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ABSTRACT

Recent redshift surveys suggest that most galaxies are distributed on the surfaces of bubbles
surrounding large voids. To investigate the quantitative consistency of this qualitative picture
of large-scale structure, we study analytically the clustering properties of galaxies in a universe
filled with spherical shells. This phenomenological model comprises three galactic populations:
shell galaxies, placed at random on spherical shells distributed randomly in space; cluster galax-
ies, located at the points where three shells intersect; and a random, unclustered component of
background galaxies. We calculate the two-point galaxy correlation function, the galaxy-cluster
cross-correlation function, and the void probability function for models with an arbitrary dis-
tribution of shell sizes. We also calculate the three-point correlation function and the peculiar
velocity correlation tensor for shell galaxies. With ~ 20% of galaxies in clusters and a power
law distribution of shell sizes, n(R) ~ R™%, a = 4, the observed slope and amplitude of the
galaxy two-point correlation function £gg(r) can be reproduced. (It has recently been shown
that the same model parameters reproduce the enhanced cluster two-point correlation function,
£ee(r).) For a Poisson distribution of shells, the galaxy and cluster correlation functions are
both positive out to twice the maximum shell radius, and {gg does not show a strong break at
r ~ 10h™! Mpec. In this model, elliptical galaxies, with a higher percentage of cluster mem-
bership, are more strongly correlated than spirals, fee > £ss, in qualitative agreement with the
observed morphological trend; however, the slope of the correlation function for ellipticals is not
as steep as the observed value. The scaled three-point correlation function, @, 1s moderately flat
on scales r<10h~1 Mpc with amplitude 0.4<Q<0.8, in satisfactory agreement with the observed
value, Qg5 = 1.0 £ 0.4. When measured over larger scales, @ should be found to increase with
separation. The model also yields reasonable agreement with the observed slope of the galaxy-
cluster cross correlation function, £g, but its correlation length, 79 ~ 6h~1 Mpc, is roughly 30%
lower than the observed value, & ~ 8.8h~1 Mpc. Given the uncertainties in the observational
determination of r<9. this discrepancy is only marginal (about comparable to that between the
data and the cold-dark-matter model). Assuming peculiar velocities arise from shell expansion,
as expected in some explosion models, the parallel component of the shell galaxy velocity corre-
lation tensor, II(r), is consistent with the observed spiral galaxy velocities on large scales (after
subtracting out the bulk motion due to the Great Attractor and Virgo infall). However, the per-
pendicular velocity component X(r) is in conflict with the data unless the shell expansion velocity
is substantially smaller than the Hubble speed. The void probability function of the model is in
reasonable agreement with observations if ~ 20% of the galaxies are in the unclustered {(or weakly
clustered) background. We also consider a refined model with ‘self-avoiding’ shells, in which shell
interactions are presumed to prevent the centers of shells from lying inside other bubbles, t.e.,
the bubbles are anticorrelated on small scales. In this case, the two-point correlation function of
shell galaxies is steepened, but the amplitude is reduced. When cluster galaxies are included, we
expect this model will also provide a good fit to the galaxy two-point function.

Subject headings: cosmology — galaxies: clustering



[. INTRODUCTION

How are galaxies distributed in space on large scales? Although the observational data base in
cosmology has improved dramatically in recent years, we still have only a partial understanding
of this issue. Beginning in the late seventies (Tifft and Gregory 1976; Joeveer and Einasto
1978; Gregory and Thompson 1979; Tarenghi, et al. 1980; Gregory, Thompson, and Tifft 1981;
Kirshner, et al. 1981) and especially with the first results of the CfA2 redshift survey extension (de
Lapparent, Geller, and Huchra 1986), a picture has emerged in which a large fraction of galaxies
appear to be distributed on the surfaces of quasi-spherical shells surrounding large voids, with
rich clusters occupying the interstitial regions between shells. The CfA and other recent redshift
surveys (Haynes and Giovanelli 1986; Da Costa, et al. 1988; Da Costa, et al. 1989) suggest that
shells with radii up to 30 A~! Mpc (h = Hy/100km s~IMpc~1) and with a volume filling factor
of order unity may be the dominant structures in the Universe.

Such bubbly structure may arise naturally in explosive models of galaxy formation (Ostriker
and Cowie 1981; Tkeuchi 1981; Ostriker, Thompson, and Witten 1986; Yoshioka and TIkeuchi
1990), in which positive energy seeds generate shock waves, sweeping the ambient medium onto
expanding shells. The shells later cool and, presumably, fragment into galaxies, although this
process is not yet well understood (White and Ostriker 1990; Hwang, Vishniac, and Shapiro 1990).
In addition, models in which large-scale structure forms via gravitational instability appear to
generate voids from megative density perturbations (Fillmore and Goldreich 1984; Bertschinger
1985), as well as large two-dimensional sheets and shells (White, et al. 1987; Melott and Shandarin
1990; Park 1990) having the same qualitative appearance as the CfA shces.

Although the evidence for the existence of bubbly structure in the redshift surveys is visually
compelling, it remains largely qualitative and anecdotal. The interpretation of the data has
therefore been a matter of debate. For example, the structures are seen in redshift space rather
than physical space, so they are polluted by peculiar velocities (Kaiser 1987; MecGill 1990): how
coherent does the shell structure remain when such effects are removed? In addition, although at
least some of the shells appear to form closed surfaces, it has been suggested that the large-scale
topology is sponge-like, with both under- and over-dense regions forming connected, percolating
networks {Gott, Melott, and Dickinson 1986). The interpretational problems are compounded by
the fact that the largest structures found are comparable to the size of the surveys, so we are
not yet dealing with a fair sample to which one can address quantitative, statistical questions (de
Lapparent, Geller, and Huchra 1988).

Nevertheless, we would like to know whether the bubble paradigm of large-scale structure is
an accurate representation of the galaxy distribution, quantitatively consistent with the observed
clustering properties of galaxies. In particular, can a structure dominated by bubbles reproduce
the galaxy correlation functions? If so, what does this entail about the properties of the bubble
distribution? In this paper, we address these questions by studying galaxy statistics in a class of
simple phenomenological models: most galaxies (shell galaxies) are distributed randomly on thin
spherical shells surrounding voids; in addition, some galaxies are placed In clusters located at the
intersections of three shells {cluster galaxies), and others are distributed in a random, uniform
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background (background galaxies). For most of the paper, we assume the shells themselves are
distributed in a random Poisson process, i.e., they are uncorrelated. We present results for
an arbitrary distribution of shell sizes and apply them specifically to the case of a power law
distribution of shell radii, n,,(R) « R, truncated at small (Rp;pn) and large (Rmaz) radii.
These model parameters are not well constrained by observations: in present redshift surveys,
the distribution of void sizes is poorly determined, because the total number of voids is small
(de Lapparent, Geller, and Huchra 1988). Determination of the void size distribution will require
much larger samples than those currently available (Geller and Huchra 1988).

Previous work on the shell model includes numerical (Weinberg, Ostriker, and Dekel 1989,
hereafter WOD; Bahcall, Henriksen, and Smith 1989, hereafter BHS) and analytic (Kulsrud and
Cowley 1989) studies of the distribution of galaxy clusters, and some numerical work on the galaxy
distribution (Saarinen, Dekel, and Carr 1987; Ostriker and Strassler 1989; BHS). In particular,
WOD derived the cluster mass function and two-point correlation function for models with equal
size shells and a power law distribution of shell radii. In the case of equal size shells, the slope
of the cluster two-point correlation function is too flat, and the correlation length is too large
compared to the mean separation of clusters. Models with a power law distribution of shell sizes
match with cluster observations reasonably well if a ~ 3.5 — 4.5 and the volume filling factor of
the shells f ~ 0.8—1.2. WOD set Rmaz = 30h~1 Mpe, comparable to the largest voids seen in the
redshift surveys, and assumed Rynin/Rmaz = 1/8. In their best fit models, the cluster correlation
length is still somewhat too large, unless shell merging or an unclustered cluster population is
taken into account.

We find that the gelazy two-point function is a sensitive function of the shell size distribution,
and the observed two-point correlation function is reproduced best with shell size index a =~ 4 and
with ~ 20% of galaxies in clusters. It is noteworthy that this choice of shell size index a gives good
fits to both the galaxy and cluster correlation functions, since they arise from different geometrical
features of the model. Thus, agreement with the galaxy and cluster correlation functions fixes the
distribution of shell sizes, a prediction which can be tested when deeper surveys have sufficient
data to quantitatively characterize the bubble size distribution. In this sense, we disagree partially
with the analysis of BHS, who also included shell galaxies in their numerical simulations. Although
their results show large numerical scatter, they find the galaxy two-point function fits well with
observations, except that it has a positive tail at large separation, not seen in the data. Moreover,
they claim the agreement is insensitive to the model parameters. We show how these statistical
features can be derived analytically and that long wavelength tails are artifacts of numerical
simulations, and demonstrate the dependence of the results on the parameters of the model. For
the above choice of a, we also find that the scaled three-point function, Q, is quite flat over scales
r<10 A~1 Mpc, with an amplitude (for shell galaxies) in reasonable agreement with the observed
value.

Although the two- and three-point functions may be reasonably counted as successes of the
bubble model, it is well known that a variety of geometrical prescriptions for galaxy clustering
can yield satisfactory galaxy two- and three-point functions (Soneira and Peebles 1978). We
therefore consider additional statistical tests of the model, in particular, the cluster-galaxy cross-
correlation function, the peculiar velocity correlation tensor, and the void probability function.
The slope of the cross-correlation function is in good agreement with the observations, based on



5

the recent reanalysis of the data by Lilje and Efstathiou (1988a,b). The amplitude of {¢g is lower
than the observed value, but is roughly within the observational error bars if uncertainties in the
selection function and cosmological correction are taken into account. If we assume that galaxy
peculiar velocities arise in part from the expansion velocity of the shells, as would be the case in
some versions of the explosion model, we can estimate the peculiar velocity correlation function.
We then compare the model with the velocity correlation tensor for a sample of spiral galaxies
on scales 1000-3000 km/sec (Gérski, et al. 1989, hereafter GDSWY; Groth, Juszkiewicz, and
Ostriker 1989, hereafter GJQ), after the bulk motion due to the Great Attractor and Virgo infall
have been subtracted from the data (GJO). Taking the shell expansion velocity expected from
explosion models, the parallel component of the velocity correlation is in reasonable agreement
with the observations, but the perpendicular component of the model has the wrong sign and
too large an amplitude. For consistency, then, we must assume that shell velocities have decayed
to small values (e.g., due to shell collisions, or if @ < 1), and that the residual velocities of
the spiral sample arise instead from, e.g., infall into clusters (GJO). Since the shell model is
motivated by the observations of large-scale voids, it should be able to reproduce the observed
void probability function (VPF). If we include only shell and cluster galaxies, however, the model
predicts an excess of voids of radius r 3—94~! Mpc when compared to the carlier CfA1 redshift
data (Maurogordato and Lachieze-Rey 1987). On the other hand, if ~ 20% of the galaxies are
unclustered (or very weakly clustered), they populate a substantial fraction of the voids, and the
observed VPF can be reproduced over this range, within the observational uncertainties. Although
searches for such unclustered field galaxies suggest that they make up no more than 10% of the
galaxy population, the background galaxies in the shell model could be weakly clustered without
seriously affecting the VPF. On the other hand, the VPF analysis is based on the relatively
shallow CfA1 survey, which was not sensitive to the large r > 10 — 30h~1 Mpc voids seen in the
CfA2 slices. To accurately constrain the models, we must await statistical analysis of the VPF
for the complete CfA2 data, or possibly even larger surveys. {Recently, Ostriker and Strassler
(1989) have analyzed the projected two-dimensional void probability for the first CfA2 slice, and
find it can be reproduced by a shell distribution.) Furthermore, the void probability for the shell
model is sensitive to the spatial distribution of bubbles; if bubble centers are anti-correlated on
small scales, e.g., due to shell interactions, the VPF is presumably enhanced.

We note that the bubble model considered here is not in conflict with the possibility that the
topology of the large-scale galaxy field is sponge-like (Gott, Melott, and Dickinson 1988) rather
than ‘bubbly’: if we allowed for clustering within the shells, the bubble surfaces would be patchy,
so that both under- and over-dense regions could form connected networks. Here, we are more
interested in the geometricel aspects of the shell model, which may provide a plausible picture (if
not caricature) of the redshift survey data.

In the following sections, we study the galaxy distribution in the shell model by calculating
analytically the two- and three-point correlation functions of galaxies, the peculiar velocity
correlation function, and the void probability function. In particular, we test whether the values
of parameters (a = 4 and f ~ 1) used to reproduce the observed distribution of clusters by WOD
can also reproduce the observed distribution of galaxies. In §II, we briefly review observations
concerning the distribution of galaxies. In §III, a simple version of the bubble model with equal
size shells is considered. In §IV, we extend the analysis to an arbitrary distribution of shell sizes,
focusing on a model with a power law distribution. In §V, we include the contribution from
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cluster galaxies at shell intersections as well as a possible unclustered (randomly distributed)
population of background galaxies, focusing on the galaxy two-point correlation function and its
morphological dependence, the cluster-galaxy cross correlation function, and the void distribution.
In §VI, we take into account the interaction between shells, modifying the bubble distnibution
so that the centers of shells do not lie inside other bubbles; we show how this anti-correlation of
shells on small scales affects the galaxy two-point correlation function. Finally, the results are
discussed and avenues for further research are outlined in §VIL In the Appendices, we discuss
several mathematical details.

