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Abstract 

The coefficients of the l/m-suppressed dimension-five operators in the static ef- 
fective field theory Lagrangian have been calculated to one loop order. In this 
paper, we calculate to order (2s the coeflicients of the l/m-suppressed operators in 
the expansion of the vector and axial vector currents containing one light and one 
heavy quark field. The matrix element of the time component of the axial vector 
current determines the decay constants of pseudoscalar heavy-light mesons. 

10/90 

OperalerJ by Universities Research Association Inc. under contract with the United States Departmental Energy 



1. Introduction 

In a meson composed of one quark much heavier than the QCD scale and one much 

lighter, one expects that the heavy quark does not react much to the cloud of virtual 

light quarks and gluons which surround it. Apart from calculable short-distance 

corrections, one expects that the behavior of operators which create a heavy quark 

that is nearly at rest becomes independent of mass in the limit that the heavy 

quark mass becomes large. An approximation incorporating these expectations is 

the static approximation, which is the eeroth order approximation in a systematic 

expansion in the inverse of the mass, m, of a heavy quark (see reference [I] and 

references therein). 

The conceptually clearest and computationally most efficient way to formulate 

the l/m expansion is in terms of an effective field theory action [2]-[7]. Once 

formulated this way, it is clear [2][4] that the static effective theory is conceptually 

very similar to the nonrelativistic effective field theory already developed for QED 

by Caswell and Lepage [S]. In the effective field theory formulation of the static 

approximation, corrections to scattering matrix elements can be systematically 

included by adding operators of dimension greater than four to the action. Matrix 

elements of operators also have a systematic expansion. Corrections come from 

both the l/m corrections to the effective field theory action, and l/m corrections 

to the operators in the effective theory [9][10]. 

A phenomenologically important application is the determination of decay 

constants of heavy-light mesons. The decay constants are defined by the matrix 

element between a heavy meson state and the vacuum of a weak interaction 

current, and the the static approximation provides one way of determining these 

matrix elements numerically using lattice gauge theory [2][11]. The coefficients 

of the l/m-suppressed operators in the effective field theory expansion of this 

current which determines the corrections to heavy-light meson decay constants 

have been calculated in the leading logarithmic approximation in the papers of 

reference [lo]. In this paper, we perform a full order as calculation of these 

coefficients. Furthermore, we reduce the number of hadronic matrix elements 

which are needed to determine the l/m corrections to pseudoscalar heavy meson 

decay constants to a linear combination of two time-ordered products and a linear 

combination of three local operators. 

1 



2. Static Effective Field Theory 

The degrees of freedom of a heavy quark that is nearly at rest are described by a 

two-component field that is a doublet under rotations, (o. Only two invariants of 

dimension four or less can be built from this field. They are ~ti@~ (from which 

the power counting dimension of the field is determined) and ‘ptp. In Minkowski 

space, at aeroth order in the l/m expansion, the static effective field theory action 

is therefore [2][4] 

L = .z$o+iv”p - Zl%np+~ , (2.1) 

where the derivative i@ has been replaced by the gauge-covariant derivative, 

iV“=iP+gA~. Z is the wave function renormalization of the heavy quark field, and 

6m is the mass counterterm. A generalization of this Lagrangian valid for heavy 

quarks with four-velocity near an arbitrary four-velocity U,, is L = ZptU,,iV’rp. 

This is the heavy quark piece of the Lagrangian (8) of reference [6]. For the purposes 

of this paper the use of a Lagrangian valid for arbitrary velocity is not necessary. 

There are two dimension-five operators which incorporate the l/m corrections 

to the static effective theory Lagrangian, the nonrelativistic kinetic energy and the 

chromomagnetic moment operator: 

Oki,, = &~+~‘~‘$C , Omog = &$9+eij~V’Vj~~p (2.2) 

In the Minkowski space Lagrangian, these operators appear with coefficient ZZbi” 

ad Z.&s., respectively. Their normalization has been chosen so that Z*i, and 

Z ,,,,,s are both unity at tree level. Z*;, and Z,,,,,r have been determined at one loop 

order [7] with the result that 

Zkin = 1 9 Zmog = . 

The operators Otin and O,,,.s are the same as the operators that appear 

in the nonrelativistic effective field theory. The essential difference between the 

static and nonrelativistic theories is that in the former, these operators are treated 

perturbatively; they do not modify the propagators of the heavy quark fields. 

