint
{(2.5a), one finds v as a function of ¥:

2
7 = -6 [|g|* + %v%]m, (4.19)
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where |g|? = ¢?;¢%:. The evolution of the 3-metric is given by (2.7b),

Vi 15 -
'P

One can choose any parameter as time, and since (4.19) is expressed in terms of v, it
is the natural choice. The lapse function may be expressed in terms of =7,

1 ¥ ;i1 167 172~
——= e ¥ = 4.21
NN NTTmY (4.21)
which implies that

dh] _ 327 v~3dy [A](g]

= , (4.22)
dy  m3V [1+ 156;%—17_11,1'3]1/3
where [h] and [g] denote matrices with components h;; = v~ fa-y,_, and ¢* j» respectively.
This equation may be solved by making a change of va.na.bles from v to 2:
V12x 167 -
inh(-—=12) = [ el (4.23)
which leads to .
i 327r
dlh] = | |7 [A]lgldz, (4.24)
whose solution [ |
- \/321r q
[A] = [A] exp{~ z}, (4.25)

» laf

may be verified by direct differentiation. This solution is analogous to (3. 11b); it
describes the evolution of the conformal unimodular 3-metric as a function of ¥ which
has been interpreted as time.

One can find a solution of the corresponding separated Hamilton-Jacobi equation
by expressing the Hubble parameter as a function of the metric variables. Assuming
that h  is fixed, one requires the trajectory that passes through k;;. More simply, one
w15hes %o eliminate z = z(y) from the expression

(4.26)

8xVo\1/2 V127
(W;) cosh( o z),

which follows from (2.15), (4.19) and (4.23). To this aim, note that (4.25) may be
solved for {gq],

[Q'],_m?z-l'— i1-13 [}
ol = " Taee (]~ In([R[A) 1) [A]. (4.27)

Squaring both sides, and taking the trace, one finds

2 = m”Tr{ In([A](R]"1) In((A)[A]7Y) } (4.28)
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Thus the solution of the SHIE (2.14b) is just

H(hijy hij) = (?mii)m COSh({n]?Z)’ with 2 = 3";—:’;'1‘1-{ Ln (AR} ™) In{(%]A™") }'I'
(4.29)

The expression (4.29) for z motivates the general ansatz of eq.(4.1a); in fact, this
solution for H is what was expected from the reduced SHJE (4.1b) with V = V).

The canonical transformation (4.3) may be inverted to give the evolution of the
metric degrees of freedom as functions of time +:

[A] = [A] exp(—mﬂiwz-[—%%!]—ﬁ]), (4.31a)

2
M= (P2 _1/8 127 -1 ~1/3:21 /31 AR R] L 4.31b
(2] = = (F2)"/" 7% cosh (L2 2) (A7 497252 (A (1.318)
where :
127 = sinh™! (_;6:’/_2_7—1/2;71/3”“&“) . (4.31c)
me m‘PVo

Here [r7] and [r7¥] denote matrices whose components are [x7]¥/ and [r¥]i7, respectively,
and |[w 7]} = (hijhim [# Y] [x V|12,

In classical Hamilton-Jacobi theory,!® one may invert the canonical transforma-
tion to describe the evolution of all degrees of freedom. In the long wavelength gravita-

tional system, however the trace flij[fr'f]‘j vanishes, and one has consequently lost one-
degree of freedom. For this reason, the determinant of the 3-metric 4 has been adopted
as time, and one then solves for the conformal 3-metric k;j, eq.(4.31). (To relate the
transformation (4.31) with the integration of the equations of motion, one can identify
the field [q] introduced in (4.5) to the new gravitational momenta through,

¢'t = 33 &k
[q]%; is clearly a symmetric matrix, when its indices are raised and lowered by ;;.)

