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Abstract 

The B-B mixing parameter can be determined from lattice gauge theory by treating 
the heavy quarks using the static effective field theory. We determine to order as 
the linear combination of discretised four-fermion operators whose matrix element 
determines this parameter. 
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1. Introduction 

Experimental measurements of B-i? mixing, characterized by xd, the ratio of the 

mass difference to the (nearly) common lifetime for the non-strange neutral B 

meson [I], constrain the top quark mass and the magnitude of the td element 

of the KM matrix in the standard model. The largest uncertainty arises from 

the occurrence of a factor Bsfi in the usual expression for zd arising from a 

box diagram with internal t quark exchange. Here, BB is the ratio of the true 

matrix element of the B-B mixing operator to its value in the vacuum insertion 

approximation, and fB is the B meson decay constant. Neither quantity is known 

well but it is hoped that lattice calculations will yield accurate values. In this 

paper we concentrate on the relation of the continuum B-B mixing operator to its 

lattice counterpart in order to determine the corrections to the combination B~fi 

measured on the lattice. 

Since b quarks are heavy relative to the cutoff scale of lattices currently 

being used for numerical simulations, an expansion (see reference [2] and references 

therein) which analytically removes the dependence on the b quark mass, m, must 

be used [3][4]. The relationship between operators in the full theory and their coun- 

terparts in the theory built around the ceroth order term in this expansion [4]-[lo], 

termed the static effective field theory, is perturbatively calculable. 

We perform a two stage matching procedure. First we relate the full theory op- 

erator to a combination of operators in the static effective theory. This is much like 

the computation of the full order as contributions to the static effective field theory 

operator determining fB performed in reference [i’]. The ultraviolet divergences in 

the continuum full and static theories arc regulated with dimensional regularization 
- 

and modified minimal subtraction (MS). The second step is much like the matching 

of the continuum operator determining f~ to its lattice counterpart [11][12]. (A 

different approach to this computation was carried out in [13], but see references [12] 

and [14].) The two step matching is useful conceptually and to disentangle technical 

issues. For example, it is most convenient to regulate the infrared divergences in the 

matrix elements in the first stage of the matching with dimensional regular&&ion, 

and to use a gluon mass for the second stage. This two step procedure would also be 

useful in extending this calculation to next-to-leading logarithmic order. However, 



the logarithm of ma, where a is the lattice spacing, is not so large as to require this 

extension. 

The paper is organized as follows. We begin by writing down the static 

effective field theory action for heavy quarks and antiquarks in the continuum, 

and determining at tree level the operator which fixes B~fi in the effective theory. 

We then perform the one loop matching between the operators in the full theory 

and the continuum static theory. The discretized Euclidean action for heavy 

quarks is considered next, and then we perform the one loop matching between 

the operators in the continuum static theory and the lattice regulated theory. In 

the conclusion, we discuss our results for some typical values of the parameters 

involved, emphasizing the uncertainty associated with the value of as. Discussion 

of the numerically evaluated constants arising from the one loop integrals on the 

lattice is relegated to an appendix. 

Before proceeding, we note our renormalization prescription. This is necessary 

because the theory with the AB = 2 operator present, which we have been referring 

to as the “full” theory, is also an effective theory with the W and 2 bosons and 

the 1 quark eliminated. AB = 2 matrix elements in this theory have additional 

divergences not present in the standard model. For the one loop calculations 

in the “full” theory we use modified minimal subtraction with the convention 

that 7s is always anticommuting; there are no parity violating fermion loops in 

this calculation. This is the same scheme used in the next-to-leading-logarithmic 

computation of the coefficient of the AB = 2 operator performed by Buras, Jamin 

and Weiss [15], thus allowing direct use of their results. In the calculation of 

matching conditions at order as, evanescent operators (whose tree level matrix 

elements vanish in four dimensions) are produced. The renormalization prescription 

is to eliminate these evanescent terms in the one loop finite parts. This means that 

the evanescent terms appear as counterterms for higher order calculations, such as 

the two loop anomalous dimension of the B-B mixing operator, but they need not 

concern us further here [15]-[17]. 