Within the framework of the nonrelativistic effective theory, Lepage and Luo [2] 

determined the anomalous dimension of the chromomagnetic moment operator. 

Their calculation and the calculation of anomalous dimensions in reference [lo] 

are in agreement with equation (2.3). 
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3. Currents to Order l/m at Tree Level 

At seroth order in the l/m expansion and at tree level, the current corresponding 

to ij-y”b, where b is the heavy quark field in the full theory, is q (i) ‘p. The matrix 

appearing between the four-component light quark field, p, and the two-component 

heavy quark field, p, is four-by-two. The form and coefficient of the effective field 

theory operators are determined by matching matrix elements between an incoming 

heavy quark and an outgoing light quark or an incoming light antiquark. In a Dirac 

basis, the four-by-two matrix is easily expressible in terms of two-by-two blocks. 

The current corresponding to #b is --q (:<) ‘p. 

There are three l/m-suppressed operators which can appear in the expansion 

of q-y”b. They are 

iV=p , 

(3.1) 

Any l/m-suppressed operators with these rotational and discrete symmetry trans- 

formations can be expressed in terms of these three operators to this order in l/m 

by using the equations of motion. It is neither necessary nor possible to determine 

the coefficients of additional operators which vanish by virtue of the equations of 

motion using the above matching procedure between on-shell states [12]. 

The effective field theory currents are determined by matching matrix elements 

between an incoming heavy quark and an outgoing light quark or incoming light 

antiquark. To determine the coefficients of the operators in (3.1) it is necessary 

to expand the full theory amplitude to order l/m. The tree level matrix element 

of the time component of the current between a heavy quark with spinor u and 

an outgoing light quark with spinor u’ is a’y’u, which (ignoring a factor of & 

associated with the normalization of states) can be expanded to 

-ii’ [(iI)-& (ij)]’ 
(3.2) 

to first order in l/m. U is the two-component spinor associated with the heavy 

quark, and p is its momentum. The first factor in brackets gives the zeroth order 

contribution noted above, and the second factor is reproduced in the effective theory 

by including -i ~7~‘) in the l/m expansion of the current. 
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Similarly, there are five l/m-suppressed operators which can appear in the 

expansion of ijy’b. They are 

and a(s) = Aq(-izj) (uiui) p , 

Expanding the tree level amplitude involving the full theory current, one finds that 

the current in the effective theory must contain iOc7) at order l/m. 

4. Currents at One Loop 

In this section the coefficients of the operators in the expansion of the vector and 

axial vector currents are determined to one loop order. This calculation for the part 

of the current that appears at zeroth order in the l/m expansion was performed in 

references [4] and [13]. The result is that the coefficient of q (i) ‘p in q7ob is 

1.2 -2-i& 
( ) 

. 

The coefficient of the logarithm is in agreement with the calculations of references [3] 

and [14]. The coefficient of -ij (it) (o in qyib is, 

1,: -4-iln$ 
( ) 

. 

The difference of the amplitudes in the two theories is a function of the three- 

momentum of the heavy quark, p’, the three-momentum of the light quark, q’, 

and the mass of the light quark, ml (and of the renormalization point). As stated 

in the previous section, the procedure for determining the tree level coefficients 

waz+ to expand the tree level amplitudes to order l/m. In order to determine the 

coefficients of the operators in (3.1) and (3.3) to order (zs, the difference of the 

one-loop amplitudes used to obtain (4.1) and (4.2) must similarly be recalculated 

and expanded retaining terms of first order in p’/m, q’/m and ml/m. 

The amplitudes matched to obtain (4.1) and (4.2) were logarithmically infrared 

divergent, and an infrared regulator was introduced to make them finite. Once 

we expand these amplitudes to first order in l/m they will be linearly and 

logarithmically infrared divergent. Of course, the effective theory is constructed to 
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reproduce the low energy behavior of the full theory, and the infrared divergences in 

the matching of corresponding amplitudes in the two theories will cancel. Indeed, if 

we use dimensional regularization to regulate the infrared as well as the ultraviolet 

divergences, we are even free to apply MS to the infrared poles so long as we apply 

the same procedure to these poles in the effective theory. 

Performing the expansion in the effective theory with dimensional regulariza- 

tion as both the ultraviolet and infrared regulator leaves no remaining scale in the 

integrand, and this results in the remarkable simplification that all one-loop integrals 

in the effective theory vanish. This general argument allows us to postpone further 

evaluation of the graphs that appear in the effective theory to the following section, 

where it will be necessary to separate the ultraviolet and incared divergences. 

