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Abstract 

We consider a new mechanism for dynamical symmetry breaking of the 

electroweak symmetries involving condensates of fourth generation quarks 

and leptons. A dynamical generalization of the see-saw mechanism is 

proposed based upon the BCS theory in which a neutrino condensate 

gives rise to RH-neutrino Majorans masses and all associated spin-zero 

bosom are composite. The fourth generation neutrino is naturally heavier 

than 1Wz/2 and the scale of new physics is bounded above by A = lOa 

TeV. The renormalization group equations for the effective iagrangians of 

these models are derived and used to solve the model. Implications for 

neutrino masses are discussed. 
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I. Introduction 

A. Electroweak Symmetry Breaking by Quark and Lepton 

Condensates 

Recently there has been considerable interest in the possibility that a vacuum con- 

densate involving the top quark, (Et), is generated dynamically by new physics at 

a scale A, leading to the symmetry breaking of the standard model [l - 31. This 

can be treated in a fashion similar to the BCS theory of superconductivity, or of 

the Nambu-Jona-Lasinio model of chiral symmetry breaking. However, at scales 

p < A the effective lagrangian becomes exactly that of the standard model, and the 

renormalization group (RG) is an effective, if not essential, tool in obtaining reliable 

predictions in the scheme [3]. The minimal model with a single ft condensate leads to 

a prediction for the top quark mass of rnc - 230 GeV for A - 10’s GeV, correspond- 

ing to the infrared quasi-fixed point [4], and a Higgs boson appears as a boundstate 

of ft with a mass of order 260 GeV [3,4]. 

This minimal model suffers from several potential defects. First, the predicted 

ml is large compared to indirect experimental limits when the radiative corrections 

of the standard model (p-parameter constraints) are considered. Indeed, in global 

fits to all experimental data available at present, one finds mt 2 200 GeV [5]. If 

mt < 200 GeV, then top should be found within the next few years at the Tevatron, 

and the minimal model would be ruled out. The minimal predictions seem to be 

fairly resilient to new interactions in the desert, at least in some particular models 

[S, 71. While it is conceivable that mt < 200 GeV and a D, condensate still drives 

the electroweak symmetry breaking, this would involve unknown dynamics for which 

more experimental input of physics beyond the electroweak scale would be needed. 

It has been emphasized, however, that in realistic technicolor schemes a substantial 

Et condensate seems to occur owing to the large mass of the top quark [8]. Hence, 

while mt c 200 GeV would rule out the minimal scenario, it would not role out the 

relevance of top quark condensates in general. 

A second, more theoretical, objection to the minimal scheme is the inherently 

large degree of fine-tuning. The scale A enters quadratically into the gap equation, in 
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analogy to the radiative corrections to the Higgs boson mass in the standard model. 

mt < A requires a delicate fine-tuning of the coupling constants of the effective theory 

at the scale A. In order to have a large hierarchy, one must demand that the theory lie 

very close to the critical point [3]. When A is taken sufficiently small to alleviate the 

fine-tuning, the predicted value of rnt becomes unacceptably large, so that fine-tuning 

is inherent to the minimal model. 

Of course, the issue of fine-tuning may be a red herring. Perhaps some unknown 

dynamical mechanism will allow one to explain why the theory can naturally lie near 

the critical point, and the fine-tuning mechanism may “commute” with the successful 

predictions internal to the theory. In a sense this is what must happen for our most 

successful theory, QED. In the absence of fine-tuning, QED predicts a cosmological 

constant that is in gross conflict with observation, and whatever mechanism fine-tunes 

the cosmological constant to zero does not upset the other successful predictions of the 

theory. (“Wormhole calculus” gives us a sketch as to how this might go for both the 

cosmological constant and scalar boson masses [9]). U I onetheless, the great virtue of 

theories such as technicolor is that they embody a natural solution to the electroweak 

hierarchy problem, in which Mw/Mpr.~* is small and in principle calculable. This is 

lacking in the minimal model with a cr condensate. 

Thus, in the present paper we wish to turn to a scheme in which electroweak 

symmetry breaking is driven by a condensate of conventional quarks and leptons, but 

the scale A of new dynamics is not far beyond the electroweak scale. For such a scheme 

we must invoke a fourth generation. This is apparent already in the analysis of [3] in 

which one sees that as A + 10 TeV then mt -+ 500 GeV, clearly incompatible with 

the indirect limits. For a degenerate fourth generation quark doublet, the p-parameter 

limits are not very stringent, and the mass of the fourth generation doublet can be 

N 1 TeV. Here we are abandoning the large mass of the top quark as a r&on d’etre 

for quark and lepton condensates breaking the electroweak symmetry. Nonetheless, 

the heaviness of top may arise because of its mixing to the fourth generation. In this 

sense the top quark is still a harbinger of this kind of a symmetry breaking scheme. 

In a fourth generation scheme the issue of the non-observation of a fourth neutrino 

species at LEP and SLC must be faced. This is an issue of the origin of neutrino 

masses, which we turn to next. 
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B. Neutrino Masses 

Despite the fact that all quarks and charged leptons have both left- and right-handed 

components, there is currently no evidence for the existence of right-handed neutri- 

nos. Even if a nonzero neutrino mass were found it would not necessarily imply the 

existence of a right-handed neutrino, since left-handed neutrinos may have Majorana 

masses. Moreover, right-handed neutrinos are all but impossible to detect, since they 

are decoupled from all known interactions except gravity. Such “sterile” neutrinos 

would thermally decouple in the very early universe and would not contribute suffi- 

cient entropy to influence cosmological processes such as big-bang nucleosynthesis. 

Nevertheless, there are good reasons for invoking the existence of right-handed 

neutrinos. For example, in some extensions of the standard model such as left-right 

symmetric models or grand unified theories such as SO(lO), right-handed neutrinos 

must exist to complete the matter multiplets. If right-handed neutrinos exist, then 

the most natural explanation for the smallness of the observed left-handed neutrino 

masses is the see-saw mechanism [lo]: Small left-handed neutrino masses are nat- 

urally explained by assuming (1) conventional Dirac mass terms for the neutrinos 

linking left- and right-handed neutrinos and (2) a large Majorana mass term for the 

right-handed neutrinos. No known gauge interaction is broken by the presence of 

the large Majorana mass for the right-handed neutrinos. The sterility of the right- 

handed neutrinos then ensures that the large mass hierarchy between the left- and 

right-handed masses can be maintained without fine-tuning. After transforming to 

mass eigenstates, the induced Majorana mass for the left-handed neutrino is of order 

~&/MM, where rn~ is the Dirac mass and MM is the Majorana mass. 