2. Continuum Static Action and Tree Level Operators 

The Minkowski space Lagrangian for a field b that annihilates heavy quarks and a 
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field i that annihilates heavy antiquarks is, 

& = Zbk&b+ Zih@ + Zhbtb - Z6miii. (2.1) 

The field b is a two-component column vector and the field 6 is a two-component row 

vector. Both fields are rotational doublets. Z is the wave function renormalization 

and 6m is the mass counterterm. The gauge-covariant derivative i’Ds is equal to 

i& + gAo where A0 = AZT.. 

The terms in the Lagrangian for the b and g fields are more similar than they 

appear. If one re-orders the terms involving b, the Pauli matrix structure is less 

natural, but we see that the action for the two fields is otherwise very similar. The 

Fermi minus sign in the kinetic term is compensated for by a parts integration. 

The only difference is then that in the gauge covariant derivative acting on 8, 

-Tz would appear instead of T,. This is as it should be since in the static 

limit there are no kinematical differences between different flavors of quarks [lg] or 

between heavy quarks and heavy antiquarks; the only difference is in the quantum 

numbers they carry. From the Lagrangian (2.1) we obtain the heavy quark and 

antiquark propagators and gluon couplings used in our one loop calculations. We 

now determine the tree level operators in the full and static effective theories which 

f=Bsf;. 

To be definite consider a B” meson comprising a % antiquark and a light quark, 

q, mixing into B”, with quark content bq (Particle Data Group convention [19]). 

The lowest dimension operator in the full theory contributing to this process is 

(2.2) 

This operator can also create two b quarks or annihilate two i;‘s so it corresponds 

to several operators in the effective theory which has independent fields for heavy 

quarks and heavy antiquarks. We match onto the effective theory operator for the 

B” + B” mixing described above by matching the matrix element of (2.2) between 

an incoming light quark and heavy antiquark and an outgoing light antiquark and 

heavy quark. Let the outgoing heavy quark be described by a spinor u’ and have 

color A, the incoming light quark be described by u and B, the incoming heavy 
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antiquark by v and C, and the outgoing light antiquark by v’ and D. The tree level 

matrix element of 0~ denoted (C)~)O is then, 

(UL)O = L&-m?, (2.3) 

where, 

and, 

L s z’~~PLu~ypPLdr z E tiy~PLv’iY.‘ypPLu. (2.4) 

66 e S*&r, ) iGG 6.4~6~~. (2.5) 

Of course a Fierz identity is that L = -x. The operator with the same matrix 

elements in the effective theory is 

o;f’= b’(l o)yPL*?J(o l)Y,PL$ (2.6) 

Note the absence of a i multiplying the operator. The field bt creates the outgoing 

heavy quark; it cannot annihilate the incoming heavy antiquark. Likewise, & cannot 

create the outgoing heavy quark. 

To match the matrix elements we have expanded the amplitude in the full 

theory to zeroth order in l/m, and compared with the static theory matrix element. 

The amplitudes are in agreement to this order in l/m provided that the spinor u’ 

in the full theory satisfies 701~’ = u’ and the spinor v satisfies rev = -v, which is 

the situation for mixing. With the most common conventions for the normalization 

of states in the full theory, compensating factors of &% must be put into the 

matching condition. We work in the Dirac basis so that the two-by-four matrices 

(1 0) and (0 1) appearing in (2.6) have this simple block structure and simply pick 

out the upper and lower two rows, respectively, of the succeeding four-by-four Dime 

matrices. 