II. OBSERVATIONS

Observationally, the galaxy two-point correlation function £gg(r) is well established and fitted

by the power law
Egg(r) = (r/ra)™ ™. (2.1)

From angular correlation studies of the Lick catalog and other samples (Groth and Peebles 1977),
the slope was found to be 7o = 1.77 + 0.04 and the correlation length ro = 4.7h~1 Mpe, in the
range 0.05 h~1 Mpegr<9 h—1 Mpec. These values are consistent with those obtained from the
early CfA1 redshift survey data (Davis and Peebles 1983) and from the Southern Sky and IRAS
catalogs (Davis, et al. 1988). On the other hand, from the first two slices of the CfA redshift survey
extension, de Lapparent, Geller, and Huchra (1988) found v, = 1.6£0.3 and ro = T.ng:g h~1 Mpc

in the range of separation ~ 3 -- 14 h~1 Mpec, and noted the large uncertainties. At separations
larger than about 10 k=1 Mpe, £g4(r) appears to steepen and generally becomes lost in the noise
at r ~ 20 h~! Mpc. Recent angular correlation studies with larger samples (Collins, Heydon-
Dumbleton, and MacGillivray 1989; Maddox et el 1990) confirm the power law behavior of
£g¢(r). In particular, from the APM survey, Maddox et al. (1990) find a best-fit slope parameter
Yo = 1.668 on scales r<10 h=1 Mpc; however, on larger scales they find substantially more power
than the Lick catalog (the break at r ~ 10 A~! Mpc is more gentle). In comparing models to the
data, we will focus on the range where £gg is well approximated by a power law, and will take

ro=5+1h"Mpec ; vo=1840.2 (2.2)

as canonical values. We note that clustering due to gravity within shells, not included in the
model, will presumably enhance the two-point function on small scales; strictly speaking, then,
we should only use the observed correlation function as an upper bound on the shell model value.
To compare the model correlation function with the data on larger scales, rz14h~1 Mpc, we are
currently investigating the angular two-point function w(6) in the shell model. (At present, only
the angular surveys yield statistically significant correlations on large scales.)

An important feature of galaxy clustering is the observed morphological segregation of the
galaxy population in different environments (see, e.g., Dressler 1980). While some 80% of field
galaxies are spirals, as few as 15% of galaxies in compact clusters like Coma display spiral
structure. This segregation is reflected in the dependence of the galaxy correlation function
on morphological type, first studied by Davis and Geller (1976). (See also Sharp, Jones, and
Jones 1978; Sadler and Sharp 1984.) From an angular correlation analysis of the Uppsala catalog,
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they found significant variations in the slope and amplitude of the correlation function between
different morphological types. For ellipticals, they found 7o =~ 2.10 and ro ~ 6.6 h~1 Mpec,
while 7o ~ 1.69 and ro ~ 4.4 h~1 Mpc for spiral galaxies. In a recent survey of the Pisces-
Perseus supercluster (Giovanelli, Haynes, and Chincarini 1986; Giovanelli et al. 1986; Haynes and
Giovanelli 1986, 1988), the above trend was confirmed: for ellipticals in Pisces-Perseus v, = 2.06,
for Sa and Sab v, = 1.81, for Sb and Sbc v, = 1.63, and for Sc galaxies vo = 1.47. Despite these
morphological differences in clustering, it appears that both early- and late-type galaxies trace
out the shell structure seen in the first CfA2 slice (Huchra et al. 1990).

The three-point galaxy correlation function can be written as a sum of two-point functions
plus the reduced three-point function { (Peebles 1980). It is conventional to consider the scaled
three-point correlation function, defined by

C(Ta, Thy Tc)
£gg(ra)lgq(rs) + &gg (r3)Egg(re) + fgg("c)fyg(ra)'

The galaxy three-point function has not been as well determined as the two-point correlation
function. From the Lick catalog, Groth and Peebles (1977) found that @ is fairly constant on
scales r<10 B~ Mpc, with an average value @ = 1.29 £ 0.21. Since then, estimates of @ from
other surveys have varied: @ = 0.8 + 0.1 from a subsample of the CfAl survey (Efstathiou and
Jedredjewski 1984); @ = 0.60 £ 0.06 from the Durham-AAT survey and Q = 1.3 + 0.3 from the
Kirshner, Oemler, Schecter (1978) survey (Bean, et al 1983); and @ =~ 1 from the projected
bispectrum of the Shane-Wirtanen counts (Fry and Seldner 1982). Recent estimates of @ have
been toward the lower end of the spectrum; e.g., Peebles (1988a) quotes @ ~ 0.7, while Fry (1990)
reports Q ~ 0.6. For comparison with models, we will assume @ is in the range

Q(ra;Th,7e) = (2.3)

Q=10+04. (2.4)

The two-point correlation function of rich clusters has been a subject of intensive study and
debate in recent years. The cluster correlation function is apparently consistent with a power

law,
bee(r) = (r/reo)™ T (2.5)

but both the slope and amplitude, in addition to the range over which this form holds, are
uncertain. A variety of studies based on the Abell, Zwicky, and Lick catalogs find values in the
range

14h-1Mpc < Tep < 30h—1Mpc y Yeo=16+£0.3 (2.6)

(Bahcall and Soneira 1983; Shectman 1985; Postman, Geller, Huchra 1986; for a recent review
with more complete references, see Bahcall 1988; see also Geller and Huchra 1988). There is also
some question about the largest scale on which £e¢ has been reliably determined to be positive,
with estimates ranging from about 40 to over 100 h=1 Mpc. These uncertainties are compounded
by the issue of projection contamination of cluster catalogs (Sutherland 1988; Dekel, et al. 1989;
Olivier, et al. 1990), which appears to generate spurious clustering on small scales.
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In addition to £4g(r) and £ec(r), the cluster-galaxy cross correlation function £¢g(r) can be
used to test models of the galaxy distribution. From a study of rich Abell clusters and galaxies
in the Lick catalog, Seldner and Peebles (1977a,b) found that £eg(r) is well described by

r —2.5 r 1.7
§eg(r) = (m) + (_———12h“1Mpc) (2.7)

for 0.5A~1Mpc<r<40h~Mpe. In a recent reanalysis using redshifts for 204 Abell clusters and
modern estimates of the galaxy luminosity function, Lilje and Efstathiou (1988a,b) find that
£cg(r) is reliably determined only on scales r<20h~IMpc and is well fitted to a power law,

-2.2
Eeg(r) = (m) . (2.8)

The cluster-galaxy cross correlation function is an especially useful probe on these intermediate
scales, 10h~!Mpc <rg20h~1Mpe. Although the effects of projection contamination on €eq(r)
have not yet been studied, it should be more accurately determined than the cluster-cluster two-
point function because of the large number of galaxies in the Lick catalog (Lilje and Efstathiou
1988b). Although the quoted statistical errors in the slope and correlation length of {¢ are small,
Lilje and Efstathiou (1988b) note that roughly 25 — 30% errors in the correlation length arise
from uncertainties in the observer selection function and the K-correction.

Recently, several groups have analyzed the galaxy peculiar velocity correlation tensor on large
scales (GDSWY; GJO; Szalay 1988; Kaiser 1989). The large-scale flows are well modeled by the
Great Attractor model, supplemented with Virgo infall; that is, the large-scale velocity field
is dominated by gravitational effects. However, when the gravitationally induced bulk flow is
subtracted from the data, a statistically significant residual velocity field remains {GJO, Figs.
6 and 7). Splitting the velocity correlation function into parallel (II) and perpendicular (T)
components, < &) - 5(F + 7) >p= 1I(r) + 2Z(r), GJO find that the means of the residual
components for the spiral galaxy sample are

II = (—0.79 £ 0.16)(100km/sec)?

T = (—0.34 + 0.27)(100km/sec)? (2.9)

over the range r = 10 — 30h~! Mpc. The parallel component is statistically significant, but the
perpendicular component is not. In principle, the residual field could arise from void expansion, in
addition to other effects such as infall onto forming clusters (GJO). Barring unlikely cancellations
between the different possible sources of the residual field, we can use the values of I and Z above
as upper bounds on the magnitude of the velocity field generated by shell expansion. (Since a
large fraction of spirals lie on the surfaces of shells, it is natural to use the spirals as indicators
of shell motion.) Given the observational difficulties, the velocity data should be interpreted
with caution: the galaxies are not uniformly sampled, and the presence of bulk flows on scales
comparable to the sample size indicates the data do not constitute a fair sample (GJO).

The void probability function (VPF), ¢o(r), is the probability that a randomly placed sphere
of radius r contains no galaxies. The VPF has been analyzed for sub-samples of the CfAl
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survey (Hamilton 1985; Panek 1985; Maurogordato and Lachieze-Rey 1987, hereafter ML) and
for the Perseus-Pisces survey (Fry, etal. 1989), for void radii up to r ~ 10h~1 Mpe. We discuss
the observations in subsequent sections. Here, we merely note that the ‘raw’ VPF is strongly
sensitive to fluctuations in the number density of galaxies in a sample, which are known to be
large in present redshift surveys. For example, de Lapparent, Geller, and Huchra (1988) estimate
that the uncertainty in the mean density of the CfA1 (14.5) sample is éng/ng >~ 1. If galaxies were
distributed in a random Poisson process with mean density ng, the VPF would be ¢o(V) = e~V
so that order unity fluctuations in density propagate into large fluctuations in the void probability.
This is displayed dramatically in the randomly diluted samples studied by Einasto, etal. (1990).
On the other hand, if the galaxy distribution is hierarchical, the modified VPF, x = —~In(¢o)/ngV,
exhibits a scaling behavior, in which case it is relatively insensitive to the sampling density. An
additional problem in using the CfAl data to test the model is that the depth of the survey is
only D =~ 60k~ Mpec; it therefore does not contain the prominent r = 25h~1 Mpc void seen in
the first CfA2 slice. As a symptom of this, the VPF is only reliably determined for r<9h~1 Mpe.

The galaxy statistics above are the observables we will investigate in the shell model. In the
context of that model, there are additional features of the large-scale galaxy distribution which,
although formally parameters of the model, are what might be called qualitative observables.
These include the bubble volume filling factor, f = V37,5, where V. is the mean shell volume
and 77,y the mean number density of shells. Eyeballing the CfA2 slices, the shells appear to have
a filling factor of order unity, and a typical radius R ~ 15h~! Mpec. These rough estimates are
confirmed by the numerical simulations of Ostriker and Strassler (1989), who find that the visual
appearance and projected void probability of the first CfA2 slice can be reproducedif f = 1.0-1.5
and R = (13.5 £ 1.5)h~! Mpc. We will use these numbers as rough guides in studying the shell
model below. (We note, however, that Ostriker and Strassler (1989) use a very different shell
radius distribution from WOD: their model is closer to the case of equal size shells, discussed in
§1I below.) The other qualitative feature we note is that the bubbles are not completely empty
of galaxies, and are therefore not to be identified one-to-one with voids in the pure sense. For
example, the Bootes “void” contains 3 IRAS galaxies where 11 are expected in the mean (Strauss
and Huchra 1988), while the CfA2 bubbles seem to have roughly 10% of the mean galaxy number
density (Geller and Huchra 1988). On the theoretical side, cold-dark-matter models predict that
“yoids” comparable to the CfA bubbles have roughly 20 percent of the mean density (White, etal,
1987). This qualitatively motivates the inclusion of an unclustered (or very weakly clustered)
population of background galaxies in the shell model (see Section V).

II1. EQUAL SIZE SHELLS

In the simplest version of the shell model, galaxies are assumed to be placed randomly on the
surfaces of equal size shells. In this case, there are only two parameters in the model: the shell
radius, R,p, and the volume filling factor, f, defined by

4 3
= ?nshRsh ) (3'1)
where n,}, is the number density of shells. We also assume that shells are randomly distributed
in space, and are infinitely thin. Since the typical shell thickness in the CfA slices is § R, <2 —
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3h~Mpc (de Lapparent, Geller, and Huchra 1986), our calculations are trustworthy only on
scales r>2 — 3h~1Mpc. We verify this in Appendix A by calculating the two-point correlation
function of galaxies on shells with finite thickness § R,), and comparing it with the case of infinitely
thin shells.

a) Two-Point Correlation Function

The two-point correlation function is defined by

Here, 6P is the conditional probability that, starting at a given galaxy, another galaxy is found
in the volume element 8§V at separation r; ng is the number density of galaxies, related to the
number density of shells by _

ng = nehpdT RN , (3.3)

where N, is the surface number density of galaxies on the shells. 6P gets contributions from two
galaxies on the same shell (§P;) and from two galaxies on different shells (§Py); both are easily
calculated:

_ [ 2mrdrNy, ifr <2Rg,
i, = {57 e S aR, (3:4)
0Py = ngbV. (3.5)

In writing the expression for 6Py, we assumed the shells have a random Poisson distribution.
Using the volume element for a spherical shell,

§V = dwridr, (3.6)

the two-point correlation function is then

R .
— Bﬁ ifr <2Rg, 3.7
$og(r) {o ifr>2R,; (3.7)

(This result was noted independently by Ostriker and Strassler (1 989).) Note that the only non-
zero component of £yg(r) comes from two galaxies on the same shell. We also note the general
feature that the correlation function vanishes for r > 2Rgp.