Of course, one can also invoke the existence of a fourth generation without the 

see-saw mechanism by simply tuning the Dirac mass of v, to be sufficiently large, i.e., 

mvr > Ma/2. This is logically acceptable, but not aesthetically pleasing. Three some- 

what arbitrary alternatives come to mind: (1) Nature may choose an exact Si7(3)~ 

chiral symmetry for the triplet of (e,~, 7) right-handed neutrinos, while “4 is a singlet, 

thus enforcing masslessness for all but v,; (2) All right-handed neutrinos may have 

conventional Dirac masses, but only the (e,r,r) right-handed neutrinos have a very 

large (perhaps SO(3) invariant) Majorana mass, so the see-saw mechanism applies 

only to them, v, being left with a large physical Majorana mass; (3) “1~ alone gets 
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a large Majorana mass, though this possibility will be severely constrained by the 

standard model p-parameter limits. However, all of these possibilities clearly beg the 

question of why the fourth generation neutrino should be different from the others. 

Obviously these schemes can be implemented by fiat, but we prefer at present to 

consider the possibility that the fourth generation neutrino is fundamentally no dif- 

ferent than the others. Hence, apart from the details of the ordinary family hierarchy 

and its dynamical consequences, we propose a principle of “neutrino democracy,” and 

insist that the v, is not special. Then how do we evade the LEP and SLC limits on 

neutrino counting? 

Here we find an intriguing, perhaps unique, possibility which we will incorporate 

at present (111. We wiil assume the existence of a fourth generation, and assume that 

(1) all neutrinos have Dirac masses of order their charged lepton counterpart and (2) 

all neutrinos have a large right-handed Majorana mass M of order the electroweak 

scale. In this scenario, the see-saw mechanism assures that the (e,,u,~) neutrinos 

are light while vd is naturally heavy [ll]. The fact that M can be taken close to the 

electroweak scale has been emphasized by Glashow in the context of three generations 

[12]. Thus, the LEP-SLC limits do not imply that there are only three generations of 

quarks and leptons, even if “neutrino democracy” is invoked. These assumptions also 

imply that the light neutrinos have masses not far from their current experimental 

upper limits, opening up the possibility that neutrino masses could be discovered ex- 

perimentally in the near future. In the simplest version which we present here there 

will be a massive IMajorana-Higgs boson and a massless “majoron” associated with 

the spontaneously broken global right-handed neutrino number [13]. The scenario 

appears to be nicely compatible with all laboratory constraints, and astrophysical 

considerations may make the existence of Majorons rather attractive [ll], [14]. Much 

of the present paper will focus upon a dynamical mechanism for generating the neu- 

trino Majorana and Dirac masses at the electroweak scale, while neatly accomodating 

the LEP-SLC results. 
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C. Renormalization Group Approach 

In Appendix A a toy model exhibiting a dynamical see-saw mechanism is solved in 

the large-N limit using conventional Schwinger-Dyson techniques. However, this is 

simply for illustrative purposes, and we will show in the next section that equivalent 

results follow by using the RG equations when the compositeness conditions are prop- 

erly implemented. The compositeness conditions are boundary conditions on the fulI 

RG equations that may be derived from the effective lagrangian at the scale A. The 

renormalization group can be used as a dynamical tool to include all of the effects 

of the full theory and generate reliable and precise predictions of its consequences. 

This goes beyond the limited approaches of large-N fermion bubble sums, or planar 

QCD calculations. Moreover, the results of these “brute force” analyses can be eas- 

ily reproduced by including only those terms in the renormalization group equations 

that correspond to effects included in the “brute force” calculations. The important 

element which makes the renormalization group applicable is the fact that the eom- 

positeness of certain dynamically generated multiplets, e.g., the Higgs multiplet and 

the majonm, implies UV boundary conditions ma the renormalization gwup equations 

of the effective field theory. 

Of course, the power of the RG lies ultimately in the existence of a long running in 

scales, i.e., a “desert,” which occurs when we fine-tune the model. The compositeness 

conditions depend upon the details of the physics at A, and only if there is a desert 

will the low-energy predictions be insensitive to the presence of irrelevant operators 

in the effective lagrangian at scale A. Since we are ultimately interested here in A N 1 

TeV, we really can only use the RG as an approximate tool in obtaining results which 

we cannot trust in detail. In any case, we know of no better way to obtain these 

results. 

We will thus analyze the full dynamical model of electroweak symmetry, and 

right-handed neutrino number breaking in detail by the RG methods of [3]. Here the 

renormalization group equations are solved implementing the boundary conditions 

that follow from compositeness. 
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II. BCS Theory of the See-Saw Mechanism and 

the Majoron 

We begin by considering a simple model which illustrates the dynamical generation 

of a Majorana mass for right-handed neutrinos. The model contains N generations 

of right-handed neutrinos YR~, where j is the generation index. The lagrangian is: 

L: = YRji~VRj + Go(iTijVRj)(PRkY;) . (2.1) 

where repeated indices are summed from 1 to N. Here +,’ denotes charge conjugation, 

and our spinor conventions are described in Appendix B. This nonrenormalizable la- 

grangian should be viewed as an effective field theory in the presence of a momentum 

cutoff A. A and Go are, strictly speaking, independent since we would have in gen- 

eral a dimensionless coupling constant g and Gs - g’/Ar. On scales above A the 

four-fermion interaction softens and is to be viewed to be generated by some new 

interactions, such as a new gauge interaction. 

The theory has a global SO( x U(1) flavor symmetry. This theory can be 

solved exactly in the large-N limit where only fermion loops are important, and we 

wilI argue that the qualitative features of the large-N limit are retained for small N. 

The full Schwinger-Dyson equation solution is presented in Appendix A. When Go 

exceeds a certain critical value, there is a vacuum condensate: 

(DAjVRj + h.c.) # 0 1 (2.2) 

which breaks the U(l), while preserving the SO(N) symmetry, and gives all of the 

neutrinos a Majorana mass. We see that, in a sense, the model (2.1) is more like 

the BCS theory than the NJL model: the condensate (2.2) breaks a (ungauged) U(1) 

symmetry which acts just like the U(1) of electromagnetism broken in the BCS theory 

(the NJL model, on the other hand, contains a condensate of the form (&), which 

breaks a chiral U(1)). 