The expansion of the full theory amplitude for the matrix element of the vector 

current between an incoming light quark and an outgoing heavy quark can be 

expressed in terms of the following basis to first order in l/m: 

Al = z’+ , Aa = ;paafu , AS = ~qaiiru , ml , o 

As = ~p?i’u 

A4 = e-21 7 u , (4,3) 

, &=p’q-l ~1 --uY 11, ma 
and A7 = p ’ q”,-, 

qP uu. 

Since p”=m + 0(1/m), the terms in the basis with factors of pa when a = 0 or p. q, 

or both, are not as suppressed as they appear; we have not computed the amplitude 

to third order in the l/m expansion. 

Denoting the coefficient of Al as ai, etc., we find that the one-loop amplitude 

is given by 

ol=l+$~(-4-3ln$)+z(-2)) az=as2, 
3n 

as =Z(ln $ + 2) , a4 = Z(-2), a~=:(-3in$-2), (4.4) 

a 
as=z(-31n+), md a7 = z(2ln 5 + 6) . 

The second term in ai results from the wave function renormalization of the heavy 

quark and the third results from the vertex correction graph. 

Expanding the amplitudes in (4.3) in exactly the same fashion as in equation 

(3.2) we find that the order l/m contributions to the effective theory current for 
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qT”b are 

(a3 + a4 + a5 + as + a~)cP) + aa ; a1 cJ@) - (a3 + a* + a7)0(3) , (4.5) 

and that the l/m contributions to the effective theory current for qTi^l’b are 

(as - a4)d4) + a*u@) + czSdS) + $cP) + a&J@) (4.6) 

The results for qrsrOb and TTsy’b are obtained simply by exchanging the upper and 

lower two-by-two blocks in the four-by-two matrices and sending ml to minus itself 

where it appears in (3.1), (3.3) and (4.3). 

5. Anomalous Dimensions 

In the one-loop corrections to the weak decay matrix element, there are corrections 

proportional to log ma, where u-r is the scale at which the hadronic matrix element 

is evaluated. If the matrix elements are computed using lattice gauge theory, then 

a is the lattice spacing, which at the present time is typically about (2 GeV)-I. 

In this case the logarithm is not large for either the bottom or charm quarks, 

and it would be inconsistent to ignore the non-logarithmic terms. However, if one 

imagines that there is some method for evaluating the hadronic matrix elements at 

a scale nearer the QCD scale, then it is useful to sum the leading logarithms using 

the renormalization group in the effective theory [9] as was done in reference [lo]. 

In that work, the mixing of twelve weak current operators carrying a four-vector 

index with a set of time-ordered products involving three flavor-conserving operators 

was considered. In this section, we derive the mixing of the local operators in 

equations (3.1) and (3.3) with the time-ordered products involving the dimension- 

five operators in equation (2.2), which give the l/m corrections to heavy meson 

decay constants, and make a comparison with the results of reference [lo]. 

The matching calculation of the previous section was performed using dimen- 

sional regularisation to treat the infrared as well as the ultraviolet divergences, 

which greatly simplifies the calculations, but obscures the high energy behavior of 

the diagrams. Thus, to obtain the anomalous dimensions, we need to recalculate the 

amplitudes in the full theory and the effective theory which were used to determine 

the coefficients of the l/m-suppressed operators using a different infrared regulator. 

We have chosen to use a gluon mass, which is acceptable since all the diagrams we 

have to calculate are QED-like. 
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In the effective theory, there are two types of diagrams which need to be 

computed: there are diagrams for the QCD corrections to the time-ordered products 

Of okin and Ornag with the zeroth order term of the current, and there are diagrams 

for the QCD corrections to the local operators which appear in the expansion of 

the current [lo]. Using the method for handling the non-covariant poles presented 

in reference [4] the computation of the various diagrams is straightforward. The 

results from these one-loop computations are inserted into the renorm.slieation group 

equation to obtain the anomalous dimensions of the operators which can then be 

used extend the range of validity of the perturbative results. 

A byproduct of a full order (IS calculation of the effective theory diagrams using 

a gluon mass as an infrared regulator is that it permits a check of the matching 

performed in the preceding section. The computation of the full theory diagram 

with the gluon mass regulator and decomposition into the amplitude basis (4.3) is 

straightforward. The results of this matching reproduce the linear combinations of 

local operators given in equations (4.5) and (4.6). 