Figure 1 shows the two-point correlation function for f = 0.8, 1.0, and 1.2. The two-
point function for equal size shells has slope 7o = 1, clearly smaller than the observed slope,
~o = 1.8 + 0.2. The correlation length, ro = R,p/(6f), is also small: if the typical shell radius is
R, =~ 15h7IMpc and f = 1 (as suggested by the CfA2 survey data), then ro = 2.5k~ 1Mpc, a
factor of 2 below the observed value. The r~1 behavior of the two-point correlation function is
a reflection of the two-dimensional nature of the galaxy distribution in this model. We suspect
this is one of the reasons for the long tails seen in some of the simulations of BHS. However, since
the two-point correlation function is cut off at the bubble diameter, a decreasing distribution of
larger shell sizes is expected to steepen the slope (see section V).

b) Three-Point Correlation Function
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The three-point correlation function is defined by

6P = n§5V25V3[1 4 £gg(ra) + Egg(rs) + Egg(re) + ((ra,Tp.7e)] - (3.8)

Here, 6P is the conditional probability involving two steps that, starting at a given galaxy 1, a
second galaxy 2 is found in the volume element 6V at separation rq from galaxy 1 and a third
galaxy 3 is found in the volume element 6V3 at separation 73 from galaxy 1 and r. from galaxy
2. In the shell model, there are three different contributions to §P: 1) that from three galaxies
on the same shell (§P;); 2) that from two galaxies on the same shell and one galaxy on another
shell (§P2); and 3) that from three galaxies on three different shells (6P3).

6Py is given by the product 8P| = 8Py 1 - 6Py 3, where 6Py 1s the probability of finding
galaxy 2, and 6P 3 is the probability of finding galaxy 3, given galaxies 1 and 2. 6Py  is obtained
from Eqn.(3.4) by substituting rq for 7. The calculation of 6P, 3, given in Appendix C, involves
spherical trigonometry, with the result

ir,r .
5P1,2 — {w&;drbdrc.’\fsh lf Tb, T(.: < 2R3h a.nd Fabc > 0 . (390)
0 otherwise
where o
Fop = orir 4 2r2p2 or2p2 4 4 4 Tﬁ"f"c B
abe = 2rgTh + 2rpTe +20eTa e T T Te T g - (3.9b)
sh

6P is the sum of three components: galaxies 1 and 2 sharing the same shell (8P 1), galaxies
2 and 3 sharing the same shell (6P 2), and galaxies 3 and 1 sharing the same shell (6P 3).
Assuming the shells are randomly distributed, we find

2nradreNyp X ngdVaye i ra < 2Ry

P = {0 if rq > 2Ry, (3.10)

where 6V 3. is the volume element at separations ry, and r¢ from two given points which are
separated by ra. 6Pa 3 and 6P, 3 are obtained by permuting indices @, b, and ¢ in Eqn.(3.10).
The volume element 6V 3., derived in Appendix B, 1s given by

6V, 4o = 2m 2 drydre. (3.11)
¥ ra
Finally,
§P3 = n26V56V3, (3.12)
again using the assumption that the shells have a random Poisson distribution. Here, 6§V =

471'1"(21(11"“, and 5V3 = ‘SVa,bC'

Summing §P = §P; + 6P + §P3 and comparing with Eqn.(3.8), after some manipulation we
obtain the reduced part of the three-point correlation function,

R? .
C(Ta, '-"'b,'l"c) _ { 5273 thFa__bc if rg, Thy Te < ZR,h and Fabc >0 . (313)
0

otherwise
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¢ corresponds to the component 6P, t.e., it receives a non-zero contribution only from three
galaxies on the same shell. The contribution 6P, from two galaxies on the same shell and
one galaxy on another shell constitutes the terms proportional to £gg(ra) + &gg(rp) + Egg(re)
in Eqn.(3.8), and it is obvious from Eqn.(3.12) that three galaxies on three different shells give
rise to the first (Poisson) term in Eqn.(3.8). Using Eqn.(3.7), the scaled three-point correlation
function @, defined in Eqn.(2.3), becomes

4 rmr 1 :
Q(Ta,?"b, T'(_-) = {g(ra+'b+fc;;;Fabc if Ta, Ty Te < ZRah and Fabc >0 . (314)

otherwise

Note that @ is independent of the shell filling factor f, since ¢ &« 1/f2 and £gg(r) x 1/f.

Since @ (or ¢{) is a symmetric function of its arguments, we can set rq < ry < r¢ and introduce
a new set of variables
r=ra, u=rp/ra, v=(rc—rp)/ra,

15
u>1, O0<v<l, (3.15)

following Groth and Peebles (1977). In Figure 2, we plot @ as a function of r: @ was calculated
for 0 < ra, 73, 7e < R,j and averaged over the two variables u,v over this range. The resulting
Q is quite flat, but the amplitude (@ < 0.4) is somewhat small compared with the observed value
(@ ~ 1.0 £ 0.4). The range of separations, i.e., values of rq,ry, re, over which @ was calculated
and averaged is somewhat arbitrary. However, the resulting @ depends only weakly on the range
of values chosen, and we could not reproduce the observed amplitude with any range of values.

¢) Peculiar Velocity Correlation Function

So far, we have focused on the purely static, geometric features of the shell model. To calculate
the peculiar velocity correlation requires an additional assumption: the dynamics of galaxies. We
assume that shells are uniformly expanding or contracting with velocity V,; and that the peculiar
velocities of galaxies arise in part from this radial motion of shells. The velocities of the shells
depend on the cosmological model. For example, for an isolated self-similar void in an 2 = 1
universe, the typical expected shell velocity is of order V,), = HoR,1/5 = 300(R,p/15h~ Mpe)
km/sec (Bertschinger 1983; Ikeuchi, Tomisaka, and Ostriker 1983). However, in an open universe,
peculiar velocities decay, and in a universe dominated by collisionless dark matter, the gravity of
the dark matter will slow down the shell expansion for some time. In addition, since the volume
filling factor of shells in the CfA2 survey is estimated to be of order unity (Ostriker and Strassler
1989), typical shells have several neighbors with which they have interacted (Yoshioka and Ikeuchi
1990). Presumably, once they collide, the coherent shell motions are damped out. Thus, since the
present shell velocities may well be small on the Hubble scale, the estimate of Vg above should
be taken as an upper limit.

The dimensionless peculiar velocity correlation functions are defined by

< Gy(#) - (™ +7) >p
V2 ’
sh

va(’") = (3.16)
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< T () - T, +7) >p

Ln(r) = 12 ; (3.17)
sh
<o )9 +7) >
funfr) = <AL TT D 20 (3.13)
sh
and the relative peculiar velocity is defined by
opg(r)p = ) Z U 1) >p (3.19)

Van ’
where E'“ and ) are the parallel and perpendicular components of peculiar velocity with respect

to the line joining two galaxies separated by 7. Here, E.!,'u(r) and & (r) are the parallel and

perpendicular components of £yu(r), so £yp(r) = E!,lu(r) + &L (r). Note that II(r) = {Hu(r) . Vszh

is the parallel component of the velocity correlation tensor, and 2%(r) = &L (r) - th is twice

the perpendicular component. (For discussion of the velocity correlation tensor, see Davis and
Peebles 1977; Gorski 1988; Szalay 1988; GDSWY; GJO; Kaiser 1989.)

As with the spatial two-point correlation function, the peculiar velocity correlation function
and the relative peculiar velocity naturally split into two components: one from two galaxies on
the same shell and the other from two galaxies on different shells. For two galaxies on the same
shell separated by distance r, elementary trigonometry gives

2

— — — T
U"('r_“) . v“(f'* + Ylsame = _ZR_%;VEh, (3.20)
5
Ty (7 )T (7 + T)lsame = [ 1 — iR2 Vo s (3.21)
sh
-y —f —sr —f r2 2
F(7) - (7 + 7)lsame = {1 = 55~ | Vah (3.22)
sh
T} — 5 + 7)|same = R’”hv,,,. (3.23)
s

Assuming the distribution of shells is random, the contribution from two galaxies on different
shells vanishes on average. Hence, the parallel component of the peculiar velocity correlation

function becomes Yy iy
_ v”(r ) v“('r' + )| same ( €gg(r) )
V2, L+ &gg(r))’

where the last term is the fraction of all galaxy pairs, separated by distance r, which are on the
same shell. Using equation (3.7), this becomes

I —PARs e < 2R
Yo(r) = { TH6fr/R, 7 < 20h (3.25)
0

ifr > 2Ry

o) (3.24)
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Similarly, N
1-r?/4R; .
eLry = { repeyms T <2Ran (3.26)
0 if r > 2r,p
1-+/2R3, .
Eﬂu(r) = 1+6fr ,‘: lf r< 2R8h , (327)
0 if r > 2rg,
r/R,n .
v1a(r) = '1‘+‘§6 /R ifr <2Rgp {3.28)
0 ifr>2Ry,

Figure 3 shows the peculiar velocity correlation function and the relative peculiar velocity for

f = 0.8. Here, the dot-short dashed curve corresponds to 51',11,(7') (11/ th), the dot-long dashed
curve is &L (r) (EE/VEh), the short dashed curve is Eyu(r) (1T + 22)/V82h), and the solid curve 1s

v12(r). The magnitude of the velocity correlation function and the relative peculiar velocity are

smaller if the filling factor f is larger. As expected from the shell geometry, E,l,lu('r) (II) is always
negative and &k () (T) is positive.

These results can be compared with recent analyses of large-scale peculiar velocity obser-
vations (GDSWY, GJO), in particular, the residual components II and % averaged over the
range 10h~! — 30A~1 Mpe, given in Eqn.(2.9). Since the residual field may come from sev-
eral sources, we use these values as upper limits on the magnitude of the shell velocity. Even
qualitatively, the shell model velocities do not accord well with the observations: although the
parallel component 1I(r) for the spiral sample is negative, it is not a monotonic function of
r, in contrast with the shell model. More important, the shell model prediction for the per-
pendicular component, averaged over the same range in r (assuming Ry, = 15h~1 Mpe), is
T =~ 0.4(100 km/sec)?(V,;/300 km sec™1)?, while £ (r) (Z(r)) for spirals is negative or consis-
tent with zero. For the shell model value of ¥ to agree with the observations at the 2o level,
the shell velocity must satisfy V,,5200 km/sec = HoR,;,/7.5. In this case, however, the shell
model value for II is significantly smaller than the observations, so that shell motions could not
dominate the residual velocity field. (Peebles (1988b) has already noted difficulties with the local
velocity field if one interprets it in terms of the explosion model.)

d) Void Distribution

The most striking feature of the CfA slices is the preponderance of large voids: this is, after
all, the motivation of the shell model. Thus, a plausible shell model should accurately reproduce
the void distribution. In the shell model, the void probability function (VPF) ¢o(r) is just the
probability that a randomly placed volume V = (47/3)r3 is empty of bubble walls. In a more
realistic model, galaxies would not be spread uniformly on a shell, but would have a patchy
distribution on and within the bubble surface; in this case, the volume V could have bubble walls
crossing it which happened to be empty of galaxies in V. We assume this makes a negligible
correction to the VPF on scales 2 a few =1 Mpc.



15

The probability of a void of radius r depends on whether r is larger or smaller than the
shell radius R,. If r > R,p, then ¢o(r) is just the probability of having no shell centers within a
volume V' = (47/3)(R,,+7)3. On the other hand, if r < R,p, the VPF is given by the probability
of having no shell centers within a volume V' — V", where V" = (47/3)(Ryp, — r)3. Since the
shell centers have a random Poisson distribution, the probability of finding no shell centers in a
volume V is just exp(—ns;V). Thus, the VPF is given by

do(r) = o [mf(l i Rﬁ)s] Hr2 R :

| (3.29)
exp [—2f(3n'ﬁ + 'ﬁg—h)] ifr <Ry,

In Figure 4, the resulting void probability function is plotted for f = 0.8 (solid curve) and
1.2 (short dashed curve). For comparison, the VPF for a random Poisson distribution of galaxies
is also shown (dot-short dashed curve). To place the latter in the same figure, we have chosen
ngRih = 0.01~%Mpc—3- (15h—1Mpc)3 = 33.75, where ng is the mean density of galaxies in typical
samples.

Care must be taken in comparing the shell model VPF with the data available from redshift
surveys. The shell model result for the VPF is apparently inconsistent with the analysis of the
CfA1 data by ML: they find the observed VPF approaches the Poisson form at small r, but
is enhanced over Poisson for r > 1A~! Mpc. Unlike the data and most models for large-scale
structure formation (Fry, etal., 1989), the VPF for the shell model does not approach a Poisson
distribution at small : the slope of the shell model VPF at zero radius is —6f/ R, while realistic
distributions have zero slope at r = 0. This difference, however, is an artifact of the assumption
of zero-thickness bubbles: clearly Eqn.(3.29) is not valid for r<éR,, =~ 2 — 3h~1 Mpe. (It is
straightforward to show that the slope and curvature of the shell model VPF with finite thickness
shells approach zero for r < §R,.) In Fig. 4, assuming R,p, = 15h~1 Mpc, this implies that the
shell model curves cannot be extrapolated below r/2R,), = 0.1. On the other hand, the plots of
ML only extend up to r = 8.7h=1 Mpc, corresponding to r/2R,; = 0.29in Fig. 4. Over the range
3h~! Mpc < r < Th™! Mpc where they can be reliably compared, the shell model VPF with
f = 0.8 and R,; = 15k~ Mpc agrees with the results of ML to within a factor of 2, although
the shell model VPF is flatter, with a tail extending to larger radii. It is difficult to estimate the
significance of this, since the figures of ML display no error bars. However, as noted in Section
II, the value and slope of the VPF are very sensitive to fluctuations in the mean density of the
sample (Einasto, etal., 1990), and for the CfA1 survey, the density fluctuations are estimated to
be of order unity (de Lapparent, Geller, and Huchra 1988).

