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We develop an effective Lagrangian based framework for the inclusion 
of new heavy physics effects on gauge boson self energies. Various 
observables may be expressed in terms of the parameters S, T, and U. 
We then generalize this framework to include a new U(1) gauge boson. 
We treat the effects of mixing through kinetic terms with the 2 and the 
photon as well as mass mixing with the Z. We show how the bulk of 
these effects produce effective shifts in the parameters S, T, and U. 
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There has been recent interest[ l-41 in the electroweak corrections due to heavy 
particles with a characteristic mass A greater than mz. If the heavy particles 
participate in SU(2)xU(l) symmetry breaking then they, when integrated out, will 
generate additional effective interactions involving the electroweak gauge bosom and 
the triplet of Goldstone bosom. These interactions are very conveniently described 
by a gauged chiral Lagrangian. 

All parameters in this chiral Lagrangian are finite quantities renotmalized at the 
Z mass scale. We consider terms in this effective theory at orderp2 andp4 in the 
low energy expansion. The electroweak corrections induced at these orders are not 
suppressed by powers of mzlA, unlike terms of higher order in the energy 
expansion. Thus the chiral Lagrangian approach immediately focuses our attention 
on the finite parameters most important to electroweak corrections. 

Of most immediate interest are “oblique”[5] corrections, those corrections 
entering through the gauge boson self-energies. When weak isospin violating effects 
are included we find that there are three independent terms in the chiral Lagrangian 
which contain correction terms quadratic in the gauge fields. We present a simple 
derivation of the relation between the coefficients of these terms, or equivalently the 
parameters S, T, and U, and various observables. 

In this framework we are then able to easily treat the general mixing effects of 
an additional gauge boson X. We treat X-Z and X-A mixing in the kinetic terms as 
well as X-Z mixing in the mass terms. We show how some of these mixing effects 
are equivalent to shifts in S, T, and U. But additional effects in neutral current 
amplitudes wilI help distinguish the X boson from the effects of a heavy sector. This 
is true even in the case that the known fermions do not carry X charge. An 
interesting possibility for this latter case is vanishing X mass. 

The kinetic mixing terms are often not considered. But they may be generated 
for example by a strongly interacting, electroweak symmetry breaking sector at 
scale A. In addition, the X boson may correspond to a U(1) gauge symmetry well 
above the scale A. If it does then it is intriguing to consider the term XPuBpu where 
BP is the U(1) hypercharge boson. This gauge invariant, dimension four term could 
bc produced by physics at arbitrarily high mass scales. 
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We start without the X boson. We assume CP invariance and we write down 
those terms at order p2 and p4 which contain terms quadratic in the gauge fields. 

F2 
Lw=4 Tr{ VPUf VU) - ‘/zTr{ WPuWpv} - ‘12Tr{B&l~“) 

+ Llo gg’Tr{UfB&JW~v] 

+ Ap F2 Tr123UV~Uf~Tr~zjU~Uf) 

+ K[Tr( z~UV’VJJ~)Tr( q( wizlU)d} 

-11~g’2Tr(BPJ3~v) -gg~r[~f~~&W~“]] (1) 
VPU = dPU-igUWP+ig’BPU, W = W,(X)Z, , B = B(x)23 , U = exp(-2iza(x)z,lF) 
~Jx) is the Goldstone boson triplet. The first term in isolation yields the tree order 
Wand Z masses of the standard model. The coefficient 1510 is named in analogy with 
the corresponding quantity in the Gasser and Leutwyler analysis of low energy 
QCD.[6] This analogy was used to estimate Llo in reference [l]. (For other 
estimates see [2-41). The Ap and K terms are present because of the explicit su(2)R 
symmetry breaking expected in the underlying theory. l+Ap is the heavy physics 
contribution, including that of a heavy top quark, to the usual ratio of the neutral to 
charged weak currents near zero momentum. The net effect of the K term on the 
gauge field self energies, when the Goldstone pole terms are included, is equivalent 
to the term (K/4)g2W3PuW3flv. There are no other independent terms contributing 
to the gauge boson self-energies. 