3. Full Theory-Static Effective Theory Matching at One Loop 

It will be useful to define an additional operator which will be generated at order 

as in the continuum owing to the mass of the heavy quark, 

us = ; ZPLqiiPLq. 
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For the incoming and outgoing states defined in the previous section, the tree level 

matrix element of this operator is, 

where, 

(Us)0 = 566 - sa, (3.2) 

s c ?i’PLU UPLV’, s z Ti’PLV’ i7PLU. (3.3) 

The effective theory operator 02ff is defined analogously to Ozff in equation (2.6). 

To determine the one loop coefficients of Oiff and a>‘, we use the same matrix 

element used in the previous section for tree level matching. For calculational 

convenience, we will set the light quark mass to zero, and take our mass shell point 

to be the point where the incoming and outgoing momenta of the light quarks are 

zero and the heavy quark and antiquark are on shell and at rest. Dimensional 

regularization with modified minimal subtraction will be used to regulate the 

infrared divergences which appear at this point. Because the result of the matching 

is infrared finite, dependence on the infrared regulator and scheme will drop out 

provided the same procedure is followed in both the full theory and the effective 

theory. Using dimensional regularization for both the ultraviolet and infrared 

divergences results in the remarkable simplification that all the one-loop diagrams 

in the continuum static theory which must be calculated vanish. Thus the non- 

vanishing contributions to the matching come from the full theory matrix element 

alone. 

The full order as contribution to the matrix element of 0~ can be written as 

2 (-61n 2 + cL)(uL)o + ~Cs(Us)o. 
The only subtlety in putting the result into this form, is that to eeroth order in the 

l/m expansidn, when yo is next to E’ or 5, we can replace it by 1 or -1, respectively, 

resulting in a reduction in the number of independent amplitudes. For example, 

ii’yyPLu;iiypy”PLd = -4L. (3.5) 

With the renormalization scheme discussed in the introduction we find that the 

constants appearing in the coefficients are, 

CL = -14, cs = -8. (3.6) 
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The operator in the effective theory which corresponds to 0~ is therefore, 

2 
-61n$+C~ @+ ~csueff 

4n s' (3.7) 

Note, that unlike the case of the current determining f~, the operator in the full 

theory, OL, is itself renormalization point dependent. The combination (3.7), which 

corresponds to OL, is thus also dependent on renornmlization point. The coefficient 

of the logarithm reflects the difference of the running in the full theory and the static 

effective theory. The complete leading logarithmic contribution to the running of the 

operator in the static effective theory was calculated by V&shin and Shifman and 

Politzer and Wise [20][6]. The running of Or. in the full theory has been calculated 

to next-to-leading-logarithmic order in reference [15]. 

4. Euclidean Discretised Operators and Heavy Quark Action 

In Euclidean space, the static effective field theory Lagrangian is 

,& = ZbtiVob + z&iiZ),#. (4.1) 

We have dropped the mass counterterm, which only multiplies the propagator by 

an exponential that is independent of the gauge field. Since b, bt, b and it are 

independent fields in Euclidean space, the overall phase of the action is arbitrary. 

However, independent phase redefinitions are compensated for by changes in the 

phase in the relation between Euclidean Green’s functions measured on the lattice 

and the Minkowskian matrix elements which define quantities like fB and Hg. With 

the phase convention used here, the free propagator for heavy quarks in Euclidean 

space is l/(ps + ;e). 

Many discretiaations of the action with the same naive continuum limit are 

possible. The following choice, 

SE =ia3~[b+(n)(b(n)-&(n-i)+b(n-6)) + &)(&(n)b+(n+i))-i+(n))], (4.2) 

reproduces the propagator being proposed for numerical simulations [3]. Manipu- 

lations like those discussed following equation (2.1) show that the heavy quark and 

heavy antiquark Lagrangians are more similar than they appear. The Wilson action 
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for the light quark fields is given in equation (A3) of reference [21] which will be 

frequently compared to in the appendix. 