Alternatively, we can consider the scaled void probability (e.g., Fry 1986), x = ~In(¢0)/Ng,
where Ny = gV is the mean number of galaxies (in the sample) in a volume V' = (47 /3)r3. For
a hierarchical galaxy distribution, y is a function only of —ngf, where £ = ‘ﬁ}z Jv dV1dVatio /Wg-z.
For the case at hand, we have Ny€ = 47rR_,hn_gr2/15f, so that

18— 1 2n4
= (N —= . 3.30
X 15( g6+ = (3.30)
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The second term here is just twice the inverse number of galaxies per shell; since the VPF data
only extends up to r ~ 94~1 Mpc and we assume R,j, ~ 152~ Mpc, Eqn.(3.29) shows that we
can neglect the second term in Eqn.(3.30) when comparing to the CfA1 data. Thus, over the range
that i1t can be compared to the data, the shell model VPF exhibits the scaling form expected of a
hierarchical distribution to excellent approximation. Since y < 1 by definition, Eqn.(3.30) is only
valid for Ng€ > 18/15. For the CfAl survey with 7ig = 0.01h~ SMpc3, Ng€ ~1.5(r/h~ 1Mpe)l-23
(Fry 1986), so Ng& > 18/15 corresponds to r > 0.8%~! Mpc; clearly this is not an important
limitation, since we do not trust the shell model on scales rgé6R,p, = 3h™1 Mpc anyway. On
scales r23h™1 Mpc, corresponding to m > 5.8 in the CfA1l survey, the shell model function
x(m) lies below the data curves for x from both the CfA1 and Perseus-Pisces surveys (ML; Fry,
etal., 1989). That is, the shell model predicts an excess of large voids compared to the data. The
shell model function x does lie above the ‘minimal’ model of Fry (1986}, as expected.

IV. DISTRIBUTION OF SHELL SIZES

In this section, we consider models in which shells have a range of radii, generalizing the results
of the previous section. The expressions we will derive for the spatial and velocity correlation
functions and the void probability function hold for an arbitrary distribution of shell radii. As an
important application of these general results, in the figures, Tables, and Appendix D, we display
results for a power law distribution of shell radii.

Let n p(R)dR be the number density of shells with radii between R and R+ dR. The galaxy
surface number density, N ;(R), and the peculiar velocity due to shell expansion or contraction,
V,n(R), are generally functions of the shell radius R as well. Then the number density of galaxies
is

ng = jo * 4nR2N 1 (R)nh(R)dR, (4.1)

and the shell volume filling factor is

f=[" %wR:’n,h(R)dR. (4.2)

It is useful to introduce some additional definitions to streamline the notation in this and
subsequent sections. The number density of shells with radius R > r/2 is given by

F(r/2) = jr :‘; nh(R)dR. (4.3)

The nth moment of the galaxy surface density, averaged over shells with radius R > r/2 is defined
by

N7(r/2) = N5 (R)n(R)dR. (4.4)

w7 b
Similarly, we define a shell radius moment,

1
F;}:(T/z)nah(r/z)

Rp(r/2) = R"N}Z(R)nsh(R)dR (4.5)
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and a shell velocity moment,

Va(r{2) =

1 00
R V:‘ RR"‘NE Ryn,,(R)dR. 4.6
RE(r /2N (r/2)7e5(r/2) /r/z W(R)RT N (R)nsn(R) (4.6)

Using these definitions, the galaxy number density and shell volume filling factor become

ng = 4n RS (0N, (0)57(0), (4.7)
f = 3T RE(O)R(0). (48)

Although we will derive the correlation functions and VPF for an arbitrary distribution of
shell radii, it is also useful to focus on a particular class of models (WOD, BHS): a power law
distribution of shell radii, with cutoffs at a maximum and minimum radius. Before discussing
the general results, we now specify the parameters of the power law model. In this case, the
differential shell number density is

”sh(R) = { n,h,o(R/Rmaa:)—a if Rmin < R £ Rmaz . (4_9)

0 otherwise

We also assume the galaxy surface number density and shell expansion velocity are power law
functions of shell radius,

Nan(R) = Nsh,o(R/Rmaz)ﬂ, (4.10)
vsh(R) = vsh,o(R/Rm-"i)‘Y' (4.11)

The various shell density, surface density, shell radius, and shell velocity moments defined in
Eqns.(4.3-4.6) are given explicitly in Appendix D for this model.

In the power law model, the spatial distribution of galaxies depends on five independent
parameters: f, @, Rmaz, Rmin/Rmaz, and 5. None of these parameters is well determined
from observations, although the redshift surveys roughly suggest expected values for several of
them. We will use the observations and the theoretical work of WOD as guides to the relevant
regions of parameter space to explore. From the first CfA2 slice, the shell volume filling factor is
estimated to be f o~ 1 — 1.5 (Ostriker and Strassler 1983), while WOD used f = 0.8 — 1.2 to fit
the cluster correlation function (the filling factor quoted in WOD is lower than this, because they
only included shells with radius in the range Rmaz/2 < B < Rmaz in their definition of f). The
largest voids seen in recent redshift surveys have diameters of roughly 50 k=1 Mpc, suggesting
a maximum shell radius of order Rmaz =~ 30h~Mpc. However, since these voids have sizes
comparable to the depth of the survey, potentially larger structures could have been missed. For
example, the deep pencil-beam surveys suggest the existence of underdense regions with scales
up to 130 =1 Mpc (Peterson, et al. 1986; Koo, Kron, and Szalay 1987; Broadhurst et al. 1989).
Therefore, this estimate of Rmagz is likely a lower bound to the true value. In the CfA2 data, the
shell thickness and mean galaxy separation inside shells appear to be roughly independent of shell
diameter (de Lapparent, Geller, and Huchra 1988); this suggests that the galaxy surface density
is approximately constant, i.e., § ~ 0. On the other hand, if shells are formed by explosions, then
the shell mass, and thus the number of galaxies per shell, should be proportional to the bubble
volume swept out, which would imply 8 =~ 1. We will therefore consider values of § between 0
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and 1. The number of large voids in the redshift surveys is currently too small to determine the
shell distribution exponent a {(de Lapparent, Geller, and Huchra 1988). On the theoretical side,
WOD showed that the observed cluster mass function and cluster two-point correlation function
can be fit reasonably well if & ~ 4. In this case, the shell distribution would be approximately
scale-invariant, since each logarithmic decade in R makes an equal contribution to the filling
factor f. For this choice of @, the number density of galaxies is dominated by the smallest shells
if B < 1. On the other hand, the CfA2 results indicate that the the largest voids lead to significant
fluctuations in the galaxy number density across the sample (de Lapparent, Geller, and Huchra
1988), suggesting that perhaps 3 + 8 — a > 0. However, we will see below that this condition
does not yield a reasonable galaxy two-point function, so we will not impose it. (The best fit
models below violate this condition weakly.} For the reasons cited above, the ratio Rynin/ Rmaz
is also poorly determined from observations. In their models, WOD somewhat arbitrarily set
Rmin/Rmaz = 1/8, but they argued that the statistics of clusters are insensitive to it. We will
see that the statistics of galaxies are sensitive to this parameter, and use both Ryin/Rmaz = 1/8
and 1/15 to span a reasonably broad range of plausible values.

There are two additional parameters which enter into the peculiar velocity correlation func-
tion, v and V,j, 5. Following the work on expanding positive energy shells, we will assume the
peculiar expansion velocity of each shell is a fixed fraction of its Hubble velocity, i.e., v = 1.
The parameter Vgp, 5, which fixes the magnitude of the peculiar velocity of galaxies, only appears
as an overall normalization constant in the peculiar velocity correlation function, so it may be
scaled out of the problem. Of course, it enters when comparing the model with observations. To
summarize, in this and subsequent sections, we will investigate the following ranges of parameter

values:
0.85fg1.2,
3.55a4.5,
Rfmz = SOhHIMpC,

4,12
Ryin = 2.0 and 3.8h-1Mpc, ( )
0<8<1,
v =1.

a) Two-Point Correlation Funciion

The calculation of the two-point correlation function involves averaging £gq(r) for the case
of equal size shells [Eqn.(3.7)] over shells with different radii. For randomly distributed shells,
the contribution comes from two galaxies on the same shell with radius R > r/2. Hence, for
r < 2Rymaz,

_ 1

—41rr2drng -ng

_ 1 RY(O)R3(r/2) N2y (r/2) Tigz(r/2)
Sfr R Ny O

£0g(r) / ‘;; omrdrN,(R) - 47 REN u(R)nn(R)AR

(4.13)
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where Eqns. (4.7) and (4.8) have been used. For r > 2Rmgz, the correlation function {gg(r)
vanishes, and it is positive on all smaller scales. This suggests that the galaxy correlations
recently found on large scales by Maddox, etal., (1990) may reflect the bubbly structure of the
galaxy distribution.

For the power law distribution of shell radii, we find

1/fr if r < 2Rpin
. 34+3f-a .
Egq(r) o { frl(lf"({j;*g:l)wﬁ_a) if 2Rpmin < T < 2Rmaz (4.14)
0 lf 2ana,z <r
Thus, £g¢(r) has a simple power law form for Rpmin < Rmaz and 2RpinSr € 2Rmaxz,
r2t28-a i B < (a—3)/2
€gg(r) < {r‘l 8> (a—3)/2. (4.15)

For example, if @ = 4 and 8 = 0, the slope of the correlation function is v = 2, close to the
observed value. Figures 5a-d show the two-point correlation function for several values of the free
parameters. Noticeable features in the plots are: 1) a sharp break or kink at r = 2Rypmin from
£ ~ r~1 to a steeper power law, and 2) the steepening of the slope of {gg at large separation r.
The first feature is somewhat artificial, since it results from the sharp cutoff in the number density
of shells at the minimum radius Ry,ip; @ smooth cutoff in the shell distribution would round off
the kink into a broad shoulder. The values of the slope 7, and correlation length rg for the various
models are listed in Table 1. These values were determined by fitting the correlation function
between 1/20 < r/2Rmazr < 1{5 to the power law form in Eqn.(2.1). For Rmaz = 30h~1Mpec,
this range corresponds to 327 "Mpe < r < 12h~Mpc. (Note that the ‘true’ correlation length
7o, defined by £g4(F0) = 1, differs slightly from the value of ro obtained from the power law fit.)
The slope 7o is steeper if more galaxies belong to smaller shells, that is, for larger a, smaller 3,
and smaller Ryu;n/Rmaz, but then the amplitude is smaller, as expected. Although the observed
slope (7o = 1.8) can be reproduced by the power law model, Table 1 shows that, for f =0.8—1.2,
the correlation length ro/2Rmaz =~ 0.03 — 0.04 is still roughly a factor of two below the observed
value, ro = 5 % 1h~IMpec or 1o/2Rmaz = 0.08 £ 0.02 for Rpmaz = 30h~IMpc. The observed
clustering strength could be reproduced if f were reduced to f ~ 0.4, but this is substantially
lower than the filling factor indicated by the redshift data. In the next section, we will see that
this problem is alleviated by including cluster galaxies at shell intersections.

b) Three-Point Correlation Funciion

As with the two-point correlation function, the reduced part of the three-point correlation
function, ¢, is found by averaging Eqn. (3.13) over shells with different radii. The only non-zero
contribution to ¢ comes from three galaxies on the same shell with radius R > max(ra, 73, 7c)/2.
Thus, for ra, rp, Te < 2Rmaz,

fls':)a.x(r,,rhr:)/z 21radraNyp(R) - ﬁ%ﬁ drydreNgp(R) - 47TR2Nsh(R)nsh(R)dR
4wr§drang . ZW%drbdrcng ‘g

_4 j°° N (R)ngn(R)IR
_ng max(r,,rs,r)/2 ‘\/Fabc

C(rch Ths TC) =
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where
21‘31‘% + 21"%7‘,2: + 27‘37‘3 _— rg — rg - rg rﬁr%r?

R4 RS
Here, 6P; o from Eqn.(3.9) and V3. from Eqn.(3.11) have been used. In this expression, the

integration is only to be carried out over the range where Fgy, > 0. Using Eqns.(4.7) and (4.8),
this can be rewritten as

Fabe = (4.16)

(4.17)

C(Tu Ty Tc) = ! _R—gz(()) jw th(R)nsh(R)dR '

2—53, 57 °
S RE (N, (O)meg(0) meslrarsra)? ebe

In Figures 6a-d, the scaled three-point correlation function @ is shown as a function of r for
several values of the power law model parameters (see Eqn.(3.15) for the definition of r). @ was
calculated from Eqns.(2.3), (4.13), and (4.17), for 0 < ra/2Rmaz, 73/2Rmaz, Tc/2Rmaz < 1/2,
and averaged over the variables v and v. For r<10h~IMpe, corresponding to r/2Rpmar <0.17 if
Rmaz = 30k~ IMpe, @Q is fairly flat, with values in the range 0.4<£Qx0.8. This is in reasonable
agreement with the observed value, @ = 1.0 £ 0.4. For most of the parameter range, @ is flat
for r < 2Rypin, has an upward break at r = 2R, to an increasing function of r, and eventually
falls to zero at 7 = 2Rmaz. (Again, the break would be rounded off in models with a smooth
lower cutoff to the shell radius distribution.) Thus, the shell model predicts that @ will show an
upward trend when it is measured reliably out to larger separations in the future.