Note that the K term is higher order in the energy expansion compared to the Ap 
term, and that both terms require isospin violating physics. Thus the typical 
technicolor contributions to K are expected to be suppressed relative to contributions 
to Ap by (mz/A)2. (But this will not necessarily be true for the X boson 
contributions.) 

We should stress that we are concerned only with possible new physics 
contributions to various electroweak parameters. Expressions for actual physical 
quantities must also include the light physics corrections of the standard model. 
These effects are by assumption small compared to the new physics and they will not 
be not addressed in this paper. 

In the following we will adopt a more attractive notation.[2] 
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S = -161d,lo, T = ApJa, U = -16nK (2) 

The terms quadratic in gauge field with two derivatives are the following. 

-4Lh = [Wpq2 + [WpJ2 + 

+ Cl+ -JHW3’y2 + (1 + ~OP”“12 + f-$ BP,&” 
e (3) 

wclv = #WV - avwP etc. 
Note that we have introduced the V term even though it may be absorbed by a 
redefinition of the g’ coupling. V will drop out of observables and it is retained only 
for later convenience. Two other parameters g and F characterize the charged W 
mass and couplings, and these parameters are not affected by S, T, or U. 

We may make the conventional transformation to the mass eigenstate basis. 
W3p = c~Z’~ + seAtp BP =-SC& + ceA;, 

(4) 

-&i&z se= q-&z 
(5) 

In this primed basis the kinetic terms for the neutral fields and mass term are: 
2 

LAZ = - $ [l-2Az][ZP’y - $ [l-2AA] [Avpy2+ ;A~zA’PuZ’Pu 

+ +m; (l-0) Z&Z+ 

where 
I (Ce2 - se2Ua _ 1 Ucea + 1 Vsea 

AAZ=-~ CWO 4 se 4 ce 

(6) 

(7) 
AA = -$Sa - ffa - :Va 

. , 

03) 

AZ = :Sa - 1 uc02a - 1 Vse2a 

* se2 8 co2 (9) 

An additional transformation is necessary to obtain standard kinetic terms. This 
transformation is uniquely defined if we are to remain in a mass eigenstate basis. 
We treat the A’s as small quantities; our results henceforth are true to lowest order 
in As. The transformation is 

Z,, = [l + Az]Z, 
(10) 

A’p = [ 1 + AA]A~ + AAzZ~ 
(11) 
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In the unprimed basis the kinetic terms have conventional form. The Z mass is 

mz=(l +&)m,O 
(12) \ , 

where rni is the Z mass in the absence of corrections, and 

(13) 
The quantities AA, AZ, AAz, and & and their analogs will play a central role in 

our discussion of the X boson. For completeness we will derive the Z and A 
couplings to matter (following the notation of ref. [5,7]) in terms of these quantities. 

The relevant combination of the neutral gauge field is: 

gW3& + g’BpY = LZ’p [Z3 - Qse2] + eAlp Q 
SOQ 

e = seg (14) 

By transforming to unprimed fields and defining e, we may rewrite this as: 

[~+Az-AAI 
[I3 - Qse21zpe* 

SOCO + AAzQz@+ + +Qe* (15) 
e* = [l + AA]e 

(16) 

The middle term in (15) may be absorbed by defining another weak mixing angle. 
s* = sin(8,) c* = cos(B*) 

S*2 - So2 = -C~S~AAZ 
(17) 
(18) 

(15) then takes the form 
Gee s*c* 515 - Qsa21 + eApQ 

where Z, is 

Z* = 1 + 2 [AZ-AA] - [ce2 - se21AAZ 
cese . 