The evolution of the metric is shown in Fig. 5. Every 3-metric may be represented
graphically by an ellipsoid with variables, y*, i = 1,2, 3, satisfying,

1= h,'jyiyj. (4.32)

Since det(h) = 1, the volume of the ellipsoid is just # = 3.14.. Eq. (4.31a} may written
in a form that is more amenable for calculation,

V3 (AR
mr 5 Y

which may be justified using a Taylor series expansion. Since the argument of the
exponential is a symmetric, it may be diagonalized,

(k] = [R]}%exp (— (4.33)

[A]! /2 x| [A]'/

i = D) (4.34)
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where [R) is an orthogonal matrix and [D] is diagonal. One can thus eliminate Ead
from (4.33) to cbtain an expression

v 32x

mp

[M=WWWﬁmﬂ- +AD)) (R (4.35)

which is useful for numerical methods, because the argument of the exponential is
a diagonal matrix. For example, the solution of the ellipsoid equation (4.32) which
depends on the parameters § and 4 is,

V87

mp

7=[h]"Y*[R]T exp(— zD) [sinfcos, sindsint, cosd] T,

where 0<8<x and 0< 4 <2r. (4.36)

If (k] is diagonal, then (4.36) stetches or contracts the i** component of a unit vector by
exp —Jmi:zD;;) , rotates the resulting vector and then finally stretches or contracts

the final components.

In Fig. 5, a two dimensional example is given where an ellipse which was initially
at an angle 45° to the y! axis evolves to its final position given by the broken curve.
Because the evolution of h;; is basically that of a decaying mode, it is quite simple.
The ellipsoid stetches and rotates for less than 90° to its final form. The curves shown
are equally spaced in z with the final position corresponding to z = 0.

C. Gravitational Radiation Interacting with a Scalar Field
with an Exponential Potential

The variable z defined in eq.(4.1a) behaves as a massless scalar in the SHIE (4.1b)
even when the potential V' (¢;) is nontrivial. This analogy made may be made even
stronger by noting that z evolves in time according,

2
s oo Nis. = _..@E a7
(8~ Nizg) /N = -T2 (4.37)
Here, I have applied eqs. (4.10a), (4.3a), (4.2a) and (2.7b). Eq.(4.37) is just the
evolution equation for a massless scalar field interacting with n additional scalar fields
without any gravitational radiation (see eq.(2.9a}).

Hence, in general, it there are n scalar fields interacting through a potential
- V(¢x), one can describe the evolution of the complete gravitational system by solving
the SHIE for n + 1 scalar fields, (4.1b). If one determines that the scalar fields evelve

in time, a, according to,
z=z(a), Pk = du(a),

then the evolution of the gravitational degrees of freedom is given by a formula analogous

to (4.31),
ﬁﬂhﬂm)

(4.38a)

mp - ([

4 = Blexe -
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(=] = —(—2"-13’;)"’ 78 c°5h(‘,[fz) [B]7L 3 R RIA Y, (4.386)

which is valid even the potential is not a constant, provided one interprets z as a massless
field that interacts with the n scalar fields. (For simplicity, N* = 0.) Of course, the new

canonical coordinates [k] and {r¥] must satisfy the momentum constraint (4.13). For
example, one may apply the solution of Sec. IILE for 2 scalar fields, one massless,dy,
and the other, ¢;, interacting through an exponential potential if one identifies ¢, with
z. Egs.(3.38a-d) may be then inverted to give the general evolution of the 2 scalar field
system. I will omit the details.

However, the analogy cannot be taken too far because one cannot rewrite the
momentum constraint simply in terms of the massless degree of freedom 2. In this
sense, the gravitational radiation degrees of freedom differ from massless fields in that
their polarization affects the direction of momentum transport.

. V. SUMMARf AND CONCLUSIONS

In an important generalization of homogeneous mini-superspace models, it has
been shown that the evolution of the long wavelength metric and scalar fields is tractable i
including the evolution of gravitational radiation. One invokes a transformation to new
canonical variables where the Hamiltonian density vanishes strongly. Since the evolu-
tion of fields is generated through Poisson brackets, the new. variables are constants in
time if the shift function vanishes although they may be spatially dependent.