¢) Peculiar Velocity Correlation Funciion

To obtain the velocity correlation functions, we average Eqns.(3.25) to (3.28) over the shell
radius distribution. For r < 2BRmaz,

:;’2 (—-4’%,) Z{?}f? . ZTTTN,},_(R) . 477R2Nah(R)nsh(R)dR

I —
Eou(r) = 4m2ng -1ig - (1 + Egg(T) , (4.18)
N f'?fg (1 - T’;—;) ‘—){3-)?%2 2 2nr N (R) - 4nR2N,,(R)ng (R)dR
€u(r) = 47rr2ng g o+ fgg(f‘)) . (4.19)
oo 2 Var(B) orrp,, (R) - 4 REN (R, (R)dR
o1a(r) = IR v 2rrNa(R) - 4n RN (R)ngh(R) (20)

4rring - ng - (1 + €gg(r))
For r > 2Rmaz, the peculiar velocity correlation functions and the relative peculiar velocity are

zero. Using Eqns.(4.7) and (4.8), we find

1 R3(0) N2 (r/2) Tigg(r/2) | _r2V§(r/2) (4.21)
6771 + g1 72 (0) NL2(0) R | & Vo |

fjolv(r) =
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Lo 1 R3(0) N3/ w5 (r/2) 23, 1o VE(r/2) _ 12 VB(r/2) o
gvv( )_ Gf'i“(l +£gg(r))-R—%2(0) -Jv};z(o) m(o) [Rz( /2) vfh,o 4 vszho ) (4.~~)
Eun(r) = Ebu(r) + 5 (7) | (4.23)

o1 R0) NG(r/2)mg(r/2) [—1 . v_%(rfz)]
12( ) Gf(l +£gg(r)) '—R—%Z(O) —A/’_’li:z(()) m(o) Rz( /2) V,h,o . (4.24)

Figures 7a-d show the peculiar velocity correlation function and the relative peculiar velocity
for several values of power law model parameters. For larger o and smaller 3, the velocity
functions are smaller, since more of the galaxies belong to smaller shells. The overall features
of the velocity functions are similar to those for the case of equal size shells (compare Figure
3), except that here the peculiar velocity functions smoothly approach zero as 7 — 2Rmge. To
convert to physical units, the y-axis in Figure 7 should be multiplied by th‘ o (for the correlation
functions) or V,p, o (for the relative peculiar velocity), where Vgp, , is the expansion velocity of the

largest shell. For example, in an explosion model with Rpaz = 30A~1 Mpc and shell speed 20%
of the Hubble velocity, we expect V,p, o = 600 km/sec. For this value of Rmaz, the z-axis in Fig.

7 should be multiplied by 6000 km/sec (60h~1 Mpc). For these values, the parallel component
of the shell velocity tensor is in reasonable accord with the data: for example, for the parameters
of Fig. 7b, II{r == 1000 — 3000 km/sec) ~ ~0.56(100km/sec)?. However, as for the case of equal
size shells, the perpendicular component has the wrong sign and, for the parameters given above,
too large an amplitude in comparison with the data. For the model in Fig.7d to agree with
the observed ¥ to within 20, the expansion velocity of the largest shell must satisfy V,p, <280
km/sec ~ 0.09H,Rmaz, substantially less than the value expected for an isolated shell in an
2 = 1 universe. Given this upper bound, the parallel velocity component due to shells would be
observationally negligible. For other choices of shell model parameters, the constraint from ¥ is
not as severe; e.g., for the parameters of Fig. 7a, 20 agreement with the perpendicular component
implies V,p, o<475 km/sec ~ 0.16 HoRmaz. However, in all cases in which ¥ is consistent at this
level, the parallel component II has insufficient amplitude to explain the residual velocity field.

d) Void Distribution
| For a distribution of shell sizes, the void probability becomes
Ty, o "
sor) =exp [~ { [ Vin(R)dR+ [T (V' -V )n,h(R)dR}] , (4.25)

where, as in the case of equal size shells, V! = (47/3)(R + r)® and V" = (47 /3)(R - r)®. Note
that, for a discrete distribution of shell sizes, the VPF is just the product of the void probabilities
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for each shell radius. Using Eqn.(4.8), we obtain

[ exp :“ng(o) (R3(0) + 3R2(0)r + 3R}(0)r? + r3)] if 7 > Rmaz

exp | — Eﬁ’%{ (—ﬁg(O) + 3?1_3(0)1' + 3—1%(0)1'2 + r3)

$o(r) = S - — _ (4.26
*::: B (IT%(T) - 3R%(T)r + 3R(11(r)7'2 — r3) }] if Rypin <7 < Rmaz )
| exp [-2f; (5750 +)] 1 < Ronin

In Figure 8, the void probability function is plotted for several values of power law model
parameters, keeping Rynin/Rmaz = 1/8 fixed (4 upper curves). The VPF is most sensitive to the
volume filling factor f, with additional weak dependence on the size distribution exponent a. For
comparison, the void probability function for a random Poisson distribution of galaxies is also
shown (dot-short dashed curve). To place the latter in the same figure, we have taken ngR> o =
0.01A3Mpc—3(30h~1Mpc)® = 270, where ng = 0.01h3Mpc—3 is the mean galaxy density in a
typical CfA1 subsample (ML; Hamilton 1985). The VPF for the CiAl data lies somewhat above
the Poisson curve, but well below the shell model curves. For example, at r = 6h~1 Mpec,
corresponding to r/2Rmaz = 0.1 for our adopted Rrmaz, ML find ¢o(r = 6h”‘1Mpc) ~ 0.1 for
their volume-limited CfA1 subsample. For the shell model to yield a VPF this low, the filling
factor would need to be 25— 6, absurdly high. As we show in the next section, this discrepancy
may be partially or wholly remedied by allowing for a small fraction of the galaxies to lie off the
shells.

V. CLUSTER AND BACKGROUND GALAXIES

The models considered in the previous sections lack two important ingredients of the observed
galaxy distribution: clusters of galaxies and field galaxies which do not lie on shells. To make
the model more realistic, we now place a fraction of galaxies in clusters at the points where three
shells intersect and also allow for a homogeneous population of background galaxies. The number
densities of shell, cluster, and background galaxies are nsg (given in Eqn.(4.1)), neg, and ny,
respectively. This modification introduces several additional parameters into the shell model: the
number of galaxies in a cluster which forms where three shells with radii R4, Rp, and R¢ meet,
N (R4, Rp, Rc); the fraction of cluster galaxies, Mc = neg/(nsg + neg + Npg); and the fraction
of background galaxies, My = nyg/(nsg + ncg + npg). We note that an important limitation of
this model is the treatment of clusters, like galaxies, as point-like objects with zero spatial extent;
this follows from the assumption of infinitely thin shells. As a consequence, our statistics are not
sensitive to the internal density profile of clusters, and our results are not valid on scales smaller
than the typical Abell radius, rg4 =~ 1.5h~1 Mpec.

Let ny(Ry4,Rp,Ro)dR4dRpdRe be the number density of clusters formed from three
spheres with radii in the intervals dR4, dRp, and dRg. From Kulsrud and Cowley (1989),

ng(R4,Rp,Rg) = 8ntn(Ra)nan(Rp)nan(Ro)RY RS RE (5.1)
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and the total number density of clusters is

4rd [ oo 3
nc,=—3-[/0 n,h(R)R%R] . | (5.2)

(Here, the factor of 6 is divided because, in integrating over (R4, Rp,Rc), the same situation is
counted six times.) Therefore, the total number density of cluster galaxies is

ard poo 00 )
neg = 3~ /0 dR4 jo dRp /0 dRoN (R, Rp, Ro)nsn(Ra)nen(RE)nan(Re)RY RE RE:.
(5.3)

We assume that the number of galaxies per cluster has power law dependence on the shell
radii R4, Rp, and R¢,

Na(R4, Rp, Re) =ch,o( YA )6( 5 )6( i )6- (5.4)

Rmaz Rpaz Rmaz

As noted below, this assumption is physically plausible, and we expect it to hold independently
of (and more generally than) the assumption of a power law distribution of shell radii. Using the
notation introduced in Eqns.(4.3) to (4.6), ngy and ngg can then be written as

474 —=3
ng =~ ()R (0), (5.5)

-—3
47t Ny oisn (0 R5 7 (0)

5.6
3 R3S (5-6)

'n.cg =

We can choose the three independent additional parameters of the model to be 6, M, and
M (note that Ny, is related to neg and thus Me, so it is not independent). We will take 6 =1
on the assumptions that (a) the mass of a cluster at the intersection of three shells with radii
R4, Rg, and Rg is proportional to R4RpR¢, and (b) the number of galaxies in a cluster is
proportional to the mass of the cluster. A simple physical argument for assumption {a) is given
by WOD. Assumption (b) follows if the galaxy mass function is independent of cluster mass.
Observations indicate that the fraction of galaxies belonging to rich clusters and their tails, M,
is between 5% to 20% (e.g. , Bahcall 1986). Searches for a spatially homogeneous (background)
field population in galaxy catalogs have proved negative, with resulting quoted upper bounds
M, < 0.18 (Soneira and Peebles 1977) and M; < 0.05 - 0.1 (Chincarini 1978; Vettolani, de
Souza, and Chincarini 1986). For our purposes, it is not crucial that the background galaxies be
completely unclustered (we assume this only for calculational convenience), but it is important
that they be allowed to populate regions other than the shell surfaces. Therefore, we do not need
to identify background galaxies precisely with the spatially homogeneous field. From the galaxy
density in the underdense regions of redshift surveys, we impose the rough upper limit Mp<0.2.
Reiterating, the ranges of the values of the additional parameters considered in this section are

6=1,
M:<0.2, (5.7)
My<0.2.
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a) Two-Point Correlation Function

Since there are now three galaxy populations, the two-point correlation function can be decom-
posed into nine components: shell galaxy-shell galaxy, {;;(r); shell galaxy-cluster galaxy, 53;(1');

shell galaxy-background galaxy, f;g(r); cluster galaxy-shell galaxy, Eg;(r); cluster galaxy-cluster
galaxy, go(r); cluster galaxy-background galaxy, {gg('r); background-shell, Eg;(r); background-

cluster, Eg;(r), and background galaxy-background galaxy, {gg(r) Since background galaxies are
assumed to be randomly distributed, five of these components vanish,

£85(r) = €8 (r) = £b3(r) = £h5(r) = Ega(r) = 0. (5.8)

Also, since the two-point correlation function is invariant under intercommutation of the galaxies
in a pair, §8(r) = £ga(r), etc. Hence, the two-point function is

Egg(r) = Egg(r} + 2£gg(r) + {gg(r)- (5.9)

The shell-shell component, {;;(r), is obtained by multiplying the shell galaxy two-point
function, given in Eqn.(4.13), by M2,

£33(r) = M? [ fr : 21r N (R) - 47rR2N,h(R)n3h(R)dR] / (4nr2nsg ‘Tigg) - (5.10)

Here, M, is the fraction of shell galaxies (Ms = 1~ Mc— M,). The cluster-shell component £g3(r)
is derived by counting the number of shell galaxies at distance r from a cluster and averaging
over clusters with different numbers of galaxies. Using Eqn.(5.1),

oo (o o] 00
§og(r) =McM, [4774 [_/2 dRAj;J dRBfo dRo27r Ny (Ry4) - Na(Ra, Rp, Re) )
(5.11

X nsh(RA)nsh(RB)nsh(RC)RiRzBR%‘]/ (47”"2”3g 'ncg) .

Similarly, the cluster galaxy-cluster galaxy component ££5(r) is derived by counting the number
of cluster galaxies at distance r from a cluster and averaging over clusters with different numbers
of galaxies. Using the cluster-cluster two-point correlation function given in Kulsrud and Cowley
(1989), we have

ecc(ry = €5M(r) + €52 (r) + €55 (), (5.12)

where
M,? 73
ngg 2r

cc,] 2
! = R R
{gg (1) fr/zdRA jrjz dRp /1-/2d cN&(R4, Rp, Re) 513
T2 r -

2
X ngp(Ra)nsn(RB)nsn(Re) (RZA - Z) (RZB = -47) ,



25

MZ8nt oo co 00 oo
cc,l1 e R R R
65570 =og i [ 8Ra [y [ 2Ro |7 dRoNa(Ras R, RON(Ras R, )
2 52 [ p2 p2 g 12 o % 3t
x ngp(Ra)nan(Rp)nsp(Re)nan(Rp)RE Ry | RaRp + Ry + Rpr-15 )
(5.14)
257
celtl,y - Me 27 [ /wdR jde /de /de R4 Ra R
€gg (")—ngg - r/zdRA , dRs | dRc | dRp | gNa(R4, Rp, Re)

x Nal(Ba, Rp, RE)nsh(RA)nm(RB)n,h(Rc)n.h(RD)n,h(RE)RiR%R%RQDIE? 15)
15

Here, {;;’I(r), E;‘&’H(r), and 55';’111(7') are the contributions from two cluster galaxies sharing three,
two, and one common shell, respectively (see Kulsrud and Cowley 1989 for details).