(19) 

cw 

It is convenient to define yet another weak mixing angle[7] in terms of quantities 
which are well measured. (a*-’ = 128.8 + 0.1) 

sz = sin(ez) cz = cos(ez> 
(21) 

s&h 7ca* 
fiGFrn2 (22) 

On the other hand 
se2ce2 = - 

EGFrng2 
(23 
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By computing sz - se2 and using the previous result for se2 - se2 we find A ,. 
2 

L L 
s* - sz2 =-ceseA~z-2 Co Se [AA -&I 

co2 - Se2 
Introducing sz into (19) yields 

GZ [Z -Qs 2]+e A szcz P 3 * * P 
Q 

Z,= 1 +2(Az-zz) 

(24) 

(25) 

(26) 

2 
Another observable is L. Noting that mw2 

mz2cz2 .2 = 
1 we obtain 

mZ co2 

mw2 =1+2 
Se2AA - ca2Az 

cz2mz2 Co2 - Se2 (27) 
We now combine the above results. Any of the definitions of c and s may be 

used on the RH side of these equations. 
se2 - s2 = -(s - 4 #lJ 

4 3-3 
(28) 

i$!$= 
1 + a(-2s2S + 4c2s2T + [c2-s2]U) 

4 (cW>s2 (29) 
Zz=l+aT sp (30) 

The corrections to various observables which depend on the Z coupling to fermions 
are most conveniently determined by using (25) in the form: 

(25hm~)ZpV3 - Qs*2l + e,+Q (31) 
s,, is measured directly via the polarization and forward-backward Z asymmetries. 
We note that U dependence only appears in the mw formula. ((28) and (29) without 
the U term were given in ref. [l] and [2].) 

We now filly introduce the X boson. With a mass well below A it will 
introduce a number of new terms in the SU(2)xU(l) invariant chiral Lagrangian. 
But we need only consider the new mixing contributions to quadratic gauge field 
terms and we choose to work in the A-Z-X basis. We again attach primes to the 
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fields to indicate nonstandard kinetic terms; there are two kinetic mixing terms and 
one mass mixing term. 
LAZY = +;&‘p’ - ~~p&@v - +~pJpv + $$ZpZ@ + $~~pX’p 

+ xmgZ$+ - y+Z,J@v - +4tpvXgv 
(32) 

We fiid that the following transformation to unprinted fields recovers 
conventional kinetic terms while maintaining a diagonal mass matrix. This is true to 
second order in the small quantities x, y, and w. 

Ax =iw2+ lcm:- 2mg)m: y2+2mzxy-mix2 x (Y - .dmi 
x2 2 

(rni - rnij2 
Axz = 2 

m,-rng 

22 2 
X 

Azx= 
mix-miy l([mi-2in$ y2+2mixy-mZ x >mz 

2 2 Air2 
mx-mz (rni - mi)2 

A;x = -w 
X (x -y)wmz 

AAZ= 2 
mX-rn2 

A;=0 

The X and Z masses are shifted by the following amounts. 

mZ=mZ~(l+$) 

X 
AXA= 

A&=0 

(34) 

(35) 

W-3 

These results apply as long as the As are small, ie. as long as mx not too close to mz. 
(And we treat the case mx = 0 separately below.) 
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We may describe some of these effects as effective shifts in S, T, and U. We 
note that the transformation within the Z-A subspace has the same form as in (10-l 1) 
since Aa = 0. We thus invert our previous expressions for AA, AZ, AM, and & 
((7-9) and (13)) and solve for S, T, U (and V). 

s 4cs 2 = --$b - c21A~z - 2CS& + 2csAz) 

T = $Az - iz) 
(38) 

u = -~$cs&z + s2& + c2Az) 
(39 

We may replace the A’s in these expressions by A:, A;, A&, and $ and thus obtain 
the effective S, T, and U as functions of the parameters x, y, and w. 

These shifts in S, T, and U are sufftcient to describe how the X boson modifies 
the W mass and the Z asymmetries. We note that the shift in U is not necessarily 
small compared to the shifts in S and T, although it may be small for some ranges of 
parameters. 

Consider next the quantity A&. This will modify the Z couplings to those 
fermions which carry X charge. If such fermions are lighter than &Z then this will 
affect the Z width. This effect is linear in x-y, whereas all other affects we discuss 
are quadratic in x, y, and w. Then the Z width potentially puts a strong constraint 
on x- y. But this constraint is model dependent since it depends on the X charges of 
fermions. 