Various choices of four-fermion operators yielding the same naive continuum 

limit can be made. The lattice operators we will use are the zero-distance operators, 

@?’ = b+(,)(l o)y,PLq(n) @n)(O l)r,&n(~), 

OF’= b+(n)(l O)PLq(n) i(n)(O l)PLq(n). 
(4.3) 

corresponding to Uzff and Uiff which they closely resemble. Our Euclidean Dirac 

matrices are Hermitian. With this convention, Fierz identities are unaffected. 

5. Static Effective Theory-Lattice Matching at One Loop 

We first define two additional operators which will be generated at order (IS owing 

to the chiral symmetry breaking Wilson mass term, 

and an operator identical to 0~ except that PR appears instead of PL, 

OR = 4 -%-fPRQi@RQ. (5.2) 

For convenient comparison with equations (2.2) and (3.1), we have introduced these 

operators in their full theory form in Minkowski space. The corresponding tree level 

amplitudes are, 

-- 
(UN)0 =Nt%-fl$i?, (UR)O =R66-R66, (5.3) 

where, 

N E 2i#LU zip& + 2ii’PRt‘@Ld +ii’-,pPLU iiy.&V +?i’~pP@‘i!~,&Vf, (5.4) 

and m, R and x are defined in by now familiar analogous fashions, as are Of, 

U’ff R1 Cl!$ and Ugtr. Fiers identities show that %y = N and I? = -R. 

The full order as difference between the continuum effective theory and lattice 

amplitudes we write as 

~(4ln&’ +DL)(UL~+~DN(UN)~ +~DR(UR)~. (5.5) 
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In equation (5.5), (UL)~, (UN)~ and (UR)~ are the Euclidean counterparts of the 

matrix elements in equations (2.3) and (5.3). DL, DN and DR are numerically 

evaluated constants given in Table 1. Errors are at most U(1) in the third significant 

figure. Analytical expressions for and numerical values of the various contributions 

to these constants from each type of Feynman diagram, are given in the appendix. 

T DL DN DR 
1.00 -65.5 -14.4 -1.61 
0.75 -63.8 -14.5 -1.77 
0.50 -62.0 -14.0 -1.92 
0.25 -59.8 -11.4 -1.59 
0.00 -58.1 0.0 0.00 

Table 1. Operator Coefficients as a Function of Wilson Parameter. 

The discretized operator which corresponds to UL*, 

1+ EE(4ln gaz + DL)up + zDNUFt + ~DRW', 
(5.6) 

can thus be obtained to one loop order once the renormalization point, lattice 

spacing, and value of as are given. To obtain the discretised operator corresponding 

to UL, the additional one loop contributions coming from equation (3.7), 

-6ln $ + CL Uy + ~CSU~‘~, (5.7) 

must be included. 

6. Conclusions 

Our perturbative results are contained in the combination of four lattice operators 

corresponding to 0~ given by equations (5.6), (5.7) and (3.6) and Table 1. For 

B-B mixing, the matrix element of Uv is the same as that of 0:“. From the 

numerical results in Table 1, which will be multiplied by as/4n, we see that the 

correction factor for the coefficient of Ok’* in Ui* will be large. Of the operators 

which appeared at one loop, the only one whose matrix element has been measured 

8 



on the lattice is Up [22]. We illustrate the use of our perturbative results by 

computing the coefficient of this operator. We will see that there is considerable 

uncertainty in the application of these results. 

The coefficient of ULff in UL, where both operators are renormalized at scale 

p = 2 GeV (see the discussion below equation (3.7)) is l+(C~-6ln(~~/m*))as/4x 

which is 0.94. Here we have taken the b quark mass to be 5 GeV and the QCD scale 

for four active quarks, A$$;, to be 200 MeV (the central value from reference [19]) 

resulting in a two loop value of QS of 0.25. 