Using Eqns.(4.7) and (4.8), the two-point function components can be written

M2 R3(0)R2(r/2) N2, (r/2) ign(r/2)

€gg(r) = 6fr F%z(o) 7\[—;1;2(0) 7 0) (5.16)
oy _ McMs RRO)RT (r/2) Ny (r/2) 7 (r/2)
699( )'" 2f1‘ }T%(O)R%+6(O) Nslh(()) m(o) 3 (5.17)
. _ 2
ety 202 T O/ (R - TRECD) men g
a9 3Tr2f3r Eﬁﬁs(o) ﬁ;}‘;3(0) y .
E“'H(r) _ SIML.2 —égz(ﬂ) (R(21+26(T/2) = %Egﬁ(r/z)) (R§+26(r/2) + 3533‘2)3(1-/2))
N e Eﬁﬁ%) (5.19)
Toh(r/2)
eR2(0)
geely - $ME BRO)RE (/) (+/2) (520

e O

Figure 9 shows the two-point correlation function for several values of power law model
parameters. Here, the contribution from cluster galaxy-cluster galaxy pairs dominates on small
scales, and the kink at r = 2R, is less visible. The slope v, and correlation length 7o
of £gg(r) are listed in Table 2. These values were determined by fitting the data between
1/20 < 7/2Rmaz < 1/5 to the power law form in Eqn.(2.1). The effects of placing ~ 20% of
the galaxies in clusters are to increase the correlation length by a factor of ~ 1.5 — 2, and to
increase the slope if it is smaller than ~ 1.4 — 1.5 but decrease it otherwise. Placing ~ 20% of the
galaxies in a random, uniform background has a less dramatic impact on the two-point function,
merely decreasing the correlation length slightly (up to ~ 20%). To reproduce the observed
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slope of the correlation function, smaller values of 8 and Rpuin/Rmaz are preferred (i.e., a higher
proportion of galaxies belonging to smaller shells). The results indicate that both the observed
slope and correlation length can be reproduced in the shell model with & ~ 4, Rmaz ~ 30h™IMpe,
Reyin/Brmaz ~ 1/15, 3~ 0, § ~ 1, and M, ~ 0.2.

b) Morphological Dependence of the Two-Point Correlation Function

Since the cluster component and the field (shell and background) component of galaxies are
identified separately, it is natural to consider the morphological dependence of the two-point
correlation function in the shell model. As discussed in §II, there are more spiral galaxies in the
field but ellipticals predominate in clusters. Here, we assume that 95% of spirals are shell galaxies
and 5% are cluster galaxies and that 67% of ellipticals are shell galaxies and 33% are in clusters.
For instance, if ~ 85% of all galaxies are field galaxies, among which ~ 65% are spirals and ~ 20%
are ellipticals, and if ~ 15% of galaxies are in clusters, among which ~ 20% are spirals and ~ 60%
are ellipticals, then the fractions above are obtained.

Figures 10 and 11 show the resulting two-point correlation functions of spiral-spiral pairs
and elliptical-elliptical pairs for several values of power law model parameters. The values of
~o and r, for the corresponding two-point functions are listed in Table 3. Again, these values
were determined by fitting the data between 1/20 < r/2Rmaz < 1/5 to the power law form in
Eqn.(2.1). The two-point correlation function of elliptical galaxies, £¢e(r), has a larger correlation
length than that of spiral galaxies, £s5(r), indicating that elliptical galaxies are more clustered
than spirals; this is in qualitative agreement with the observed morphological trend. However,
the slope of £ee(r) is lower than the value 7, ~ 2.1 given by observations, and the correlation
length for shell model spirals is somewhat smaller than the value ro =~ 4.4h~1 Mpc quoted for an
observed spiral sample (see §II). On the other hand, this comparison is perhaps a bit premature,
since the fractions of spirals and ellipticals in field and cluster components are observationally
uncertain.

¢) Cluster-Galazy Cross Correlation Function

The cluster-galaxy cross correlation function, cg(r), is calculated by counting the excess
{(over the mean) numbers of shell, cluster, and background galaxies at distance r from a cluster.
Since the background galaxies are randomly distributed, they make no contribution to the cross

correlation. Hence,
€eg(r) = £Eg(r) + £55(r)- (5.21)

The components £53(r) and £55(r) can be calculated in a manner analogous to that of the galaxy-
galaxy two-point function in Eqgns.(5.11) to (5.15):

£83(r) =M, [47r4 / : dRy [ * 4Ry / * dR2rr Ny (Ry)

X non(Ra)n (BB )ngh(Re) RARERE|/ (47r%nag - nat)
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and
€5(r) = €N(r) + et (ry + 55T (r), (5.23)
where 3
M T o [+ <] [oa]
ce,I c
Iir) = ™ [T ar dR/dR R4 Rp, R
€eq (1) - '[_/2 A/rﬂ B o cNua(Ra, Rp, Rc)
2 I (5.24)
x ngp(Ra)nsn(RB)nsn(Rc) (RZA - z) (Rzg - "Z) ,
M. 8zt roo o0 ) 00
ce Ly = Me ST dededR dRpN.{(R4, Rz, R
€5"() =y [y dRa [, dRp [ dRc [ dRpNa(Ra R, Re)
2 2 [ p2 P2 g 72 o2  3rt
x ngh(Ra)nsh(RB)nsn(Ro)nsn(Rp)RERD | RaRp + Ry + Re7 ~ 35 )
(5.25)
M 27r7 o0 o0 oo ©a 0
ccilllzcw—ddede/dR/dR R4 Rp.R
g (r) e Ry | dRpj dRc | dRp | ENa(Ra, BB, Rc) (5.26)

X ﬂah(RA)nah(RB)nsh(Rc)ﬂah(RD)nah(RE)RiRZBR%R%RzE :
Using Eqns.(4.7) and (4.8), we have

M, RYORY(r/2) N5 (r/2) ign(r/2)

cg('-")‘“ 2Fr R_%(O)_ﬁg(()) j—\/‘;z((}) —) , (5.27)
— — SR g—s 2
oy B R/ (R0 - FRE) i
‘52;' (T') = 3 2f3 —3 3 ’__3 0y’ (528)
e B2 (0)RE¥S (0) R0
ity _ S T (B /2 - 5 Ra(r/2) (R + 3 Rr/2)
v R OR™ ) (5.29)
. Tap(r/2)
T 2(0)
ey = SMe FRORE(r/2) T (r/2) (5.50)

~2fr RoRri0) WO

Figure 12 shows the cluster-galaxy cross correlation function for several values of power law
mode] parameters. The values of the slope, 7o, and the correlation length, ro, of €eg(r) listed
in Table 4 were determined by fitting the data between 1/20 < r/2Rmaz < 1 /3 to a power
law. For Rmge = 30h~1Mpc, this range corresponds to 3h~Mpec < r < 20h~1Mpc. The slope
and amplitude of the cluster-galaxy correlation function are both larger than those of the galaxy
two-point correlation function, in agreement with observations. With the parameter values which
best fit the galaxy two-point function, & ~ 4, Rmaz =~ 30k~ IMpc, Rpmin/Rmaz =~ 1/15, 8 =~ 0,



28

§ ~ 1, and M, ~ 0.2, the observed slope of the cluster-galaxy correlation function, v, =~ 2.2,
is also reproduced by the shell model. The shell model prediction for the cross correlation
length, 7o ~ 6h~1Mpc, is 30% below the best fit observed value (~ 8.8h"!Mpc). However, when
uncertainties in the selection function and K-correction are included, the model value for ry is
only 5 — 10% below the range of the observations (Lilje and Efstathiou 1988b). When projection
effects in the Abell catalog are corrected for, this marginal discrepancy may be reduced even
further.

d) Void Distribution

It is simple to include the effects of cluster and background galaxies on the void probability
function. Since cluster galaxies reside on the shells, they make no change in the VPF given
in Eqn.(4.26). The background galaxies are distributed in a random Poisson process, so the
probability of finding a void in the background population is just ¢gp.(r} = e~ V(r) where
V(r) = (4n/3)r3. Since the background component is statistically independent of the shell and
cluster components, the total void probability is given by

$o(r) = e~ UT/AMingy (7Y, (5.31)

where ¢, 44(r) is the VPF for the shell galaxies given in eqn.(4.26). This is shown as the 4 middle

curves in Figure 8 assuming M, = 0.2, Rmaz = 30h~1 Mpc, and using the mean density of
galaxies in the CfA1l subsample of ML, ng = 0.01A3Mpc™3. With this fraction of background
galaxies, the shell model agrees with the observed VPF rather well.

V1. SELF-AVOIDING SHELLS

In the C{A2 slices, bubbles do not appear to lie inside each other. Therefore, as another
modification to the simple shell models discussed so far, we now consider the case of self-avoiding
shells, in which the centers of shells do not lie inside other bubbles; except for this constraint, the
distribution of shells is otherwise a random Poisson process. More explicitly, shells centers are
assumed to be anticorrelated on separations less than the shell radius: the two-point correlation
function of shells is given by

_ | -1 ifr <max(Ri, Rs
entr) = {57 Hi7 S madinRe) (6.1)

Here, R; and Ry are the radii of two shells separated by r. This modification is motivated on
physical grounds (WOD; Ostriker and Strassler 1989; Yoshioka and Ikeuchi 1990): if two bubbles
have separation less than the shell radius, as they expand they attempt to sweep up mostly the
same material, and eventually form one shell rather than two. In this section, we consider the
effects of shell self-avoidance on the two-point correlation function of shell galaxies.

This modification of the bubble distribution reduces the amplitude of the galaxy correlation
function on separations r < 3Rmay. Let

£go(r) = ‘f;g(’”) - fgg('r)a (6.2)
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where §;’g(r) is the two-point correlation function of shell galaxies for a Poisson distribution
of shells, Eqn.(4.13), and £5.(r) is the reduction due to shell anticorrelation. Then, £7.(r) is
calculated by counting all possible contributions from two galaxies belonging to two different
shells with the center of one shell lying inside the other shell. The calculation proceeds by the
following steps. We set Ry > Rj, since the contribution from the case with Ry < Rp 1s the same
as that from the case with R; > Ry. Starting from a galaxy sitting on the surface of the shell
with radius Ry, we draw a sphere with radius r. At a given point on the sphere, we calculate the
ratio F' of the probability of finding galaxies belonging to the shell with radius Rp lying inside
the shell with radius R to the probability of finding galaxies belonging to the shell with radius
Ry lying everywhere. We then average the ratio over the points on the sphere to obtain F

1) for Ry 2

a) for Ry <,

Fla=m=——2— — —, (6.3)

b)for r < Ry < Ry,

1
== = — 6.4
=3 "1, T TRiR,’ (64)
i)forr/2< Ry £ 1
a) for Rp < 2Ry — 7,
2
Fopg s — 2 __T_
2 12Ryr 4Ry (6.5)
=?101
b} for 2Ry —r € Ry < Ry,
_ R 2 2 2
Fp=sy2, B R B T T (6.6)
4 B8Ry 6Ryr 8r 24Ryr B8Ry B8Ry 24R1Ry
i) for r/3 < Ry < rf2:
a) for Ry < r — 2Ry,
Fza =0, (6.7)
b) for r —2R; < Ry < Ry,
—~ 1 R R} Ry R} r r ré
Fap == Bt 1 e 2 . -
b=y + 8R; + 6Ror 8 24R;r 8R; 8RRy + 24R 1 Ry (6.8)

=F2b’
iv) for Ry < r/3:

Fg=0. (6.9)
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Finally, we average the ratio over the galaxies on the shell with radius R to get £g (r),
a 2 [ B = 2 2
£gg(r) = ;l—gfo de/D dRyF - 4 R{N g (Ry)ngp(R1) - AT RGN gp(R2)ngn(Rp). (6.10)
g
Here, the factor of 2 is inserted to include the case with Ry < Rp. Using Eqn.(4.7), we find

o0 r — o Ry —
£a,(r) = j; dR; jo dRyF 1,6 + ]r R, f,- dRyFy,C

" aR [T dR TG [ dR [ dRyFyG
+1_/2 1_/0 24 2a +fr/2 1-/2R1—r 24" 2h

o T ar Tt [dr [ dRTFuG
+jr/3 1/0 28 3a +fr/3 1/,‘-_“21 24'3b (6.11)

f‘/3 Rl —
+ _[0 dR, fn dRF4G
RIRIN 1 (RN gn(R2)nsp(R1)ngn(Ra2)

G =2 =7 2
RY(0)N, (0)m52(0)

Note that £J¢(r) is independent of f.

For the case of equal size shells, £g4(r) has a simple form,

. ] .
o i+ o if r < Ryp
Ry 3 r _ _1 .
bro(r) = { 81 ~8HI; ~mpy, H Ban <r <2y (6.12)
2 .
—%+Tﬁﬁ_ﬁ,’; if 2Ry, < r < 3Ry
| 0 ifr> 3Rsh .

Figure 13 shows the two-point correlation function for equal size shells with f = 0.8, 1.0, and 1.2.
The self-avoidance steepens the slope significantly but also reduces the amplitude. Hence, shell
self-avoidance alone does not improve the match with observations (recall that in the shell models
considered in §III and §IV, the amplitude of the two-point function was too small). However,
combining shell self-avoidance with cluster (and background) galaxies should provide a quasi-
realistic model which reproduces the observations reasonably well. Given the complexity of this
combination, analytic calculations appear to be impractical.

VII. DISCUSSION

We have studied analytically the statistical distribution of galaxies in the phenomenological
shell model of large-scale structure. Most of the previous studies of this model focused principally
on the spatial clustering of galaxy clusters. Yet, the observational motivation for the model comes
from the striking bubbly structure seen in the CfA survey extension slices. Since this structure
is visibly traced by the shell galaxies discussed here, they are a crucial component of the model.
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Including shell galaxies implies that additional observational data can be accounted for, while the
number of extra model parameters introduced into the shell model is small.