It is of interest to consider the case that the known fermions do not carry X 
charge. Then the effects of an “invisible” X on the W mass, the Z asymmetries, and 
the partial and total Z widths are completely described byxthe shiftsxin S, T, and U. 

On the other hand, for an invisible X the quantities An, and AAX are important. 
These imply that the X boson picks up small induced couplings to fermions 
proportional to their Z charge and electric charge respectively. Then X exchange 
will modify the standard model neutral current amplitudes. The latter takes the 
form 

Zz Z~pmn(13 - se2Q) (40) 
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for neutrino and anti-neutrino deep inelastic scattering. The atomic parity violating 
amplitude also originates from this form, since in that case the dominant 
contribution arises from the axial piece of IcF. X boson exchange contributes 
two additional terms to these neutral current amplitudes as long as mX is sufftciently 
above the relevant energies. 

Aa2 2~ 2($Pm 
( ) mx tZ3 - s2Ql> + scA~xA~~(~)~(l3”P”“n) c41j 

These terms may thought of as effective shifts in ZZ and s* 

=zINC = Azx~(~)~ 
(42) 

3s: 1 Nc = - scA.zxA~x (z)2 
(43) 

A measurement of some observable may be translated into a band of allowed 
region on a S-T-U plot. (42-43) imply additional shifts in the bands from neutral 
current measurements. For example, we find: 

uAT,N = -0.79 ss,2 / Nc + 0.74 sz, 1 NC 
(44) 

a%N = SZZ 1 NC (45) 
aadmlicPv = 2.16 6s,21NC+0.71 8Z& 

(46) 

(We have use the table of results in ref. [8].) Thus all bands intersect on a S-T-U 
plot except for those bands from these three measurements (and perhaps other 
neutral current measurements). (44-46) gives the amount by which these bands are 
shifted from the point of intersection of the other bands. 

With these formulae, the reader may check for himself how various quantities 
are shifted for various values of x, y, w and mx. As mentioned in the introduction, a 

case of interest occurs if all mixing originates in a X&+u term. Then y = - : w 

and x = 0 and we obtain: 
& = 4(c2 - rww2 

(r2 - 1)2 
szz{ NC = r2s2w2 

(r2 - 1>2c2 

2,2,2 
aT=- r 

,4,2 

(r2 - 1)2c2 
alJ=4 

(r2 - 1)2 

(47) 
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ForrEmX mz > 1 this gives negative S, and U is relatively suppressed. But the 

additional shifts in the neutral current amplitudes are quite substantial. 
It is also amusing to consider the case mx = 0. In this case the mass eigenstate 

basis does not completely determine the definition of the fields. But it is appropriate 
to define the photon field as the field radiated by normal matter. This requires an 
additional orthogonal rotation of the fields and so the above formulas do not apply 
for mx = 0. We instead arrive at the following. 

A~=;y2,A~=~w2,A~z=yw,&=;y2, 

Axz =-y,Ax~=-w,A~x=A~y=Az~=o. (48) 
We see that the induced X couplings to matter now vanish and X exchange becomes 
harmless. Inserting these results into the formulas for S, T, and U we obtain 

aS = 4([r2 - w2]cs + [s2 - c2]wy)cs T=O 
aU = -4(s2w2 + c2y2 + 2cswy)s2 (4% 

SandUnowvanishwheny=-, ’ w. On the other hand for y = 0, S is negative and 

U = f S. In this case the net effect for all quantities, including neutral current 

amplitudes, is a common shift toward negative S. This may be of interest if the 
slight tendency[8-lo] in the present data towards negative S is confirmed. 

Finally we note that a technicolor theory with a technicolor gauge group 
containing a U( 1) factor is by definition an example of an invisible gauge boson. 
The mixing we have been discussing may then arise through loop effects involving 
technifermions. For example two technielectrons with opposite X charge and masses 
ml and m2 yields[ 111, up to a sign 

Thus with the X coupling gx large and with technicolor and techniflavor factors 
inserted, such contributions to w may well be significant (of order 0.1). And we 
note that the violation of weak isospin is not required for this mixing. 
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