The separated Hamilton-Jacobi equation (2.14b), the canonical transformation
(2.14a-f) and the new momentum constraint (4.8) are the most important equations
in this paper. The SHIE does not depend on the time parameter nor on the spatial
coordinates: it yields a covariant formulation of the long wavelength problem. In the
SHJE, the gravitational degrees of freedom may be reduced to that of a single massless
scalar field. As a result, one can obtain complete solutions for gravitational radiation
with n scalar fields for two important cases: (1) when a cosmological constant is present,
and (2) when the scalar fields interact through an exponential potential. However,
the gravitational field is fundamentally different from massless scalar fields in that it
carries spin angular momentum. For example, the momentum constraint restricts the
longitudinal modes of the gravitational momentum tensor. Fortunately, the momentum
constraint admits a simple expression in terms of the canonical variables.

For many applications, the gravitational radiation modes are not dynamically
important, and one may neglect them as in Sec. III. In this case, one can obtain a
general solution of the momentum constraint, eq.(3.7). For m massless scalar fields,
it is easy to produce a complete solution of the SHIE which depends on m arbitrary
parameters because the field space is rotationally symmetric. More generally, from a
complete solution one may obtain all solutions of the SHIE by the extrema method of
Sec, II1.C where the arbitrary integration parameters $x are chosen to be functions of
the scalar fields. Exact solutions of the SHIE for single scalar field are given when the
potential is formed by joining two exponential functions together (Sec. IIL.D). In this
way, one may model the transition from the inflation epoch to a radiation-dominated
era. The complete solution of two scalar fields interacting through and exponential
potential given in Sec. ITLE constitutes a major advance for practical calculations of
long wavelength universes. The new canonical variables which are in fact constants of
integration were explicitly given. From the late time evolution, one may then determine
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the nonlinear generalization of { which is a measure of adiabatic primordial fluctuations.
These results may be applied to models that produce non-Gaussian fluctuations for
structure formation.4

There are several extensions of this paper which could prove interesting. Since
Hamilton-Jacobi theory has proved fruitful in solving the long wavelength problem, one
wonders whether it can also be profitably applied to other gravitational systems where
short wavelengths are not neglected. For example, the greatest uncertainty in inflation
models lies in the treatment of short wavelength fluctuations. Any improvements here
would necessarily have an important impact on the primordial fluctuations to form
galaxies. Another possibility is that the Hamilton-Jacobi formalism may provide clues
to the quantum theory of the gravitational field, although currently the long wavelength
problem does not admit a totally satisfactory quantum formulation.® Nonetheless, mod-
els of long wavelength universes are a significant improvement over those of homoge-
neous mini-superspace, particularly when one incorporates the stochastic generation of
initial conditions.!3%
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APPENDIX A, CANONICAL TRANSFORMATION FOR
TWO SCALAR FIELDS WITH V(¢1,¢:) = Voexp(—,/18% £2)

A complete solution (3.33) of the SHIE for two scalar fields interacting through
an exponential potential was given in Sec. IILE. In this appendix, I will derive the
expression, eq.(3.39a-d), for the new canonical variables &, m, xb, #™ as a function of
the old variables, ¢1, ¢1, %' and w?#2. In addition, the expression (3.42) for { will be
justified.

The canonical transformation is given by differentiation of the Hubble parameter
(3.33) through eq.(2.14e,f),

hu — sinh 1(3p - 3
N A coshu — s u\/ml/gp 1) +3p 4 %exp (- ir ¢, ), (Ala)
[m3(3p — 1) + 3p] /*(m? + 1)2/2 p mp

% = —mn®, (A1b)
¢, TP _1/2 b
- P gy Al
V‘Mrp‘T b (41c)

m + mu )}
~1)+3p  Jm¥@p-1)+3p
where u was defined implicitly in (3.33b),

m _ b _ Pm'zp
wm=m{h = \mi3p

Vizr _ 3
(92— b1 = b) = — X

(uy/m3(3p — 1) + 3p + In]cosh(u) ~ sinh(u)y/m2(3p—- 1) + 3p||. (A2)
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After some algebra, one can invert eqs.(Ala-d) and express the new variables in
terms of the old ones, egs.(3.39a-d). (3.39a) follows from (Alc) and the definition of
the Hubble parameter whereas (3.39b) arises directly from (A1b). The expression for
u, v are derived by solving (Alb,a) for u.