The model we have studied is admittedly simple: we have assumed spherical geometry,
infinitely thin shells with no clustering of shell galaxies within shells, and, for the most part, a
random distribution of bubbles. The spherical approximation is probably not a severe limitation
(see Borden, Ostriker, and Weinberg 1989), and the assumption of infinitely thin shells does not
affect the correlation functions on large scales (see Appendix A). Presumably, gravity will lead to
clustering of shell galaxies within shells, but this process is not well understood: how does gravity
correlate galaxies on the shells when they go unstable, without destroying the sharp shell structure
seen in the redshift surveys (White and Ostriker 1990)? In particular, it is not obvious why the
correlation function should be a featureless power law down to scales less than the shell thickness,
as is observed, unless gravity dominates on significantly larger scales. The last assumption, of a
random bubble distribution, is considered in § V1. In addition, one can imagine other prescriptions
for laying down galaxies and clusters in this model: for example, galaxies might be distributed
mainly on sheets where two shells meet, and clusters may form at the intersection of four shells,
as is the case in the Voronoi tesselation models (Icke and Van de Weygaert 1987, 1990; Van de
Weygaert and Icke 1989; Coles 1990).

Despite these idealizations, we find that the shell model fits the observations of the galaxy two-
point function rather well, and for the same choice of model parameters which best reproduce the
cluster correlation function. Given the different geometrical origins of these functions, we count
this a non-trivial success of the shell model. In addition, the galaxy three-point function and the
void distribution function (when a substantial fraction of background galaxies are included) appear
to be in reasonable agreement with the data. The slope of the cluster-galaxy cross correlation
function is in good agreement with the observations, although its amplitude is marginally low.
The correlation of clustering strength with morphology is reproduced in the shell model, but the
slope of the correlation function of elliptical galaxies is lower than that observed. If we assume that
the residual galaxy peculiar velocities (after gravitational effects are subtracted) are dominated by
shell expansion, the shell model velocity correlation tensor appears to give a poor fit to the data;
in particular, the perpendicular component Z(r) has the wrong sign and too large an amplitude.
This argument may be turned around to place an upper limit on the expansion velocity of shells:
for 20 consistency with the spiral velocity data, the shell expansion speed must generally satisfy
V,5(R)$0.1 —0.2HoR. This is consistent with expectations from several versions of the explosion
model. Since the galaxy statistics are sensitive to the assumed spatial distribution of bubbles, we
have also investigated the effect of shell anticorrelation on the two-point correlation function. We
are currently studying other statistics, in particular the angular correlation function w(f), the
void probability function, and the expected distribution in a pencil beam survey.

Although the physical understanding of the bubble structure is far from complete, the relative
success of the shell model in accounting for a variety of galaxy statistics, in addition to reproducing
the qualitative visual structure of the CfA slices, suggests that large-scale galaxy clustering may
reflect the geometry of the resulting structure more than the underlying physical processes (gravity
vs. explosions) which generate it.
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APPENDIX A
FINITE THICKNESS SHELLS

One of the striking features of the CfA bubbles is their sharp surfaces. The shells in the CfA
survey have a typical thickness of 200 — 300km/sec, or éRy, >~ 2 — 3h~1Mpec. Since this is of
order the typical peculiar velocity dispersion of galaxies in the field, this is an upper limit to the
true physical thickness of the bubbles. Throughout the body of the paper, we follow previous
authors in taking the shell thickness éR,;, to be zero (or, éR,, < R,;). Thus, we can only
meaningfully discuss correlation functions on scales larger than 6R,;. We have also taken galaxy
clusters to have zero spatial extent, which again limits us to large scales (3> Rgpepn = 1.5p71
Mpc). In the context of the shell model, this approximation is also a necessary limitation, for
non-linear gravitational effects have presumably steepened the correlation function on scales less
than ~ 3h~!Mpc anyway (and may affect the correlation function on even larger scales). Hence,
our predictions with the shell model are valid only on scales greater than or of order ~ 3h~1Mpec.
However, for completeness, we show here how the two-point correlation function behaves on small
scales for shells with finite thickness, in the absence of gravity. The main point is that, if galaxies
are randomly distributed within shells, the two-point correlation function will flatten on scales
less than the shell thickness. Since this is not observed, we must assume gravity dominates on
these scales, correlating the positions of galaxies within a shell (but see White and Ostriker 1990).
On the other hand, the fact that the overall shell structure with sharp boundaries is maintained
suggests that either gravity does not play an important role on scales larger than ~ 3h~IMpc or
that it is important in building the shell structure itself (as, for instance, in the adhesion model
of Kofman, Pogosyan, and Shandarin 1990, and Melott and Shandarin 1990).

Here, we consider the case with equal size shells for simplicity: galaxies are assumed to be
randomly distributed on shells with equal size but finite thickness, and the shells are assumed to
be randomly distributed in space. Each shell has inner radius, R,p, and outer radius, R,, +6Rg,
and the volume filling factor is defined by
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6B \3
f= 5 nsh (Rah + 2”') - (A1)

The thickness §R,; is assumed to be smaller than the shell diameter, 2R,p, so the dominant
structures are shells rather than spheres. The two-point correlation function, £gg(r), is calculated
in the following way: starting from a galaxy, we count the average number of neighbor galaxies
at distance r which belong to the same shell, and then we average over galaxies at different radii
from the shell center. Then,

for r < §R,p:

€gq(r) =

2 2
(Rt + 6R01/2)° [1 N r3 — 6 {(Ryn + 6Run)? + R} 7 (A1

f [(Bon + 6Rpp)% — B3] 8 [(Ron + 8R,n)° — B3,
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for 6R,, < r < 2R,

3 (Rt 6R4/2)% (2R, + 8R4p)? 6R2,
{gq(r) = 8fr 3 p3 ]2
[(Rah + 5Rsh) - Rsh]

, (A.2)

for 2R, < r < 2R,; + 6Ryp:

1 (R + 6Ryp/2)°

£ag(r) =
16 (R + R, - R

1
5 [6(2R,h + 6R,;)? 6th-; —~16R3, + 12R%,» — r3] , (A.3)

for 2Ry, + 6R,p < v < 2R,p + 26Ryy,:

1 (Ryp +6Ru4/2)°

Eag(r) =
0lr) = [(Rop + 6Rs) — RY,]

3 1
(Rsh + 5Rah)3 - (R.sh + 5R.1h)2 r+ “"7‘3 ) (A-4)
2 4 16

for r > 2R + 26 Ry

§gg(r) = 0. (A.5)

Figure Al shows the resulting two-point correlation function for f = 0.8 and 1.2 and
6R.u /2Ry = 1/10 (or, R, = 3h~Mpc for Ry, = 153h~!Mpc). Comparing with the plots
for infinitely thin shells in Figure 1, the two-point correlation function becomes flat on scales less
than the shell thickness, as expected: at small separation, r € §R,}, the slope vy, >~ 0. Further-
more, the slope goes to zero smoothly, rather than abruptly, around the separation corresponding
to the shell diameter. However, on larger scales, § R,y <r<2R,p, the behavior of the correlation
function is very similar to the case of infinitely thin shells, justifying the neglect of the shell
thickness.

APPENDIX B
6Va,bc

The volume element at separations r, < r < ry + dry and r¢ < r < re + dre from two points
separated by rg < r < rq+drg is calculated in the following way. Let rq < rp+r¢, 'y < re+ra, and
re < ra + rp. If the above conditions are not satisfied, there is no intersection, hence 6V, 3. = 0.
From the two points 1 and 2 let us draw two shells with radii r; and rc and thicknesses drj and
dre as in Figure Bl. Then,

) \/21"21'% +2r2r2 + 2r§r§ —rd— rg - rd
sinfy =

B.1
Srary : (B.1)

\/21'21'% +2r2r2 + 2rfr2 —rd —rf — 1k

Sin 8, =
2 2rerg

, (B-2)
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\/21*31‘% +2r2r2 4 2rfr2 —rd -1} — 1k

sin @ =
3 ZTbTC

(B.3)

The intersection where the third point 3 is found constitutes a ring with a cross section which is
drawn schematically in Figure B2. The length of the circumference of the ring is

L =2nrysin by, (B.4)
and the area of the cross section is dred
rb Te
S = . B.5
sin 03 (B:5)
Hence, the volume element is
Vape =L- S
=2wr—é—2drbdrc. (BB)
Ta

APPENDIX C
6Py 2

The probability that, on the surface of a shell with radius R,p, galaxy 2 is found at separation
ra < r < rq + drg from galaxy 1 and galaxy 3 is found at separations rp < 7 < rp + dry and
re < r < re + dre from galaxies 1 and 2 is the product of the area element on the surface at
separations ry < r < rp+dry and re < r < re4-dre from two points separated by rg < 7 < rg+drg,
854 bc» and the surface number density of galaxies, Nih- 68g ) is calculated in a similar way to
8V bc in Appendix B. On the surface of a sphere with radius Ry, let us draw two rings from the
two points 1 and 2 with radii ry and re and thicknesses dry and dr¢ as in Figure C1. Then, the
lengths of the arcs on the surface corresponding to the three separations are

2

la = Ry, arccos (1 - =5 ) , (C.1)
2R%,

I, = Ry, arce (1 t ) (C.2)

b= L4 05\ 1— ) .
2R2,

le = R,p, arce (1 re ) (C.3)

e = h (03] - y .

! 2R2,

and the angles between them are

- \/I—wg—mgﬂx§+2maxbxc
sinf; =
\/1 —:cg\[l —x%

\/1 -2 - J:% — 22 + 2247p%c

Jl—x%JI—mg ,

, (C4)

sinfy = (C.5)
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\/1 —z2 — .’L‘% — 32 + 2zaTpZc

\/1 -—:cg\/l --:r:%

where g =1 — (r2/ 2R3h) and so on. The derivatives of the arcs are related to the derivatives of
the separations by

sin 63 =

(C.6)

dlag = T madra, (C.T)

dly = 1f 2 dry, (C.8)
14z

dle = (| —2—dre. (C.9)
1+ 2z,

flg <ly+lc, Iy < le+la, and lc < lg+ 13, the two rings meet at two intersections where the third
point 3 is found. Since the intersections are similar to that in Figure B2, the area element is
diydl,
sin 5
4rbrc
=\/F£drbdrc (C.10)
2.2 2.2 22 4 4_ .4 rargri
Fape =2rgry +2ryre +2rerg —Tg —Th —Te — th :
3
Note that, here, the conditions lg < I + l¢, Iy <l +la, and lc < Ig + I insure Figp > 0 and vice
versa.

5Sa,bc =2

APPENDIX D
meR(r/2), N (r/2), Rp(r/2), and V(r/2)

For a power law distribution of shell radii, we define y = r/2Rmaz and ymin = Rpin/ Rmaz.
Then, substituting Eqns.(4.9) to (4.11) into Eqns.(4.3) to (4.6), we find

L) ORYT‘ﬂz — -
e (1 — 4158} iy < Ymin
nuh(‘f'/2) = ﬂ.h]a_Rranuz (1 _ yl—a) if Yrmin g y <1 (D]_)
0 ify>1,
n 1—g  l-yizatnd .
N (rf2) = N”‘f“I-a'*“E_l—?fi,r iy < Ymin (D.2)
y — 1~yl-atnf | 4
:’z.o l—la-fnﬂ 1!_l.y1—a if Yymin ¥ < 1,
n _d—atmg 1oyt o
_R_g(r/Q) _ Rraz ntl—a+mp 1_y'1n-‘;:+mﬁ Y= Ymin (D.S)

1—a+ 1—yntl-at+mf |
maz n+1—a-T£t,6 13y1~a+mﬁ f ymin Sy <,

1—a+3,
m+l—a+28 1-yoti-ot A+ny

T . )
VE(r/2) = Vihomti-atiftmy oyriere Y S Ymin (DA4)
™ " Yyn  mil-a428  1-gmiicerddiny :

h - = if Ypin Sy < L.

shom+l—a+28+ny 1—ym+l atdd
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TABLES
TABLE 1

Model with Power Law Distribution of Shell Sizes*

a = 3.5, Rmin/Rmaz = 1/8

B =00 F=T10
Yo Toszma.z Yo T‘o/ZRmaz
0.8 1.22 0.042 1.03 0.052
1.0 1.22 0.035 1.03 0.042
1.2 1.22 0.030 1.03 0.035
a = 4.5, Rpyin/Rmaz = 1/8
b= 0.0 =1.0
Yo T‘o/ 2R maz Yo To / 2Rmaz
0.8 1.43 0.036 1.09 0.039
1.0 1.43 0.031 1.09 0.032
1.2 1.43 0.027 1.09 0.027
& — 3.5, anin/Rmz = 1/15
g =00 8 =1.0
Yo To / 2imaz Yo ro/ 2Rmaz
0.8 1.66 0.037 1.05 0.047
1.0 1.66 0.033 1.05 0.038
1.2 1.66 0.029 1.056 0.032
o = 4.5, anlﬂ/Rma: = 1/15
8 =100 7 =10
Yo To / 2Rmaz Yo T'o/ 2Bmaz
0.8 2.37 0.034 1.22 0.031
1.0 2.37 0.031 1.22 0.026
1.2 2.37 0.029 1.22 0.023

*Data between 1/20 < 7/2Rmar < 1/5 are used to fit the power law form of the two-point
correlation function in Eqn.(2.1).
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TABLE 2