In addition to giving rise to a Majorana mass, the fact that the U(l) flavor symme- 

try is spontaneously broken implies that there is a massless Nambu-Goldstone mode 

(the “majoron”) in the spectrum [13]. Also, there is a massive collective mode analo- 

gous to the “cr mode” in the NJL model which we will refer to as the Majorana-Higgs 
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boson. In the large-N limit it has a mass exactly twice the neutrino Majorana mass, 

but there are significant corrections to this result at small N or in the presence of 

additional interactions. 

We now discuss the solution to the theory defined in eq. (2.1) in an effective 

lagrangian framework using the block-spin renormalization group. The effective la- 

grangian of eq. (2.1) is equivaient to: 

L = ii0Rji#V0Rj + ‘PoVS,RjVoRj + h-c. ( - ) -M.w% 1 

provided we identify: 

(2.3) 

Go = l/M,1 . (2.4) 

since integrating out a,, yields the four-fermion interaction. Note that this technical 

trick contains some physics: it only works for an attractive interaction, and only such 

an interaction can form low energy boundstates. 

As we consider scales p < A we may obtain the effective lagrangian from eq. (2.3) 

by block-spin renormalization group methods, i.e., we compute the coefficients of the 

lowest dimension terms in the effective lagrangian for the theory defined by eq. (2.3) 

by integrating out field modes with momenta p2 with p’ < p’ < A”. The effective 

lagrangian at the scale p becomes [3]: 

t, = Z*w~~apQo - ws&z-~ - $z+zg 

+ ZvDORji$V ORj + it (@oBG,jVoRj + h.c.) + . . . . (2.5) 

Note the induced kinetic and quartic interaction terms which follow from fermion 

loops as in Fig.(l). 

In the large-N limit we obtain: 

z* = +X, 
II2 

Iv , = M:--$(A’-p2), 

(2.6) 

(2.7) 
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5 = Nln!c. 
ST2 p= ’ 

2, = 1, 

ii = 1. 

(2.8) 

(2.9) 
(2.10) 

We may now exercise our freedom of renormalizing the fields to write: 

G = P++&,@ - M’cP+@ - $(Q+iP)’ 

+ cRj$YRj f TV (*PhjVRj + h.c.) +. . . , (2.11) 

where we have defined resealed fields: 

I@ = .?y@ 9 0, “R = iy hR 1 (2.12) 

and: 

x = Ii/z; ) n = E/Z”Z~” , M’ = I?/.??~ . (2.13) 

The resulting renormalized coupling constants, n and X take the form: 

A = (&lkJ’ 

(2.14) 

(2.15) 

The fine-tuning of the gap equation is equivalent to demanding an approximate can- 

cellation between the quadratic divergence in eq. (2.7) against Mi. Thus, when 

/J’ -+ 0 we demand that hf’ + M $, the desired low energy value of the Q mass. 

The interesting physics predictions are then contained in the quantities i and Z+, or 

equivalently, in X and 6. 

The compositeness conditions are just those implied by the bare lagrangian of 

eq. (2.3): 

z*(F) --+ Ol,4 I (2.16) 

$4 -+ %‘4 1 (2.17) 
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or equivalently, for the physically normalized coupling constants: 

K(P) -+ 4w.A 9 (2.18) 

GL) --t 4,-a . (2.19) 

These may be taken as the boundary conditions on the solution to the RG equations. 

The predictions of the model are obtained as follows. The low energy effective 

potential for the field + with the physical normalization takes the form as p + 0: 

V(ip) = MiQ’ip + ;(@+Q)a . (2.20) 

We assume (as a consequence of our choice of fine-tuning of MO) that the symmetry 

is spontaneously broken and rewrite for ip: 

9 = tvg + L)&/++ 
A! ’ 

(2.21) 

where (Q) = vq. Here, x is a massless Nambu-Goldstone mode, the majoron [13], 

and #J is the Majorana-Higgs boson with mass: 

m; = 2xv; . (2.22) 

Also, we see from the Majorana-Yukawa coupling to the neutrinos, 

tiRji@VRj + K (@PkjVRj + h-c.) , 

that we have a Majorana mass for the right-handed neutrinos: 

(2.23) 

m&f = 2m* . (2.24) 

(Note that mu is larger by a factor of two than what one naively expects. This comes 

from deriving the equation of motion for the neutrino field from the lagrangian, since 

variations with respect to VR and DR are not independent.) By using the results for 

X and n from eqs. (2.14) and (2.15) we find that 

w 

\i 

x 2 
-= ii?=. mM 

(2.25) 
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This is the conventional Nambu-Jona-Lasinio result, but we have derived it here in 

the BCS model (151. 

We can also derive this result from the usual one-loop differential RG equations 

satisfied by the physical couplings in eqs. (2.14) and (2.15). These can be obtained 

directly in the usual way (though we alert the reader that the Majorana-Yukawa 

vertices lead to tricky factors of 2 when Wick contractions are performed). The 

results are: 

16i+e 
all 

= (2N +4)n3 , 

167+= 
ap 

= 8Nn2X - 32N~~ + 8X’ . 

(2.26) 

(2.27) 

Consider the solution to eqs. (2.26) and (2.27) keeping only the leading large-N 

terms. We find: 

1 N Aa -- 
&) = ($log $ ’ qq = 4(4r)l log2 ’ 

(2.28) 

where we have used the compositeness boundary conditions, (2.18), (2.19). The 

second result follows upon assuming that X(p) o( K’(P) and and demanding that 

eqs. (2.26) and (2.27) be consistent. These results are equivalent to eqs. (2.14) and 

(2.15) and thus we find again: 

m+=2m&, . (2.29) 

This tells us that in the large-N limit, the low-energy effective theory defined using 

the one-loop RG equations is ezaclfy equivalent to the four-fermi theory of eq. (2.1), 

provided we impose the boundary conditions (2.18) and (2.19). The point of this 

exercise is to show that the effective lagrangian defined by the one-loop RG equations 

(2.26) and (2.27), together with the compositeness boundary conditions contains all 

of the essential physics of the dynamical symmetry breaking. In the large-N limit, 

the one-loop effective lagrangian is equivalent to the exact effective lagrangian, and 

for finite N, it contains corrections to the large-N results. 
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III. A Realistic Model 

Our present goal is to specify a realistic effective lagrangian similar to eq. (2.1) which 

drives the formation of fourth generation right-handed neutrino condensates and the 

quark and lepton condensates which break the electroweak symmetries. This theory 

must contain the observed spectrum of quark and lepton masses and mixing angles. 