For the second step of the matching, which gives the coefficient of Up in Ui*, 

we take the T = 1 value for DL from Table 1 which is -65.5. A typical inverse lattice 

spacing in current calculations is a- i = 2 GeV. With p also already chosen to be 

2 GeV, the logarithm in the coefficient of Uf’L vanishes. This is the point where a 

large source of uncertainty appears. The choice of lattice or continuum definitions of 

as [23] makes a significant numerical difference, despite being technically a higher 

order effect in as. One choice is to use the lattice value of as in this step of 

the matching (see reference [24] for a review of lattice perturbation theory). Using 

p = 6.0 which corresponds to a 2 GeV inverselattice spacing, the relation 47ra.s = 6/,B 

yields the value 0.080 for QS. We find that 1 + asD~/4x = 0.59, a rather large 

reduction. Thus, with the lattice coupling, the product of 0.94 and 0.59 gives 0.55 

for the coefficient of Up in 0~. 

Another choice is to use a renormalized value of as, which is roughly the 

continuum value at the scale x/a [25] and at an inverse lattice spacing of 2 GeV is 

1.8 times the lattice value [25]. This results in a correction to the coefficient of Ufp” 

in 0~ so large that perturbation theory clearly cannot be trusted. Of course, this 

uncertainty in as is not peculiar to this computation although recent discussion [25] 

and the large numerical coefficient DL highlight the difficulty. 

The magnitude of the perturbative corrections of course depends a great deal 

on the quantity being calculated. In the case of K-x mixing, factoring f$ out of 

the matrix element cancels a large part of the perturbative correction. Similarly, 

it can be seen that the lattice part of the one loop corrections to the coefficient 

of 02” in Be is not as large as the correction to BBf&. The coefficients of 

the other three operators are unaffected at this order. After subtracting the 
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perturbative corrections to fB, the factor multiplying (UL)O in equation (3.4) is 

changed from -6 ln($/mZ)-14 to -21n(~2/m*)-26/3. Instead of 0.94, the factor 

in the continuum pert of the matching becomes 0.90. The constant DL appearing 

in the second stage of the matching is changed to 

i(l- dl) - +I2 - ;c+ 3-5 --?I), (6.1) 

Taking the numerical values of these quantities for T = 1 from the appendix, we 

find that this combination is 15.4, much smaller in magnitude than the value of Dr. 

which was -65.5 et T = 1. For the first choice of as, the combination (6.1) yields e 

factor 1.10 for this pert of the correction to Bg, compared to 0.59 for Bsfi. The 

product of the coefficients from both stages of the matching for BB is 0.99. With 

the second choice for the value of as, the product for Bs would be 1.06. 

The cancellation of pert of the contribution to DL will remain true et any 

order in perturbation theory, because the contribution due to heavy end light quark 

wave function renormalization automatically drops out of the corrections to Bg. 

Even if fB wes independently known, it is not clear that the magnitude of the 

higher order corrections to BB would be reduced so significantly. Furthermore, the 

combination BsfZ, is the important one phenomenologically, end unlike in the case 

of neutral K mesons, there is no independent method for determining the decay 

constant. Since the matrix element measured on the lattice directly determines the 

phenomenologically interesting combination, for the neutral B mesons there is little 

reason for separating the product, and thus little reason, except that the one loop 

corrections are much smaller, for reporting the perturb&iv= corrections to fB end 

Bg separately. 

Because the perturbative corrections to the phenomenologically interesting 

combination are large, we can be confident only in the qualitative statement that 

these corrections significantly reduce the contribution of Ok” to Befi. Lattice 

spacings fine enough to reduce as significantly are not realistically attainable. Thus, 

progress towards e more precise statement based on our results for the combination 

of lattice operators corresponding to 0~ must come from further study of the 

reliability of lattice perturbation theory [25], the disentanglement of these from 

order a corrections [26], and additional higher order calculations which could help 

to set the scale in as. 
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Appendix. Numerically Evaluated Constants 

In this appendix, we express the numerically evaluated factors in the operator 

coefficients in terms of contributions coming from the various types of diagrams. 

We will give analytical end numerical expressions for the various contributions. 