Model with Cluster and Background Components*®

@ = 3.5, Rypin/Rmaz = 1/8, § =1.0, My = 0.8, Mc = 0.2, My =0.0

5= 0.0 3 = 1.0
Yo 7’0/ 2Rmaz Yo To/ 2Hmaz
0.8 1.36 0.108 1.25 0.128
1.0 1.33 0.087 1.22 0.103
1.2 1.30 0.073 1.19 0.085

o = 4.5, Ryin/Rmaz =1/8, § =1.0, My =0.8, M. = 0.2, M; = 0.0

g = 0.0 g =1.0
Yo To / 2Rmaz Yo To / 2 Rmaz
0.8 1.45 0.079 1.28 0.092
1.0 1.41 0.064 1.24 0.074
1.2 1.39 0.054 1.22 0.062

& = 35, Rmtn/Rmz = 1/8, 6= 1.0, Ms = 0.6, Mc = 0.2, Mb =02

g =00 F=1.0
Yo To/ 28 maz Yo o / 2Rmaz
0.8 1.40 0.095 1.31 0.108
1.0 1.36 0.076 1.27 0.086
1.2 1.33 0.063 1.24 0.071

a =45 Rmin/BRmaz =1/8, § =1.0, M, =06, M, =02, My =0.2

g =00 F=1.0
Yo To / 2Rmaz Yo To / 2Rmaz
0.8 1.47 0.069 1.32 0.077
1.0 1.43 0.056 1.29 0.062
1.2 1.41 0.047 1.26 0.051
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& = 3.5, Rmtn/Rmz = 1/15, 6= 10, M_g =0 8, Mc = 02, Mb = 0.0
g =00 =10
Yo T0/2Rmaz Yo roszm,az
0.8 1.52 0.087 1.28 0.113
1.0 1.48 0.071 1.24 0.091
1.2 1.46 0.060 1.21 0.076
o> = 4.5, Rmtn/Rmz = 1/15’ 5 = 1.0, f\f'.{_g = 0.8, J‘ffc — 0.2, A/Ib =0.0
8 =0.0 g =1.0
Yo "'o/sznz Yo TO/ZRmaz
0.8 1.83 0.056 1.40 0.067
1.0 1.80 0.047 1.37 0.053
1.2 1.78 0.041 1.35 0.047
o = 3.5, Rmin/Rmaz = 1/15, §=1.0 My=06, Mc=0.2, M =0.2
=100 g = 1.0
Yo ro/ 2Rmaz Yo T‘o/ 2Rmaz
0.8 1.53 0.079 1.33 0.095
. 1.0 1.49 0.064 1.29 0.076
1.2 1.46 0.053 1.26 0.063
a = 4.5, Rmin/Rmaz = 1/15, 6§=1.0, M, =08, M, =0.2, Mb = 0.2
5 =00 g =1.0
Yo To/ 2Rmaz Yo T'o/ 2Rmar
0.8 1.81 0.051 1.45 0.057
1.0 107 0.042 1.41 0.047
1.2 1.74 0.037 1.38 0.039

*Data between 1/20 < r/2Rmaz < 1/5 are used to fit the power law form of the two-point
correlation function in Eqn.(2.1).
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TABLE 3

Spiral galaxies™

a = 3-51 Rmin/Rmz - 1/8, 6 = 1.0, A{s - 0-95, Mc = 0.05, Mb = 0.0

ﬂ — 0,0 B = 1.0
Yo T'o/szaz Ye To/sza:c
0.8 1.22 0.052 1.06 0.066
1.0 1.21 0.042 1.05 0.052
1.2 1.21 0.036 1.05 0.044

o = 45, Rmin/Rmz = 1/8, 6 = 1.0, Ma =

0.95, M = 0.05, M = 0.0

g =0.0 g =10
Yo ”'o/2Rma= Yo To/szuz
0.8 1.40 0.042 1.11 0.048
1.0 1.39 0.036 1.11 0.039
1.2 1.39 0.031 1.10 0.033

a = 3.5, Ryin/Rmaz = 1/15, § = 1.0, My = 0.95, M, = 0.05, M, = 0.0

B =00 A=1.0
Yo '-"o/ 2 Rymazx Yo 'f'o/ 2Rmaz
0.8 1.55 0.043 1.08 0.059
1.0 1.54 0.037 1.08 0.047
1.2 1.54 0.033 1.07 0.040

a = 4.5, Rmin/Rmaz = 1/15, 6 =1.0, My, = 0.95, M, = 0.05, Mb = 0.0

5 =0.0 A =1.0
Yo Tof 2Rmaz Yo To / 2Rmaz
0.8 2.11 0.036 1.24 0.038
1.0 2.11 0.032 1.24 0.031
1.2 2,11 0.030 1.23 0.027

*Data between 1/20 < 7/2Rmaz < 1/5 are used to fit the power law form of the two-point
correlation function in Eqn.(2.1).
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Elliptical galaxies*

o = 3-5, Rmtn/Rmz = 1/8, 6 = 1.0, M, = 0-67, Mc = 0.33, Mb = 0.0

5 =10.0 =10
Yo T'oszmaz Yo T‘o/szz
0.8 1.45 0.168 1.38 0.189
i.0 1.41 0.136 1.33 0.133
1.2 1.37 0.113 1.30 0.128

a = 45, Rmtn/anaz = 1/8, 6 = 1.0, A/Is = 067, Mc = 033, Mb = 00

Yo To / 2Hmaz Yo To / 2Hmaz
0.8 1.50 0.120 1.39 0.135
1.0 1.46 0.097 1.35 0.109
1.2 1.43 0.082 1.31 0.092

@ = 3.5, Rin/Rmaz = 1/15, § = 1.0, M, = 0.67, M. = 0.33, M =0.0

Yo To/ 2Hmaz Yo ?”o/ 2Rmax
0.8 1.55 0.137 1.40 0.166
1.0 1.51 0.111 1.36 0.135
1.2 1.47 0.094 1.32 0.113

x = 4.5, Rm‘n/Rmz = 1/15, 6 = 1.0, Mg = 0.67, Mc = 033, Mb = 00

F =100 g =1.0
Yo ro/2Rmaz Yo rof2Rmaz
0.8 1.79 0.081 1.52 0.095
1.0 1.74 0.067 1.47 0.079
1.2 1.71 0.058 1.44 0.067

*Data between 1/20 < r/2Rmaz < 1/5 are used to fit the power law form of the two-point
correlation function in Egn.(2.1).
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TABLE 4

& = 3.5, Rm‘lﬂ./RmﬂI = 1/8, 6 - 1.0, M‘g = 0.8, Mc = 0.2, ¢Mb = 0.0

g =0.0 g =1.0
! Yo To/szaz Yo T'o/ZRm.az
0.8 1.63 0.170 1.52 0.180
1.0 1.59 0.142 1.47 0.149
1.2 1.55 0.123 1.44 0.127
o = 4.5, Rfm‘n/Rmaz = 1/8, §=1.0, My, =08, M,=0.2, My =10.0
F=10.0 B =10
f Yo ro/2Rmaz Yo o/ 28maz
0.8 1.93 0.120 1.75 0.125
1.0 1.88 0.103 1.70 0.106
1.2 1.85 0.091 1.67 0.092
o = 3-5, Rmin/Rmz = 1/15, 6 - 10, M’ = 08, Mc = 02, Mb = 00
8 =10.0 g =10
f Yo ro/ 2Rmaz Yo To / 2Rmaz
0.8 1.79 0.119 1.59 0.129
1.0 1.74 0.101 1.54 0.107
1.2 1.71 0.088 1.50 0.092
o = 4.5, Rmtn/Rmz = 1/15, b= 1.0, A{s = 0.8, Mc = 0.2, Mb = 0.0
f Yo To/ernaz Yo f'o/2Rmam
0.8 2.30 0.073 1.99 0.077
1.0 2.26 0.066 1.95 0.067
1.2 2.23 0.060 1.92 0.060

*Data between 1/20 < r/2Rmaz < 1/3 are used to fit the power law form of the cross correlation

function.
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FIGURE CAPTIONS

1.— The galaxy two-point correlation function for the equal size shell model with f = 0.8,
1.0, and 1.2. Dashed line at lower left shows r—1-8 slope for comparison.

2.— The scaled three-point correlation function @ for the equal size shell model plotted
against r. Q was calculated for 0 < rq/2R,p, T/2Rsh, T¢/2R,; < 1/2 and averaged over u
and v.

3.— The peculiar velocity correlation function and the relative peculiar velocity of the equal
size shell model for f = 0.8, normalized to the shell velocity V,;. The dot-short dashed

curve is E!}ﬂ (r), dot-long dashed curve £z (r), short dashed curve yy(r), and the solid curve
is v1a(r).

4.— The void probability function of the equal size shell model for f = 0.8 (solid curve) and
1.2 (short dashed curve). The void probability function for a random Poisson distribution
of galaxies with ng = 0.01h3Mpc—3 (assuming R,y = 15A1Mpc) is also shown (dot-short
dashed curve) for comparison.

5.— The galaxy two-point correlation function for the power law model. (a) Ryin/ Rmaz =
1/8, @ = 3.5, 8 = 0.0, and f = 0.8, 1.0, and 1.2; (b) same as (a) except a = 4.5; (c) same
as (a) except Rmin/Bmaz = 1/15; (d) same as (a) except Rmin/Rmaz = 1/15 and a = 4.5.
Dashed line corresponding to r—1-8 is shown at lower left for comparison.

6.— The scaled three-point correlation function @ for the power law model plotted against
r. Q was calculated for 0 < r4/2Rmaz, 78/2Rmaz, Te/2Rmaz < 1/2 and averaged over u
and v. (8) Rmin/Bmaz = 1/8, @ = 3.5, 8 = 0.0; (b) same as (a) except § = 1.0; (c) same as
(a) except o = 4.5; (d) same as (a) except @ = 4.5 and § = 1.0.

7.— The peculiar velocity correlation function and the relative peculiar velocity of the power
law model. (a) Bmin/Rmaz = 1/8, & = 3.5, 8 = 0.0, v = 1.0, and f = 0.8; (b) same as
(a) except 8 = 1.0; (c) same as (a) except a = 4.5; (d) same as (a) except & = 4.5 and
B = 1.0. The dot-short dashed curve is {!,lv(r), dot-long dashed curve £ (r), short dashed
curve £yp(r), and the solid curve is vyp(r).

8.— The void probability function of the power law model (4 upper curves) and the power law
model with cluster and background galaxies (4 middle curves). Here, Rynin/ Rmaz = 1/8.
The solid curve corresponds to f = 0.8 and a = 3.5, dotted curve f = 0.8 and a = 4.5,
short-dashed curve f = 1.2 and a = 3.5, and long dashed curve f = 1.2 and o = 4.5. In
addition, the middle curves assume My = 0.2, ng = 0.01h3Mpc—?, and Rmaz = 30h~1Mpc
(see §V). The void probability function for a random Poisson distribution of galaxies with
ng = 0.01h3Mpc~3 (assuming Rmaz = 30h~1Mpc) is also plotted (lower dot-short dashed
curve) for comparison.
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9.— The galaxy two-point correlation function for the the power law model including cluster
and background galaxies. (a) Rmin/Rmaz = 1/8, @ = 3.5, § = 0.0, § = 1.0, M = 0.2,
M, = 0.0 and f = 0.8, 1.0, and 1.2; (b) same as (a) except a = 4.5; (c) same as (a) except
My = 0.2; (d) same as (a) except Mj = 0.2 and « = 4.5. Dashed line corresponding to r— 18
is plotted at lower left for comparison.

10.— The spiral galaxy two-point correlation function. Here, spiral galaxies are assumed to
comprise 95% shell (feld) galaxies and 5% cluster galaxies. (2} Rmin/Rmaz = 1/8, a = 3.5,
=00, 6 =10 and f = 0.8, 1.0, and 1.2; (b) same as (a) except a = 4.5. Dashed line
corresponding to r—1-8 is plotted at lower left for comparison.

11.— The elliptical galaxy two-point correlation function. Here, elliptical galaxies are
assumed to comprise 67% shell (field) galaxies and 33% cluster galaxies. (a) Rmin/Rmaz =
1/8,a = 3.5, 8=10.0,6 = 1.0, and f = 0.8, 1.0, and 1.2; (b) same as (a) except « = 4.5.
Dashed line corresponding to r~18 is plotted at lower left for comparison.

12.— The cluster-galaxy cross correlation function. (a) Rmin/Rmaee = 1/8, a = 3.5, 8 =10.0,
6§ = 1.0, M, = 0.2, M = 0.0 and f = 0.8, 1.0, and 1.2; (b) same as {a) except o = 4.5.
Dashed line corresponding to r—1-8 is plotted at lower left for comparison.

13.— The galaxy two-point correlation function with equal size, self-avoiding shells for
f = 0.8, 1.0, and 1.2. Dashed line corresponding to r~18 is plotted at lower left for
comparison.

Al.— The galaxy two-point correlation function with equal size, finite thickness shells for
f = 0.8 and 1.2 and §Ry; /2R, = 1/10. Dashed line corresponding to r—1.8 i5 plotted at
lower left for comparison.

B1.— Schematic diagram for the volume element at the point 3, separated by rp < 7 < Ty+dry
and re < r < re +dre from the two points, 1 and 2, which are separated by rq < r <ra+ dra.

B2.— The cross section of the ring at the intersection of two shells in Figure B1.
Cl.— Schematic diagram to find, on the surface of a shell, the area element at the point

3, separated by I, <1 < Iy + dly and Il £ ! < ¢ + dl; from two points, 1 and 2, which are
separated by lg <1< g + di,.
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