A. The Model 

Our model contains 4 standard generations of quarks and leptons, together with 4 

right-handed neutrinos. At the scale A we have a four-fermion effective lagrangian 

which may be represented by introducing auxilliary fields H and ip. The fermions are 

assumed to have couplings to the auxilliary field H given by: 

LDir.s = gj;‘)Z~jHe~k + ~~~)ZLjifvR* + gji’3’QLjHURh + gii)QLjZdm + h.c. 

- M&,H+H +. . . , (3.1) 

In addition, we assume that the right-handed neutrinos couple to the auxiIIiary field 

0: 

L ~aj,., = njk (@C&YR~ t h-c.) - M&@‘@ + . . (3.2) 

Here we define QL~ = (us dL)T (LG = (YL e~)~) to be the ith quark (lepton) elec- 

troweak doublet, and E = ioaH*. Note that p;lJk = ps$ implies 6jk = 'Ekj. The 

above ellipses refer to the possible “irrelevant” operators of d > 4, such as four-fermion 

terms that are suppressed by l/A’ with numerical coefficients of order unity. 

Ultimately H and ip become dynamical fields at low energies and develop vacuum 

expectation values. Through these VEV’s the quarks and leptons acquire Dirac mass 

terms and the right-handed neutrinos acquire Majorana mass terms. The matrices g$ 

will determine the mass spectrum and the pattern of mixing angles in the hadronic 

and leptonic weak currents. 
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B. The Effective Lagrangian at Low Energies 

We now consider the descent in the full theory to low energies in analogy to our treat- 

ment of the BCS-Majorana theory in Section II. The most general induced lagrangian 

for both of the the scalar fields is: 

& = Zx(D,H,D~Ho)+Z*a,~~a~lcp, - M$,H,Ifo-M&Q& 

-$H&)' - *(a!*,)' -13~,'Ho~~~po. (3.3) 

The RG boundary conditions can be derived using the same reasoning used for the 

toy model of the previous section. As p -+ A, we demand: 

2, -+ 0, (3.4) 

&I -+ 0, (3.5) 

iii + 0, (3.6) 

with all other couplings finite (and nonzero) in this normalization. The masses also 

evolve as before, but now we assume that the low energy values are such as to trigger 

the appropriate symmetry breaking as described below. In the physical normalization, 

H = ZZ'H,,; and @ = Zkf’@o the lagrangian becomes: 

L:s = D,H+D'H+ a,*+au* - ~bf~H+H-,~f~~+@ 

-~(H+H)'-~(~+~)2-X,H+HQ+iP. 

with the physical coupling constants defined by: 

A, = X,/Z&, 

Aa = 1,/z;, 

x3 = L/.Grz*, 

M; = M.&,lZri, 

M; = M&/Z*. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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The boundary conditions can therefore be rewritten as 

n + co, 

Ai -+ 00) 

d;, --t m . 

(3.13) 

(3.14) 

(3.15) 

The masses M& and Mi are tuned to have low energy vslues that are negative. 

This is equivalent to demanding the symmetry breaking solution to the gap equa- 

tions and thus trigger the formation of the vacuum expectation values of H and a. 

Therefore, we simply parametrize these VEV’s at low energies: 

(H”) = VII = 175 GeV; (@) = v* = purr. (3.16) 

where the parameter p is a priori arbitrary. 

The Higgs-Yukawa coupling constants will have low energy values: 

d-1) = -Liag(m&np,m,,mE,) 
wl 

(3.17) 

1 
d(+“3) = --&diag (m,, me, mt, mu,) (3.18) 

1 
d(-1’3) = --$iag (md,m,,mb, n~a) (3.19) 

For the neutrinos we make the assumption @ zz d!,:‘) for i = (1,2,3), while dgl 

is determined by the RG equations. Here, rn~, is the mass of the fourth generation 

lepton, etc. All large coupling constants will be determined in this model in terms 

of the scale A by using the RG equations with the assumption of the compositeness 

boundary conditions. Taking d(O) zz dt-‘1 for the light neutrinos is our special as- 

sumption of Qeutrino democracy;” we certainly do not predict the three light-mass 

generation Higgs-Yukawa couplings, but it is reasonable to expect the usual genera- 

tional hierarchy to apply in the real world for neutrinos. Of course, we allow for the 

overall scale difference, i.e., d(O) = ed(-l) with 0.1 S c S 1.0 as in [Ill. 
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The low energy Majorana-Yukawa coupling constants are assumed all to be large 

and will therefore all be predicted. We will find: 

ICC= diag(w,nr,w,wJ (3.20) 

where rrl refers to the light neutrinos. Hence the light three generations will have 

approximately degenerate Majorana-Yukawa couplings. nh # KI arises because of 

the renormalization effects due to the large Higgs-Yukawa couplings of the fourth 

generation. 

C. The Strong-Broken-Horizontal Gauge Theory 

One might ask what kind of underlying theory can give rise to strong four-fermi inter- 

actions at a scale A. We can imagine that this theory arises from a strong broken hor- 

izontal gauge theory (SBHGT), a broken gauge theory which is sufficiently strongly 

coupled to drive the formation of chiral condensates. We will not say much here 

about the form of the SBHGT, however, we do not have to commit ourselves to any 

particular underlying theory, since we will work solely with the effective lagrangian. 

Integrating out the scalar fields of eq(3.1) and eq.(3.2) will generate the equivalent 

effective lagrangian at A, which is then viewed as the starting point. Hence, by work- 

ing backwards, we can specify a simple solution for the desired effective lagrangian 

for the SBHGT by integrating out H and @ 

LssacT z G!,r,:*-‘)z .- (0.0)- 
L.eR,emLLl + Giju LLivRjcR*LLl 

l G{$;:‘O)ZL<eRjCRkLLt + G~$~‘,;‘)ZtiVRjP~LL~ (3.21) 

+KijkiV~iVRjPRkV;U + ... (3.22) 

We have not explicitly written the analogous terms for the quark-quark four-fermion, 

and the quark-lepton four-fermion interactions. The tensor coefficients must then 

have the approzimate factorization properties: 

G$$) = $(&‘/“,h I 

KijLI = &jKkl/f& . 