It is desirable to determine the late time evolution of the fields in order to deter-
mine microwave background fluctuations as well as the initial conditions for structure
formatijon. Eq.(A2} may be rewritten as

lcoshu — sinhu/m?(3p — 1) +3p| =
exp[—(1- 36#p(¢2 —mgy — b) — uy/m?(3p — 1) + 3p]

mp

and then substituted into (Ala). In the limit that v — oo, the first scalar field ¢;
approaches a constant given by (3.40b) and one finds that 7 evolves in ¢; according to

In(,7) = 3@ S+ f(b,m,x%, =™), (A3a)
where
f(bym,x%,x™) =In{x® + %ln[(m’ +1)(m*(3p— 1) + 3p)] - (436)

+/36 1
- m:"u = 35 Xmb1min +b) + y/m¥(3p — 1) + 3puo - In NETS
At late times, the metric fluctuation on a uniform ¢; slice is then given by ¢,

(=) = Ag, In(y7) = A[ln|«"| + 2 nl(m? 4 1)(m?(3p ~ 1) + 39)

361rp(1 - “")(m¢1mm +b)+ Vm3(3p — 1} + 3puy [(Ada)
where

(A4b)

Brmin = g + 4 BB [ Do e ]
1min oy 47 'm?(3p— 1)+ 3p \/m’(Sp— 1)+3pu0

and L
ug = tanh™! : (Adc)

vm*(3p—1) +3p

It is understood that b, m, #* and 7™ are spatially dependent constants, and that the
difference Ay, is taken between two spatial points z and some fiducial point zy, e.g.,

A, ln[r] = Alnlr®] = In [x(z)| - In|x*(zo)|-

Eq.(A4) is the nonlinear generalization of { to multiple fields interacting via an expo-
nential potential.
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APPENDIX B. MATHEMATICAL NOTES

In this appendix, I will derive the algebraic results (4.2a,b) which were necessary
for the analysis of gravitational radiation in Sec. IV.

In eq.(4.1a), the quantity
2= %Tr{ In[A] In[4]}, where [A]=[A](A]7. (B1)

was defined. (From now throughout this appendix, braces will be deleted; e.g. A will

denote a matrix.) One requires the derivative of z with respect to hi; and hu By
considering differentials of both sides, one finds,

2
dz= Lz Tr{InAdln4}. (B2)
The primary complication here is that A and dA need not commute, and one cannot

write immediately the desired result,
dz = ﬂzzz*lt[\r{ InAA~'d4 }. (B3)

N2x

Instead, one should expand the In A in a power series,
dln A =d1n(I+ (A - I)) = d((A ~-I)- %(A - Iy + %(A -1+ )

=dA ~ 2 (dA(A — 1) + (4 - I)d4)

'

4 H(dA(A D)+ (A~ D)A(A- 1)+ (4 - 1)'dd) + -, (B4)

where [ is the identity matrix. Since Tr CD= Tr DC and since I and A commute, one
may rewrite (B2) as

m:l
dz = ”—:_z'lTr{ JnA(I— (A-D+(A-DI)?+ ...)dA}

which leads to the desired result (B3). Finally, letting A = hh~!, one finds
2
dz = ;’;—:z-lTr{ A= (hh~Y) In(RA~1}(RR~')dR} = Tr{h~" In(hh~1)dh},

which yields the required relation (4.2a); in the last step, one applied the identity
C~'In(D)C = In(C~'DC). Eq. (4.2b) is proved similarly.

Using eq.(4.2a), one can readily show that k;;(8H/8h;;) = O

oH _ mpoH _,
hiighg = 32m 820 undl

o In [exp(Tr{ln A})] = In [detexp(ln A)] =
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since det A = deth = deth = 1 after differentiation.
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FIGURE CAPTIONS

Fig. 1. A complete solution, H = H(¢1, b2; 61, 1) (eq.(3.12a)), of the separated
Hamilton-Jacobi equation (SHIE) is shown for two scalar fields evolving under the in-
fluence of a cosmological constant. The surfaces of constant Hubble parameter (solid
curves) are circles concentric with the origin, The broken lines, which are orthogo-
nal to the uniform Hubble surfaces are the trajectories of the scalar fields which all
end at the origin. Because the SHJE is invq.’riant under translations in field space,
(@1, 82) — ($1 + 1,2 + ¢2), the origin, (¢, $;), in this figure is arbitrary, and hence
the solution depends on two free parameters which are then interpreted as new canonical
variables. Differentiation of the Hubble function, H{¢1, ¢2; ¢1, ¢2), with respect to the
new canonical variables yields the new conjugate momenta, eq.(3.13). The momentum
constraint may be simply expressed in terms of these new variables. This trivial ex-
ample illustrates the basic principles behind more general solutions of the SHIE which
include the effects of gravitational radiation.