We first review the anomalous dimensions of the two dimension-five operators 

in the Lagrangian. They run independently of each other because they have different 

transformation properties under the spin symmetry acting only on the heavy quark 

field [2][15]. The anomalous dimension matrix for Zti, and Zmog is thus contained 

in equation (2.3), and the renormalization group for these coefficients is 

(,$+7~.}(~~~)=0, where 7,==2(: -ii2) . (5.1) 

Assemble the coefficients of the weak decay operators into a row vector, C(p), 

and denote the coefficient of the zeroth order in l/m weak decay operator by cc(p). 

The coefficient co&) w&s given to one-loop order in equations (4.1) and (4.2) for 

the cases of the rotational scalar and rotational vector operators respectively. In 

either case, at this order it satisfies (~6 +7)cc=O, where 7 = 23. The running of 

C in the effective theory is given by [lo] 

d 
/J--C+7~C+7;f;i*CO 

dfi 
=O. 

Here rw is the anomalous dimension matrix of the weak decay operators, and 7mi+ 

is the matrix which mixes the time-ordered products with them. 
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The anomalous dimension matrices, y,,,, include a contribution to compensate 

for the running of ml which appears explicitly in Of’) and 0t4). The running mass 

satisfies (~6 + 7,)mr=O, where 7m= 26. The anomalous dimension matrices are 

then 

a.9 

7w = z and 7mi= = z 
6 0 -4 

-3 0 4 (5.3) 

for the rotational scalar operators, and 

-3 0 0 0 0 
2 3 -3 0 1 

as 
7t. = x 2 0 0 01 

-2 0 -6 3 2 
6 0 0 03 

for the rotational vectors. 

and 2 6 0 0 0 4 7,,,ir = 1 0 1 0 1 > (5.4) 

For comparison with the results of reference [IO], one makes a linear trans- 

formation on their three flavor-conserving operators so that the basis is Olin, 

0 mclg , and an operator which is proportional to the zeroth order heavy quark 

equations of motion and therefore vanishes to this order in l/m [12]. Similarly, 

one makes a linear transformation on their twelve weak current operators, changing 

the basis to one in which there are three currents whose zeroth components are the 

rotational scalars in (3.1) and whose vector components vanish, five operators whose 

vector components are the rotational vectors in (3.3) and whose zeroth component 

vanishes, and four currents which are proportional to the light or heavy quark 

equations of motion. When the linear transformations are applied to equations (S), 

(9) and (10) of reference [lo], the anomalous dimensions agree with equations (5.1), 

(5.3) and (5.4). 

6. Conclusions 

The coefficients of the l/m-suppressed operators in the effective field theory 

expansion of the vector and axial vector currents involving a heavy quark and 

a light quark have been determined to one loop order. The l/m corrections to 

heavy meson decay constants are determined by the matrix elements of a linear 

combination of two time-ordered products, and from a linear combination of three 

local operators given in equation (4.5). 
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We expect that l/m corrections arc of practical importance in D and B meson 

systems. They nicely account for the ratio of D’-D to B’-B splitting. Solely 

on dimensional grounds, one might expect that in B mesons l/m corrections to 

quantities like fn would be about 5% and in D mesons they could be of order 15%. 

In this case, they could account for a significant part of the discrepancy between 

D and B meson decay constants which have been measured by two different lattice 

gauge theory methods (see reference [16] f or a recent review). On the other hand, 

one might expect the corrections to be smaller, suppressed by a factor of the velocity 

of the light quark, in a picture based on the non-relativistic quark model. 

A promising method by which the matrix elements of the l/m-suppressed 

operators can be evaluated is lattice gauge theory. For this purpose the full order a~ 

matching of the full theory to the static effective theory performed here is consistent 

and necessary, since the logarithms of the mass of the heavy quark over the scale at 

which these matrix elements will be evaluated are not large. A lattice determination 

of these matrix elements would require a choice of discretization of the dimension- 

five operators appearing in the time-ordered products and of the three local 

operators in equation (3.1). Further perturbative computations which are relevant 

to this program are the computation of the matching of these discretized operators 

to their continuum counterparts, and, for the eventual precision determination of 

heavy meson decay constants, that part of a two-loop computation in the continuum 

effective theory which would allow one to extend this full order as computation into 

a renormalization group improved next-to-leading-logarithmic computation. 
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