(3.23) 

(3.24) 
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The factorization properties select a particular low energy spectrum of composite 

Higgs and Majorana-Higgs bosons. One can throw the theory into a different mode 

by relaxing these conditions. For example, setting G&f’ x 0 for CY # 0 would 

lead to a four Higgs doublet version of the scheme, allowing one doublet per charge 

species of right-handed quark or lepton. This is a far more complicated low energy 

model than the single Higgs doublet version which we will presently study, but it is 

potentially interesting since it contains the largest set of low energy composite states, 

yet naturally avoids the presence of off-diagonal neutral vertices. The two-doublet 

version of the minimal dynamical symmetry breaking scheme has been studied by 

Luty and by Suzuki [16]. We will presently make the simplifying assumption that the 

factorization properties are such that only one dynamical Higgs doublet is generated 

by the SBHGT. 

If the factorization holds the 9:;’ an be brought to a positive diagonal form, d$‘l 

by performing SU(N) flavor transformations on the fermion fields. The statement 

that we want the fourth generation to dominate the symmetry breaking is really the 

requirement that the g(“l matrices have single large eigenvalues, which can be taken in 

an appropriate basis as the fourth diagonal elements of d(“). This can be understood 

as a consequence of a symmetry principle, as emphasized by Fritzsch, Meshkov, and 

Kaus [17], but one which pertains to the details of the SBHGT. 

We emphasize that the factorization properties are expected to be only approxi- 

mate to leading order in the largest terms. For example, we have ii d-1 z e;d!$ with 

si < 1 for i # 4. We demand only that the factorization conditions of eqs. (3.24) hold 

to order c. The O(8) terms then become O(l/Ar) contact interactions in the low 

energy effective theory. The relevant structure of the effective lagrangian for Dirac 

masses then takes the schematic form, e.g., written here only for the +2/3 quarks: 

+O(~i~j)GO(~~LPiR)(~jRQjL) (3.25) 

where 91 = t, 9s = c, and 94 = U. Unfortunately, here the fermion mass hierarchy is 

unexplained, arising because of the values of the si which are relegated to the details 

of the SBHGT symmetry breaking pattern. The lagrangian is safe with respect to 

the generation of AS = 2 transitions. The contact terms are stronger for the heavier 
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quarks. 

Alternatively, it is possible that the quark and lepton hierarchy can be viewed 

as the consequence of a dynamical symmetry breaking where the effective lagrangian 

contains only a singie small parameter. The idea is that the lighter fermions get their 

masses from “nearest neighbor” couplings to heavier fermions. We have analyzed a 

simple model which contains only a single small parameter E, but which gives only 

crudely realistic results: 

L = G~~~;cr~~~iRlrr, + ~Gd’&‘&t, + eG,,fRtL?RcL + ~GOZRC~~ZRUL 

fO(r;Ej)Go(~;L9iR)(~jRqjL,) (3.26) 

Here, the fourth generation quarks are the leading large condensate, and the third 

generation couples with strength E; the second generation then couples to the third 

with strength e, and so forth. The gap equations are now coupled and may be solved 

to find “tumbling” solutions, e.g., rnifl x emi with predictions like rnb x mf/md and 

rnt z mt/m, (unrenormalized). These are qualitatively reasonable estimates, yet it 

should be emphasized that we ate taking this only as an appmzimate form of the 

interaction. 

D. The Full RG Equations for Fermion Masses 

We begin by studying the RG equations that pertain to the fermion Dirac and Ma- 

jorana masses. In what follows we will shift notation for ease of writing the RG 

equations. Let us define the matrices: 

g$” 3 Eiji ,!?) 3 N... 
‘3 v1 

(+w f (I. . . 
9ij ‘3, 

C-0) s D,.. 
Sij ‘I I 

The full one-loop renormalization group equations for the coupling constant matrices 

as defined above are: 

13s = [2 tr(tc’K) + 4m+] K + (N+N)Tr; + KN’N , (3.28) 

DE = :EE’ - :NN’ + tr(E’E) + tr(N’N) 
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+3tr(~CT’tDD’)-~g~-~g: E, 
I 

VN = ;NN’ - ;EE’ f tr(EtE) + tr(N+N) 

3 9 
+3tr(UU’+DD+)--g*--gz$2rs’rr N, 

4r 4s 1 
vu = 

I 
iUUt - iDDt t tr(EE’) + tr(NN’) 

+ 3 tr(UU' t DD’) - ;g; - ;g; - 8g,z 
I 

U , 

VD = ;DD’ - +J’ + tr(EE’) + tr(NN+) 

(3.30) 

(3.31) 

+ 3 tr(UU+ + DD’) - ;g; - tg; - 8g; 
I 

D . (3.32) 

The parts that do not involve the Majorana couplings are contained in [4] and [18]. 

Here, gi, gr and gs are the U(l)r, SU(2) w and SU(3) gauge couplings, respectively, 

and we have used the abbreviation 

2) E 16*2/L~ 
all 

(3.33) 

Note that the RG coefficients can be computed in the massless limit. The Feynman 

rules for YR then reduce to the familiar ones for two-component spinors. We have 

given the equations for arbitrary complex coupling matrices, even though we will 

assume that the matrices are real and diagonal in what follows. 

To simplify the RG equations, we assume that the Yukawa coupling matrices are 

real and diagonal, and satisfy 

EM B Ejj 3 NU IS> Njj 3 Dar >> Djj , for j = 1,2,3 , 

U44, UJ, >> Ujj for j = 1,2 . (3.34) 

This is clearly a good approximation at low energies. The diagonal entries of n 

are then split, or equivalently the SO(4) symmetry is broken. It is sufficient to 
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consider only the fourth generation ~4 G ~44 and the three light generation y E ,rii 

independently. 

The physical fermion Dirac masses are now determined as: 

mti = N+s(P)w mE = &&)m (3.35) 

mu = U&)VK ~IJ = D&)v.z p - 100 Get’, (3.36) 

while the Majorana masses are given by: 

MM, = 24)7a = 24/~)&vr; hi = 2Q(P)PW, (3.37) 

where again we choose p -. 100 GeV as an approximation to the threshold condition 

that determines the masses, i.e., m = g(m)u, but it is sufficient for our purposes. 

Here, rn~ is the mass of the fourth generation charged lepton, and m,, is the Dirac 

mass of the fourth generation neutrino. M ~1 is the fourth generation Majorana mass, 

and MM~ is the Majorana mass of all other neutrinos. 