Fig. 2. Given the complete solution of the SHIE shown in Fig. 1, one may generate

all other solutions using the extrema method of Sec. ITI.C where the parameters & are

chosen to be a function of . Here, it is shown graphically how to produce the Green’s
function solution where all trajectories emanate from a single point 1/ where the Hubble

parameter has value Hy. The parameters ¢ are restricted to lie on a circle of radius
r=|¢p—9 = ﬁCOSh_l(H‘ﬁ/Ho) (eq.(3.22)). Holding the observation point ¢ fixed,

one determines the constrained parameters ; which extremizes H(g, ;) = H(|¢ - ¢|)

(eq. (3.12a)) which is function only of the distance between ¢ and ¢. Hence, ¢ must
be collinear with ¢ and ¢, and the points which give the minimum and the maximum

values are shown. The parameters are thus functions of the scalar fields, é = &(5),
substitution into (3.11a) leads to the Green's function solution, eq.(3.23).

Fig. 3. The exact Hubble function (solid curve) is shown for single scalar field
with a potential that is defined by continuously joining two exponential functions
at ¢ = 0, eq.(3.28). The broken curve is the slow rollover approximation, Hsp =
[8xV($)/(3m3)]'/?, which is effectively a plot of the potential. This system imitates
the transition from an inflation epoch to a radiation-dominated era. For ¢ < 0, the
Universe inflates with the scale factor evelving as a{t) o t?, whereas for ¢ >> 0,
a(t) « t'/2. The exact Hubble function and its derivative §H/8¢ are continuous at
¢ = 0. The variable (, eq.(3.8), which is a measure of the metric fluctuations, is a strict
constant for all times that the wavelength of the fluctuation exceeds the Hubble radius.
Fig. 4. A complete solution, H = H(¢1, ¢2; b, m) (eq.(3.33)), of the SHIE is shown for
two scalar fields; ¢; is massless whereas ¢; interacts through an exponential potential,
V(¢) = Voexp(—+/167/pps/mp), p = 3. Once again, the solid curves are surfaces
of uniform Hubble parameter; the set of orthogonal broken curves are the trajectories
which move up the page. This complete solution depends on two arbitrary parameter, b
and m. breflects the translational invariance of the SHJE, eq.(3.32), in the ¢, direction,
$1 — d1+¢,. A typical trajectory begins at large ¢ with slope given by —1/m (m = 11is
shown), where the fields behave effectively as two massless scalars because their kinetic
energies dominate over the potential. As the Universe expands, the decaying modes
no longer become important; ¢; approaches a constant and ¢; evolves according to
the attractor solution for a single scalar field, ¢2 = In{vy)mp/(6+/47p) + const. One
can then write down an explicit expression for {, eq.(3.42), which characterizes the
adiabatic fluctuations for structure formation. In addition, this example may be used
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to solve completely the evolution of gravitational radiation with a scalar field ¢; that
interacts with an exponential potential (see Sec. IV.C).

Fig. 5. The evolution of the long wavelength 3-metric at a fixed spatial point is
shown for a system with a cosmological constant (see eq.(4.36)). The conformal metric
of unit determinant, h;; = 7~1/%y;;, may be represented graphically as an ellipsoid
with coordinates (y!,y?,y?) satisfying, 1 = hijy'y/. For plotting purposes, the third
coordinate will be suppressed. From its initial starting position, the principle axes of the
ellipsoid rotates by less than 90° to its final position. At the same time, the eigenvalues
of the ellipsoid which measure the lengths of the principle axes are stretched. Even
when there are scalar fields that interact with a potential, the evolution is qualitatively
the same because gravitational radiation degrees of freedom may be reduced to that of
a single scalar field (see eq.(4.1)).
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