Since the logarithms in the one loop calculation are easily reproducible, we make e 

simplification in reporting the differences by setting pea = 1. 

Most of the numerically evaluated constants have arisen in previous compute- 

tions, so we first rewrite DL, DN end DR in terms of these quantities, 

D,=$-d,)-;c-;e+;(;- f)+;(-5-v), 

DN = 2dz, 

DR = 4~. 

(A.11 

The constants DN end DR are nonzero because the Wilson mess term for the 

light fermions breaks chiral symmetry. More specifically, lattice diagrams with the 

gluon coupling one of the heavy quark lines to one of the light quark lines (to 

be referred to es heavy-light radiative corrections) produced DN end the lattice 

light-light radiative corrections produced DR. The constant dr was tabulated in 

reference [12]. The constant ‘w = (A-,+-A,,,)/4 was tabulated in [27] end is the 

same es the constant K1 defined in reference [21]. 

The contribution 1 - di to DL arose from heavy-light radiative corrections. 

The first term in this contribution came from the continuum graph with e gluon 

mess es en infrared regulator end the di term from the lattice graph. Of course 

the only quantities independent of the infrared regulator are differences of contin- 

uum end lattice graphs. The constant dl was tabulated in reference [12]. The 

constant c arose from the lattice heavy-heavy radiative corrections, end thus is 

independent of T, es is the constant e which arises from heavy quark wave function 

renormalization on the lattice end has previously been computed [11][12]. The 

contribution 3 - f comes from the difference of light quark renormaliaation in the 

continuum end on the lattice end was tabulated es Ax, in reference [27]. Finally, 

the constant r = -8 In x-Ko-16Kl in the notation of reference [21] where contact 

with previous work [27][28] is made in their equation (4.29). However with their 
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m renormalization prescription (d es&bed above equation (2.44) in [21]), instead 

of the combination (-5 -v) they would have (-6 - w) in our equation (A.l). 

Following reference [27] we introduce some notation to give analytical expres- 

sions for the seven numerical constants, 

A,=~Psin2~, 

Al = c, sina q,, + 4r2Ai, 

Ad = c, sin’ Q,, , 

&=x,, 
1 qr sin’ qlr sin - . 

2 

(A.21 

The sums on p run from 1 to 4. Let Af) and A?) be identical to A, and Aa 

respectively except with q4 set to zero. 

The T independent quantities c and e are given by 

c=-2+$ 
J [( 

a41 2 -J- 
IsA: 

-8(1-P); 
) 1 

-;$- , 
1 

e=c+l d9~. 
(A.3) 

7-r I 4Ay) 

Each integration variable is in the range [-?r, ~1. The quantities dl and dz [12] 

involving both light and heavy quarks are, 

dl=-$ d41 ’ J [ 4&b 
d2 = -; J &:L. 

2 A?’ 

1 , 

(A.4) 

The constant dz is the only quantity odd in the Wilson mass parameter. The 

constants involving only light quarks are, 

1 , 

(A.51 
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T 4 dz f v w 
1.00 I 5.46 I -7.22 I 13.35 I -6.92 I -1.21) _.-_ 
0.75 5.76 -7.23 11.96 -9.34 -1.33 
0.50 6.30 -7.00 10.22 -13.43 -1.44 
0.25 7.37 -5.72 8.07 -21.99 -1.19 
0.00 8.79 0.00 6.54 -35.16 0.00 

Table 2. Numerically Evaluated Constants versus Wilson Mass Parameter. 

All T-dependent quantities are tabulated in Table 2. Numerically, the T independent 

quantities c and e are e = 24.48 [ll] [12] and c = 4.53. These and all other numerically 

calculated quantities in this appendix were evaluated to two decimal place accuracy 

using the Monte Carlo integration routine VEGAS [29]. Errors are at most O(1) 

in the last decimal place. Plugging the various constants into equation (A.l), we 

obtain the results for DL, DN and DR given in Table 1. 
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