The RG evolution of the light quark and lepton masses is irrelevant insofar as 

the coupling constants are small. We therefore will use the known values of the 

Dirac masses for these. For the light neutrinos we wilI follow [ll] and assume that 

the neutrino Dirac masses are given by m, = emn (e.g., for the muon we assume 

m - e,m,) where e is an arbitrary parameter. VI1 - 

The physically observable neutrino masses are then: 

1 , md = ; [MM - 4-1 , (3.38) 

with analogous formulas holding for the first three generations. For the case of the 

light generations we may use the approximate forms: 

mv~ = M rn,L x E%qM,. (3.39) 
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E. Scalar Boson Interactions 

The quartic interaction terms are found to satisfy the RG equations: 

% = 12x: +2X: t 4x1 [tr(E’E) + tr(NtN) t 3tr(U+U) + 3 tr(D+D)] 

- a(g: t 39:) + ;g: t i(g: + s:y 
-4 [tr(E+EE+E) + tr(N+NN+N) 

+3tr(U’UU’U) + 3tr(D+DD+D)] , (3.40) 

VA? = loA: + 4x: + 8x2 tr(&n) - 32 tr(r;‘,,‘,) , (3.41) 

2% = 6&X3 + 4X& + 2X3 [tr(E+E) + 4tr(n+n)] 

- iAa(g: + 3g:) - 8 tr(NtNr;‘n) . (3.42) 

We integrate these equations with the compositeness conditions 

xi -t 4p4 (3.43) 

(where in practice we take X; = 6 for p d A), and we integrate down from A to 

p = 100 GeV. The effective potential at low energies takes the form: 

vs = M;(H’H) t M:(@‘Q) 

+;(H’H)’ + ;(+‘@)2 t X,H+H@+@ . (3.44) 

and we demand a symmetry breaking solution at low energies such that 

H= 

Ho = v+~, 

(3.45) 

(3.46) 

(3.47) 

where vn = 175 GeV. The fields Ht and h’ are the Nambu-Goldstone bosom which 

give mass to the W and 2 bosons. The phase x is an exactly massless majoron in 
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this model, and it exists as a physical state since we do not gauge the right-handed 

neutrino number. The potential is minimized for fl and vn: 

M; + T&X, + $%) = 0 , (3.48) 

M: + v;(fl’Xz + ;A,) = 0 . (3.49) 

and we readily obtain the mass matrix for the Higgs boson, h, and the Higgs-Majoron, 

4. The states mix into physical mass matrix eigenstates given by: 

Cl = h’cos Q + qSsina , 

.X2 = dcosa-h’sina, 

where the mixing angle c1 is determined by: 

sin2a = F , cos za = A1 - @‘b 
s ’ 

and where: 

(3.50) 

(3.51) 

(3.52) 

s = (A, -px1)* +4px: . 

The masses of the physical states are: 

(3.53) 

M;, = $ [xl t PAZ + s] . (3.54) 

M&=$+&-S] . (3.55) 

The physical masses are real and hence the solution is stable provided that: 

x1,x, > 0 , AlAl > As . (3.56) 
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F. Numerical Results 

We now discuss the predictions of the model obtained by numerically integrating the 

RG equations supplemented with the composite boundary conditions. In Fig. (2) we 

show the evolution of the Higgs-Yukawa and Majorana-Yukawa coupling constants 

as a function of scale p evolving downwards from a compositeness scale of A = 10” 

GeV. We have multiplied all Dirac and Majorsna couplings by z)n, corresponding to 

p = 1. The dashed lines represent the M,,, Ml and m,, as indicated, while rnun and 

m,n are the physically observable values as given in eqs. (3.40, 3.41). The purpose 

of this figure is to show the attraction from the large initial values down to the low 

energy fixed points. In practice we used ki = di = 6 at p = A, but the resulting low 

energy values are very stable for a wide range of initial conditions. In practice the 

fourth generation U and D quarks are degenerate to within a few GeV. 

In Figs. (3 - 5) we show the fourth generation masses as a function of the scale 

of new physics, A, for various values of p = v*/ua. We have indicated the lower 

limit m =L 2 Mz/2 and we thus see from the figures that all schemes are ruled out 

for suficiently large A, for example, when 0 = 1.0 we require A 5 10s TeV. The 

schemes with p > 2.0 are essentially the limiting case; for larger p one cannot escape 

the LEP-SLC neutrino counting limit. In this case we see from Fig.(S) that A < 10 

TeV is required. Of course, in the small A limit our RG approximation is much less 

reliable. 

In order to make definite predictions, we assume throughout that mtop = 130 GeV. 

With the latter value of rnt it is unnecessary to consider the evolution of gtop, which 

we then treat as a constant independent of scale. All results are computed at the low 

energy scale of p = 100 GeV for simplicity. The largest uncertainties in these results 

arise from the uncertainty in the non-perturbative running of the Yukawa couplings 

at high energies. As discussed earlier, this is essentially an uncertainty in the precise 

high-energy boundary conditions. 

In Fig. (6) we give the complete neutrino spectrum as a function of A for the case 

E = 1. Thus, the light neutrino masses as plotted are actually rn.,(P/e’). Thus, for 

ell = 0.1 one must multiply the plotted m,, by 0.01. 

The evolution with scale p of the quartic coupling constants is shown in Fig.(7) 
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where we use the compositeness boundary conditions imposed at A = 10s GeV. Here 

we consider two independent sets of boundary conditions to probe the sensitivity. 

The solid lines show all Higgs- and Majorana-Yukawa couplings, r~;, are set CJ; = 6, 

and the Xi = 12 for p = A; the dashed lines show the boundary conditions gi = 2 

and X; = 6 as p = A. The low energy results converge on fairly universal fixed points 

over a large range of initial conditions. Moreover, we see that in general the coupling 

constant Xs is very small compared to X1 and X 1. This leads to the simplification for 

the masses: 

MEI = +i (3.57) 

Mm = P& (3.58) 

and the mixing between the two states is generally small: 

P.b a = x1 - P’A, (3.59) 

with the exception of the “resonant” case when ,41 - fl*& z 0. 

In Fig. (8) we plot the masses of the physical scalars, &fxi as a function of the 

compositeness scale A. Here again we probe the sensitivity to the precise boundary 

conditions by choosing 9; = 6, and Xi = 12 for p = A (solid); 9; = 2 and Xi = 6 as 

p = A (dashed). The iow energy results are fairly universal until the RG “running 

time” becomes reduced for smaU A. 

IV. Conclusions 

We have given an analysis of the dynamical aspects of a low energy theory in which 

the electroweak interactions are broken by condensates of fourth generation quarks 

and leptons. Our model appeals to a see-saw mechanism in which the Majorana mass 

scale is generated by a right-handed neutrino condensate, and the Dirac masses of all 

neutrinos are assumed to be of order their charged lepton counterparts. The see-saw 

mechanism is invoked principally to suppress the light neutrino masses, while the 
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fourth generation mass scale is chosen to be sufficiently heavy to evade the LEP-SLC 

neutrino counting limit. We view this as a natural mechanism for avoiding the LEP 

and SLC neutrino counting limits. We emphasize that in such a scheme there is an 

upper limit to the scale A of the new physics, as is evident from Figs. (3-5). Taking A 

too large brings the left-handed fourth generation neutrino mass down, and A s 10 

TeV is favored. 

The neutrino phenomenology of such a model has not been discussed here in 

detail, but is expected to be fertile. This requires some further assumptions about 

mixing angles which we cannot predict in the model. Some of the results have been 

anticipated in refs.[ll, 121 in which it is pointed out that the neutrino masses are 

expected to be near to their experimental upper limits. To avoid difficulties with 

cosmological limits it appears essential that heavy neutrinos decay, not to final states 

involving photons, but rather via the “invisible” modes involving the majoron, e.g., 

Y’ + Y + x. This would appear to us, based upon simple estimates, to be the 

predominant mode for the majoron decay constant in the range allowed for this 

model, f - A (see also [13]). Electroweak phenomenological constraints have also 

not been considered here in detail. In fact, the “p-parameter” constraint should be 

fairly restrictive, since the top quark mass is already quite sizeable. We have used 

the central value favored by global parameter analyses of rnt = 130 GeV in this 

analysis. The 90% cl. upper limit is of order - 192 GeV, so at this level we can 

probably tolerate a charged lepton of order mr 2 3 x (1923 - 1302) - 240 GeV, 

which is comfortable upper in the present model, which predicts mfcpta -- 182 GeV 

for A = 10’ GeV and p = 1.0. 

We note that the results presented here are somewhat more general than the 

specific model involving compositeness conditions which leads to them. These corre- 

spond roughly to the “triviality” bounds of the masses of fourth generation leptons 

and quarks if the theory is considered to be valid up to the scale A. Indeed, these are 

the natural internal constraints on large neutrino masses in the standard model. If 

the standard model is a valid description up to some scale A, then the Dirac masses 

cannot be arbitrarily large. Th e essential idea is that no coupling constant of the 

standard model lagrangian can be permitted to diverge on a scale n 5 A. Moreover, 

if a vacuum expectation value giving rise to the Majorana masses is chosen to be near 

the weak scale, then there will be a triviality bound for the Majorana masses as well. 
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These triviality bounds follow from the RG equations, and are related to RG fixed 

points and critical renormalization group trajectories [4]. 

Perhaps the most remarkable feature of this model is that A is bounded from above 

by the neutrino-counting limits. The A w 1 - 10 TeV scale is also encouraging for 

the discovery of a rich new dynamics in the not-so-distant (SSC?) future. This new 

dynamics must encompass the generation of all quark and lepton mass scales, so a 

model of this sort is most encouraging for eventually understanding the origin of quark 

and lepton mass within the next 20 years. We expect a number of other signatures 

that have not been discussed here, such as the occurance of composite vector-meson 

states, the analogues of the p, with masses of order A, etc. The model also suggests 

that neutrino phenomenology will be a rich and rewarding enterprise in future fixed 

target experiments since the mass scales for the light neutrinos are tantalizingly close 

to their experimental upper limits. 

The theoretical challenge is to construct the SBGHT model that most closely 

realizes the low energy effective lagrangian we have explored here. It is not clear that 

this is a simple task. For example, the issue of flavor-changing neutral processes must 

be faced. On the other hand, the phenomenological situation is likely to evolve rapidly 

over the next few years. While the simpler top condensate scheme is still potentially 

viable, we have proposed this alternative in the hopes that by lowering A, a more 

promising natural alternative may exist. The fourth generation is definitely not ruled 

out, the neutrino situation is perfectly natural and phenomenologically acceptable, 

and the fourth generation offers an obvious dynamical possibility for breaking the 

electroweak symmetries. 
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Appendix A. Schwinger-Dyson Analysis 

A. Gap Equation 

To treat the broken symmetry phase of the model (2.I), it is convenient to rewrite it 

in terms of an auxilliary static scalar field @: 

t’ = Cnji$Vnj - Mi@‘Q + (+DijVRj + h-c.) . (A.11 

The coefficient of the Yukawa term is fixed by appropriately scaling 9. The field 

Ip has no kinetic term, so we can explicitly integrate out @ to recover the model of 

eq. (2.1), with 

In terms of L’, the gap equation for the fermion propagator is obtained by minimizing 

the effective potential for @. This is equivalent to shifting @ 

G(z) = d(z) - T , (A.3) 

and determining n by demanding that the sum of the tadpole diagrams with one 

external 4 line vanish 1191. Note that for nonzero m, the neutrino field has a Majorana 

mass term 

-!f (DkjVRj + h.c.) . (A.4) 

This shows that there is a condensate of the form (2.2). 

To evaluate Feynman diagrams, we rewrite eq. (A.1) in terms of a Majorana field 

x, defined by 

Xj = YRj + V;lj . (A-5) 

Then 

L’ = iji,i&j - Mi+‘Q, + (QXjPnXj + h.c.) , (‘4.6) 
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where PR = i( I + 7s). The field x satisfies the ‘Majorana condition’ 

x= = I/& + (vg = x . (A.71 

The Feynman rules for ivIajorana fields have been given recently in the literature [20]. 

The only two diagrams which contribute to the C$ tadpole in the large-N limit are 

shown in Figure 1. The one-loop diagram gives 

J$ (-~tr)iPng-&=NmJ~kri,r~ (-4.8) 

Demanding that this contribution cancel the tree-level contribution gives 

iM,‘m 
-+dv 2 J (C)4 k”lm’ =O. 

For m # 0, we can write this as 

1 

-G 
= 2iN J - (;;a kl _’ ,.,,a 

N 
=8*a *‘-m’ln$ 

This is the gap equation for the theory defined by eq. (2.1). 

We see that in order to have m # 0, we require 

(A.91 

(A.10) 

(A.11) 

If we want to maintain the hierarchy m cg: A, the gap equation shows that Gs must 

be adjusted to be very close to G,gt. (We note that in the large-N limit, there are no 

corrections to the neutrino propagator in the shifted theory, so that m is the physical 

mass of the right-handed neutrino.) In the formalism used here it is clear that this 

fine-tuning problem is madly the same as the fine-tuning problem for scalar fields. 

We will see that all the quadratic divergences which appear subsequently can be 

cancelled by imposing the gap equation. Thus, once the gap equation is fine-tuned, 

there is no further fine-tuning in the theory. This is the same situation as in scalar 

field theories in the broken symmetry phase, where the quadratic divergences can be 

isolated in the minimization of the effective potential. 
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B. Collective Modes 

The auxiliary field 4 was introduced above as a trick to simplify the calculations, 

but we will see that in fact, C$ is a physical propagating field at low energies. The 

signal for this is the appearance of poles in the two point function of 4. These poles 

are physically manifested in right-handed neutrino scattering amplitudes, where they 

appear as resonances. 

Note that under the U( 1) flavor symmetry 

4 H e.-li@,$ . 

In terms of real and imaginary components of 4, 

(A.12) 

we have to first order in $, 

4 = $(4 + ix) , (A.13) 

4 +-+ 4, (A.14) 

x H x - 2iO (A.15) 

We see that exciting the field x is equivalent to performing a local U(1) transfor- 

mation, suggesting that x is the Nambu-Goldstone mode associated with the broken 

U(1) symmetry. We now show that this is indeed the case. 

In the large-N limit, the self-energy of x is given by the two diagrams of Figure 

2. Both diagrams give the same contribution, and their sum is 

-i%(P) = 2/s (-ctr) (-5~s) &(--$s) #+iem 

ma = -2N I ($4 (kl -“,$ ;;;,)l - ,,$I ’ (A.16) 

Shifting the integration momentum to isolate the quadratically divergent part of 

this expression, we have 

-i&(p) = Np’/ fi 
(27r)‘(kz +)[(:+P)~ -d] 
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+~/$i 1 
kl : ,z + (k + p)’ - m2 ’ 

(A.17) 

Asswningpz < A’, the last two terms can be rewritten using the gap equation (A.lO), 

and we get 

C,(P) = -P’A(P) - lM,’ , (A.18) 

where 

1 
‘tp) = -iN / (;$I (kl _ ml) [(; + p)’ _ ml] 

dz In 
A1 

d - z(1 - z)pl . 
(A.19) 

Note that the quadratic divergence in the self-energy has been completely cancelled 

by imposing the gap equation. The exact x propagator in the large-N limit is then 

*x(p) = -jq : xx(p) = 
iA-’ 

*l . 

From (A.19), we see that A(p* = 0) # 0, so Ax(p) has a pole at p2 = 0. This shows 

that x is a massless excitation and can be identified as the Nambu-Goldstone mode. 

We can now repeat the same steps for 4. We obtain 

-Wp) = 2 / $ ( > + -!-- &7&;-77Z 
= i(p’ - 4m’)A(p) + iM,1 , (A.21) 

giving the 4 propagator 

Ad(p) = ;;I:$ . (A.22) 

We see that the 4 mode has a mass 2m. One might think that this is a loosely 

bound state of CRYR, since it aparently has vanishing binding energy. However, we 

emphasize that this is not a non-relativistic bound state, and normal intuition does 

not apply. 
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The results derived in this section are exact in the large-N limit, and are therefore 

completely equivalent to the more conventional bubble-sum treatment. However, we 

expect that there will be significant corrections to the large-N results for small N. 

Appendix B. Spinor Conventions 
We follow the conventions of Bjorken and Drell [21], with all fields viewed as 

operators, so that 

*x = -x+, (B.23) 

(Ilx)’ = x+4+ . (B.24) 

The charge conjugation matrix is given by 

c = iya7e = -c-1 = -c+ ) (B.25) 

and satisfies the identity 

c’7,c = -7,’ . 

Charge conjugated spinors are defined by 

(B.26) 

7)’ = c$’ , (q)’ = q7C’ (B.27) 

The phase of C has been chosen so that ($‘)’ = 4. Note that the order of charge 

conjugation with respect to Dirac conjugation is important, since m = -(q)‘. We 

will use the notation 

FE:. (B.28) 

The chiral properties of charge conjugate spinors are 

(3% = ;(l-Ys)v = (VW , (B.29) 

(?a3 = +(I + 7&V = (4%)’ . (B.30) 

We will use the notation 

(B.31) 
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(B.32) 

etc. The following identities are useful for rewriting lagrangiaus containing chazge 

conjugated spinors: 

Fx’ = Jitl, 

$=7,x’ = -m&d . 
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Figure Captions 

Figure 1: Diagrams leading to the induced kinetic and quartic interaction 

terms for the scalar fields. 

Figure 2: Evolution of Higgs-Yukawa and Majorana-Yukawa coupling 

constants with scale p from initial values gi = 6 at p = A = 10s GeV to 

p = 100 GeV. The couplings are translated into masses by m&plying by 

vg as described in the text. The approach to the infrared fixed points is 

demonstrated. The larger Majorana masses apply to the light generations. 

Figures (3, 4, 5): Physical masses (solid lines) as predicted in the model 

as a function of composite scale A, for (S): p = It+* = 0.5; (4): 

p = v*/ua = 1.0; (5): p = v,/va = 2.0. The dashed lines indicate 

the heavy Majorana M, and neutrinwDirac masses mti separately, before 

combining to form the physical combinations mvn and m,n. 

Figure 6: Physical light neutrino masses (solid) as predicted in the modei 

as a function of composite scale A for p = ve/vn = 1.0 and we plot for 

the light masses the range 0.1 5 E 5 1.0. 

Figure 7: Evolution of scalar quartic coupling constants with scale p from 

initial vs.lues (solid lines) CJ; = 6 and Xi = 12 at p = A = 10s GeV; (dashed 

lines) gi = 2 and Xi = 6 at p = A = 10s GeV. The universality of the 

infrared fixed points is demonstrated. Xs is always driven smail. 

Figure 8: Physical spin-zero boson masses (solid lines) as predicted in the 

model as a function of composite scale A, for (solid) p = v*/t~n = 1.0. 

(dashed) 0 = ve/u~ = 1.0. 
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